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Abstract

The assignment problem is one of the most well-studied set-
tings in multi-agent resource allocation. Aziz, de Haan, and
Rastegari (2017) considered this problem with the additional
feature that agents’ preferences involve uncertainty. In particu-
lar, they considered two uncertainty models neither of which is
necessarily compact. In this paper, we focus on three uncertain
preferences models whose size is polynomial in the number
of agents and items. We consider several interesting compu-
tational questions with regard to Pareto optimal assignments.
We also present some general characterization and algorithmic
results that apply to large classes of uncertainty models.

1 Introduction
Multi-agent resource allocation is a widely applicable topic
within multi-agent systems. One of the most fundamental
setting in this domain is the so called assignment prob-
lem: n agents express preferences over n items and these
items are then allocated among the agents in a suitable man-
ner (Abdulkadiroǧlu and Sönmez 1999; Aziz et al. 2016b;
Bogomolnaia and Moulin 2001; Cechlárová et al. 2015;
Gärdenfors 1973; Svensson 1994; 1999).

When making such an allocation, a social designer may
consider several goals to identify a desirable allocation. One
widely-used goal, that is considered by economists as the
most fundamental requirement for any reasonable solution, is
that the allocation should be Pareto optimal, i.e., there should
not be another allocation in which each agent is weakly better
off and at least one agent is strictly better off.

Pareto optimality is easy to achieve in classical allocation
settings via sequential allocation or other matching algo-
rithms. However, the problem may become more challenging
when there is some uncertainty in the agents’ preferences.
Aziz, de Haan, and Rastegari (Aziz et al. 2017b) initiated
a computational study of Pareto optimality under uncertain
preferences. They discussed several reasons to consider uncer-
tain preferences including lack of information or communica-
tion; cost of eliciting further information; a record of chang-
ing or mixed choices in the past, or the fact that the agents are
in fact virtual or ‘bidding’ agents who represent the composi-
tion of preferences of the real agents they represent. Another
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possible reason for uncertain preferences could be that agents’
preferences over items may be based on several criteria, and
that given each individual criterion they may have certain
preferences over items, but they may not be perfectly clear
on how much weight to assign to each criterion (Miyazaki
and Okamoto 2017). Uncertainty in preferences has already
been studied in voting (Dopazo and Martı́nez-Céspedes 2017;
Hazon et al. 2012) and stable matching (Aziz et al. 2016a;
2017a; Miyazaki and Okamoto 2017; Chen et al. 2018). Sim-
ilarly, in auction theory, it is standard to examine Bayesian
settings in which there is probability distribution over the
types of the agents.

In the context of Pareto optimal allocation, Aziz et
al. (2017b) considered two uncertain preferences models that
are not necessarily compact. In this paper, we significantly
extend their study by considering further compact and natural
uncertain preferences models and examining their computa-
tional aspects. An uncertain preference model is compact if
it can be represented in space polynomial in the number of
agents and items. If an assignment is PO (Pareto optimal)
with probability one, we will call it certainly PO. If it is
PO with non-zero probability, we call it possibly PO. We
consider the following compact uncertainty models:

• Compact Indifference Model: Each agent reports a sin-
gle weak preference list that allows for ties. Each complete
linear order extension of this weak order is assumed to be
equally likely.∗

• Pairwise Model: Each agent reports independent pairwise
probabilities over pairs of items. If i prefers item o over
item o′ with probability p, then she prefers o′ over o with
probability 1− p.

• Ranking Model: Each agent reports probabilities for each
item being in each rank.† The input for each agent can be
viewed as a bistochastic matrix, i.e, the sum of probabil-
ities of items being in a given rank is 1, and the sum of

∗This can be viewed as a House Allocation problem with Ties
(HRT), where any preference list obtained by breaking ties arbitrar-
ily is possible, and all possible preferences have the same likelihood
of being realized.
†Under a linear preference ordering, the most preferred item is

ranked 1st, the second most preferred item is ranked 2nd, and so on,
with the least preferred item being ranked nth.
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probabilities of an item being in one of the n ranks is 1 as
well.

A preference profile specifies preferences of each agent
over items. Previous work (Aziz et al. 2017b) on Pareto opti-
mal allocation had considered the following models: Lottery
Model (for each agent, we are given a probability distribu-
tion over linear preferences) and Joint Probability Model
(a probability distribution over linear preference profiles is
specified). Note that, as opposed to the three compact mod-
els we consider, the Lottery and Joint Probability models’
representations can be exponentially large.

We consider six problems proposed by Aziz et al. (2017b).
The two most natural computational problems are:

• PO-PROBABILITY: what is the probability that a given
assignment is PO?

• ASSIGNMENTWITHHIGHESTPO-PROBABILITY: com-
pute an assignment with the highest probability of being
PO.

We consider simpler problems than PO-PROBABILITY:

• ISPO-PROBABILITYNON-ZERO: for a given assignment,
is the probability of being PO non-zero?

• ISPO-PROBABILITYONE: for a given assignment, is the
probability of being PO one?

We also consider two problems connected to
ASSIGNMENTWITHHIGHESTPO-PROBABILITY:

• EXISTSCERTAINLYPO-ASSIGNMENT asks whether there
exists an assignment that has probability one for being PO

• EXISTSPOSSIBLYPO-ASSIGNMENT asks whether there
exists an assignment that is PO with non-zero probability.

Note that the latter problem is trivial for all uncertainty mod-
els in which the induced ‘certainly preferred’ relation is
acyclic (Aziz et al. 2017b). An agent certainly prefers an
item o to o′ if she prefers o to o′ with probability 1.

We say that a given uncertainty model is independent if
any uncertain preference profile L under the model can be
written as a product of uncertain preferences La for all agents
a, where all La’s are independent. All the five uncertainty
models except the joint probability model are independent.

Contributions In this paper, we significantly extend the
work initiated on Pareto optimal allocation under uncertain
preferences in two ways: (i) we present several general in-
sights and results that apply to large classes of uncertainty
models, and (ii) we present a comprehensive set of results for
three compact uncertainty models that have not been consid-
ered in the context of Pareto optimal allocation. Our technical
results are summarized in Table 1. Note that our most inter-
esting technical results are computational hardness results
which therefore carry over to any settings in which an agent
may find certain items unacceptable and/or an agent may be
genuinely indifferent between two or more items.

Our algorithmic results for the compact indifference and
pairwise models also extend to the setting in which agents are
allowed to declare some items unacceptable, as well as the
setting in which there are unequal number of items and agents.

To see this, note that the proof in Aziz et al 2017b (Theorem 1)
and our proofs for Theorems 2 and 3 go through without any
change for these two generalizations. Extending the ranking
model to capture either of these two generalizations is, on the
other hand, not straightforward. This is because we heavily
use the assumption that the uncertainty matrix is bistochastic
when defining various concepts for the ranking model.

Compact Pairwise Ranking
Problems indifference Probability

PO-PROBABILITY #P-complete #P-complete #P-complete

ISPO-PROBABILITYNON-ZERO in P in P in P
ISPO-PROBABILITYONE in P in P in P

EXISTSPOSSIBLYPO-ASSIGNMENT
in P NP-complete in P
(always exists) (always exists)

EXISTSCERTAINLYPO-ASSIGNMENT NP-complete NP-complete NP-complete

ASSIGNMENTWITHHIGHESTPO-PROB NP-hard NP-hard NP-hard

Table 1: Summary of results.

Discussion of the Models The compact indifference model
explains scenarios where an agent may express indifference
between some items because she does not have sufficient
knowledge about their differences. The model is neutral to
the relative ordering of these items and assumes that all linear
orders consistent with the weak preferences are equiprobable.
The model was considered by Aziz et al. (2016a) in the
context of the two-sided marriage problem and with stability
as the main concern. Although the model is quite restrictive,
our hardness results for the model underline the fact that even
uncertainty in restrictive models can lead to intractability.

The pairwise uncertainty model is well-studied in social
sciences, in particular psychology, where people are asked to
make repeated pairwise comparisons between different items
or experiences. The model was formally studied in a related
but different setting of the two-sided marriage problem (Aziz
et al. 2017a), where the focus was on stability rather than
Pareto optimality. The model is applicable to scenarios where
the system has a record of similar pairwise choices and uses
that record to find an outcome that has a high probability of
being Pareto optimal.

The ranking model appeals to the idea that agents often
ascribe ranks to items but they may not always be sure about
the exact rank of each item (see e.g., Dopazo and Martı́nez-
Céspedes 2017; Mazurek 2017). This notable approach to
fuzzy rankings is applicable to scenarios where the system
has a record of past ranking information and uses that fuzzy
or aggregate record to find an outcome that has a high proba-
bility of being Pareto optimal.

Any compact indifference preference profile can be rep-
resented by a lottery preference profile albeit with possibly
an exponential blowup. In Section 6 we will discuss how the
ranking model has connections with the lottery model.

In both the compact indifference model and the ranking
model, we assume that the underlying preferences of agents
are linear orders. Hence the certainly preferred part of the
relation is acyclic under these two models. In the pairwise
probability model, however, we do not assume that com-
parisons are transitive and even allow agents to have cycles
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in their certainly preferred relations. Cyclic and intransitive
preferences may happen in practice, e.g., when an agent is
a virtual agent representing the preferences of a group of
agents or a committee, or when agents’ valuation functions
over alternatives are complex and multidimensional.

2 Preliminaries
An instance of the (deterministic) assignment problem is a
triple (N,O,�) where N is the set of n agents {1, . . . , n},
O = {o1, . . . , on} is the set of items, and the preference pro-
file �= (�1, . . . ,�n) specifies complete and asymmetric
preferences�i of each agent i over O. In the classical assign-
ment problem, agents’ preferences are also assumed to be
transitive, hence resulting in linearly ordered preferences. Let
�S denote the preference profile of agents in the set S ⊂ N .

An assignment is an allocation of items to agents such that
each agent is allocated a unique item. We will represent as-
signments by a permutation over O so that an item in the i-th
position in the permutation is given to agent i. For example,
We refer by abc the assignment in which agent 1 gets a, agent
2 gets b and agent 3 gets c. For a given assignment ω, let ω(i)
denote the item allocated to agent i.

An assignment ω is PO (Pareto optimal) if there exists no
other assignment µ such that µ(j) �j ω(j) for some agent j
and µ(i) = ω(i) or µ(i) �i ω(i) for all agents i. If such an
assignment µ exists, then we say that µ Pareto dominates ω.

In this work, we allow agents to express uncertainty in
their preferences and consider three uncertainty models. For
each agent i we define the certainly preferred relation �cert

i .
We write b �cert

i c if and only if agent i prefers b over c
with probability 1. Checking b �cert

i c is straightforward in
the pairwise and compact indifference model. We will show
in Section 6 that for the ranking model it can be checked in
polynomial time whether b �cert

i c.
An agent i possibly prefers an item b to item c if and only

if i prefers b over c with nonzero probability. Given an agent
i, a subset of items O′ ⊆ O, and an item a ∈ O′, we say that
a is a possibly most preferred item for i among the items in
O′ if there is a deterministic preference compatible with the
uncertain preferences in which a is certainly preferred over
other items in O′. Checking whether a is a possibly most
preferred item in O′ is straightforward in the pairwise and
compact indifference model. We will show in Section 6 that
this problem can be solved in polynomial time for the ranking
model as well.

3 General Results
We first note a well-known characterizations of PO assign-
ments in deterministic settings. For any assignment ω, the cor-
responding trading graph is a graph on vertex set N ∪O, in
which each item points to its owner and each agent points to
items more preferred that her allocated item. The assignment
ω admits a (trading) cycle 〈o0, i0, o1, i1, . . . , ok−1, ik−1, o0〉
if for all j ∈ {0, . . . , k − 1} we have that oj = ω(ij) and
oj+1 mod k �ij oj . The following fact is well-known: an
assignment is PO if and only if its corresponding trading
graph does not admit a cycle (Abraham et al. 2004).

The trading cycle approach described above can be ex-
tended in two different ways when considering uncertain
preferences: (1) each agent can point to items that are cer-
tainly more preferred to her current item, or (2) each agent
can point to items that are possibly more preferred to her
current item. Note that computing the certainly preferred rela-
tion directly gives us the possibly preferred relation. Aziz et
al. (2017b) used approach (2) and characterized certainly PO
assignments as those whose trading graph corresponding to
‘possibly preferred’ part of the relation does not admit a cycle.
They then used the characterization to prove the following
theorem.

Theorem 1 (Aziz et al. (2017b)) For any independent un-
certainty model in which the certainly preferred relation
can be derived in polynomial time, ISPO-PROBABILITYONE
can be solved in polynomial time.

All the three compact models we consider are independent
and, as remarked in Section 2, the certainly preferred rela-
tion can be derived in polynomial time in all three of them.
Therefore, as a corollary, we get the following statement.

Corollary 1 For the compact indifference, pairwise, and the
ranking uncertainty models, ISPO-PROBABILITYONE can
be solved in polynomial time.

Analogous to the characterization of certainly PO assign-
ments (Aziz et al. 2017b), one may presume that an assign-
ment is possibly PO if and only if the trading graph corre-
sponding to ‘certainly preferred’ part of the relation does
not admit a cycle. However, it can be shown that the latter
condition is necessary but not sufficient for possible Pareto
optimality.

Next, we present a characterization of possibly PO assign-
ments. We do this by first presenting a classic characteri-
zation of PO assignments for deterministic and linear pref-
erences (Abdulkadiroǧlu and Sönmez 1998) that is defined
with respect to the outcomes of serial dictatorship. Serial
Dictatorship (SD) is an assignment mechanism that is spec-
ified with respect to a permutation π over N : each agent is
considered in the order stipulated by the permutation, and is
allocated the item she most prefers among those that have
not been allocated yet. We will denote by SD(N,O,�, π)
the outcome of applying serial dictatorship with respect to
permutation π over assignment problem (N,O,�).

Fact 1 (Abdulkadiroǧlu and Sönmez (1998)) An assign-
ment is PO if and only if it is an outcome of serial dicta-
torship.

In the literature, SD is defined for linearly ordered prefer-
ences. We noted earlier that under pairwise preferences, we
allow agents to have cycles in their preferences; e.g., an agent
may certainly prefer b to c, c to d, and d to b. There is nothing
to prevent one from running SD on deterministic pairwise
preferences. However, when an agent’s turn arrives she may
not find an item she most prefers, due to the existence of a
cycle, in which case SD must abort without any solution. It
is thus easy to see that the “if” direction of Fact 1 applies
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to pairwise preferences as well. We can show that the other
direction too applies, though this is not immediately obvi-
ous. We present the following general theorem that applies
to any uncertainty model and is a general characterization
of possibly PO assignments. This theorem is an immediate
consequence of Fact 1 if all realizable deterministic prefer-
ences are linear. We are providing a detailed proof to cover
the case in which cycles may be present in deterministic pref-
erences. Thus the theorem implies that Fact 1 applies to any
deterministic, including pairwise, preferences.

Theorem 2 For any uncertainty model, an assignment ω is
possibly PO if and only if there is some permutation π and
some preference profile that has non-zero probability under
which when serial dictatorship is applied with respect to π,
each agent in her turn gets item ω(i).

Proof: (⇐=) Follows from the “if” direction of Fact 1 that
applies to any deterministic preferences. If for some deter-
ministic preference profile �′ that has non-zero probability
we have that ω = SD(N,O,�′, π), then ω is possibly PO.

(=⇒) Since ω is possibly PO, it is PO with respect to
some realizable deterministic profile �′. We show that ω =
SD(N,O,�′, π) for some permutation of agents π. Take
any partial allocation ω′ ⊂ ω that allocates to a subset of
agents S ⊂ N ; that is, ω′(i) = ω(i) for all i ∈ S. Denote
the items that are allocated in ω′ by O′. (Note that ω′ and
hence S and O′ can be empty sets.) We claim that there
exists some agent i ∈ N \ S such that, with respect to �′,
ω(i) is the most preferred item of agent i among the set
of items O \ O′ (note that, by the definition of ω′ and O′,
ω(i) is in O \ O′). Suppose for a contradiction that there
exists no such an agent. Therefore, every agent j ∈ N \ S is
interested in, and in the corresponding trading graph points
to, an item (or more) that is held (according to ω) by another
agent in N \ S. This implies the existence of a trading cycle
where some agents in N \ S can exchange items among
themselves to get a more preferred item than in ω, implying
that ω is not PO with respect to the deterministic profile �′,
a contradiction. Therefore, we have established that starting
with ω′ = ∅, we can obtain ω by iteratively finding an agent
who has not been allocated yet and, according to �′, has
ω(i) as her most preferred item among the unallocated ones.
Such an agent always exists as proved above. Let the order
in which the agents are chosen be π. It is easy to verify that
ω = SD(N,O,�′, π). �

We call an uncertainty model reasonable if, for any subset
of items O′ ⊆ O and any agent i ∈ N , it can be checked in
polynomial time whether o ∈ O′ is a possibly most preferred
item for i among items in O′. It is easy to verify that the
lottery, compact indifference, and the pairwise models are
all reasonable. Although it is not obvious, we will show in
Section 6 that the ranking model is reasonable as well. Next,
we present another general result that applies to a large class
of uncertainty models.

Theorem 3 For any independent and reasonable uncertainty
model, ISPO-PROBABILITYNON-ZERO can be solved in
polynomial time.

Proof: Consider an assignment ω that we want to check
whether it is possibly PO. We use the following algorithm that
builds a permutation of agents π such that serial dictatorship
produces ω given π, if and only if ω is possibly PO. To
start with, we initialize the set of remaining items to O, the
remaining agents to N , and the permutation of the agents π
to an empty list. We then repeat the following procedure until
no more items are left, or the procedure returns no. Check if
there exists some agent i such that ω(i) is a possibly most
preferred items for i amongst the available items. If no such
agent exists, return no. Otherwise, if such an i exists, append
i to the permutation π, remove i from the set of remaining
agents, and remove ω(i) from the set of available items. Let
�′i denote a preference of agent i that has ω(i) as the most
preferred remaining item.

It is easy to verify that if the algorithm returns π, then
SD(N,O,�′, π) = ω. It can be shown that if the algorithm
returns no, then ω is PO with zero probability. Consider the
first point in the algorithm where for no agent i we have ω(i)
as a possibly most preferred available item for i. This means
that no remaining agent gets her most preferred item (for any
possible deterministic preferences) among the available items.
Therefore, for each realization of the preference profiles, each
of the remaining agents is interested in, and points to, another
item held by another agent among the remaining agents. This
implies the existence of a trading cycle for each realization
of the preference profiles, where some remaining agents can
exchange items among themselves to get a more preferred
item than in ω. Thus ω is PO with probability zero. �

We note that the theorem above generalizes Theorem 5
from (Aziz et al. 2017b) that only applies to the lottery model.
It also gives us the following corollary.

Corollary 2 For the compact indifference, pairwise, and
the ranking uncertainty models, ISPO-PROBABILITYNON-
ZERO can be solved in polynomial time.

4 Compact Indifference Model
Any compact indifference preference profile admits a possi-
bly PO assignment that can be computed as follows: break
the ties arbitrarily and then run SD. What about the exis-
tence of certainly PO assignments? Although the compact
indifference model is one of the most restricted and struc-
tured uncertainty models we consider, EXISTCERTAINLYPO-
ASSIGNMENT is NP-complete for this model. To prove this,
and several other claims in the paper, we reduce from the
NP-complete problem SERIALDICTATORSHIPFEASIBILITY
(Saban and Sethuraman 2015) that is defined as follows:
given an instance of the assignment problem (N,O,�′), an
agent i and an item o ∈ O, does there exists a permutation of
agents for which SD awards o to i?

Theorem 4 For the compact indifference uncertainty model,
EXISTCERTAINLYPO-ASSIGNMENT is NP-complete.

Proof: EXISTSCERTAINLYPO-ASSIGNMENT is in NP be-
cause it can be checked in polynomial time whether a given
assignment is certainly PO or not (Theorem 1).
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To prove NP-hardness, we reduce from SERIALDICTA-
TORSHIPFEASIBILITY. Let (N,O,�′, i, o) be an instance of
this problem with n agents and n items. W.l.o.g., suppose
that i = 1. We construct an instance (N ′, O′,�) of the com-
pact indifference uncertainty model as follows. Let o′, o′′ be
fresh items not appearing in O, let O′ = O ∪ {o′, o′′}, and
let N ′ = N ∪ {1′, n+ 1}.

Let O1,�′o denote the set of items that agent 1 prefers
over item o with respect to �′1—i.e., those items o` such
that o` �′1 o. Moreover, let O1,≺′o denote the set of items
that agent 1 likes less than item o—i.e., O1,≺′o = O \ ({o}∪
O1,�′o). Also, for each 1 < j ≤ n, let j1, . . . , jn be the
indices of items such that oj1 �′j · · · �′j ojn .

We define the preferences of the agents in N ′ over the
items in O′ as follows, where items in round brackets are
tied.

• Agent 1: (O1,�′o ∪ {o′}) �1 o �1 (O1,≺′o ∪ {o′′}).
• Agent 1′: (O1,�′o ∪ {o′}) �1′ o �1′ (O1,≺′o ∪ {o′′}).
• Agents 1 < j ≤ n: oj1 �j · · · �j ojn �j (o

′, o′′)

• Agent n+ 1: (O′).

We claim that there is a permutation π of the agents in N
under which agent i = 1 gets item o when serial dictatorship
is run on (N,O,�′) if and only if there is an assignment that
is certainly PO for (N ′, O′,�). �

Corollary 3 For the compact indifference uncertainty model,
ASSIGNMENTWITHHIGHESTPO-PROB is NP-hard.

Theorem 5 For the compact indifference uncertainty model,
PO-PROBABILITY is #P-complete.

Proof: It is straightforward to show that PO-PROBABILITY
is in #P. We show #P-hardness by reducing from the #P-
complete problem Monotone-#2SAT that is defined as fol-
lows: count the number of satisfying assignments for a 2CNF
formula that contains no negation (Valiant 1979).

Let ϕ be a monotone 2CNF formula with
clauses c1, . . . , cm and variables x1, . . . , xn. We con-
struct an instance of PO-PROBABILITY as follows. Consider
agents 1, . . . , 2n, and items o1, . . . , o2n and take the
assignment ω where ω(i) = oi for all 1 ≤ i ≤ 2n.
Agents’ preferences are constructed as follows. Take an
arbitrary 1 ≤ i ≤ n. Consider the set {j1, . . . , ju} of
indices j such that the clause (xi ∨ xj) occurs in ϕ. Suppose
that j1 < j2 < · · · < ju, in order to fix an (arbitrary) order
over these indices. Then agent i has the following preference:
(on+i, oi) �i · · · , where the remaining items appear in
arbitrary order. Moreover, agent n + i has the following
preference: oj1 �n+i · · · �n+i oju �n+i on+i �n+i · · · ,
where the remaining items appear in arbitrary order. Note
that agents n+ 1, . . . , 2n have certain preferences.

The instantiations of linear preferences to uncertain
agents 1, . . . , n correspond one-to-one to truth assignments
to variables x1, . . . , xn: for each 1 ≤ i ≤ n, setting
the preference of agent i to oi �i on+i �i · · · corre-
sponds to setting xi to true, and setting agent i’s preference
to on+i �i oi �i · · · corresponds to setting xi to false.

We show that a truth assignment α to the vari-
ables x1, . . . , xn satisfies ϕ if and only if the corresponding
profile of linear preferences for the agents 1, . . . , 2n leads
the assignment ω to be PO.

(⇒) Suppose that α satisfies ϕ. We show that the as-
signment ω admits no trading cycle under the profile cor-
responding to α. Suppose, to derive a contradiction, that ω
admits a trading cycle. By construction of the prefer-
ences of the agents, any trading cycle must involve the se-
quence 〈oi, i, on+i, n+ i, oj , j, on+j , n+ j〉. That is, agent i
must prefer on+i over oi, agent j must prefer on+j over oj ,
and agent n + i must prefer oj over on+i. The former two
statements are the case if and only if α sets both xi and xj to
false. The latter statement is the case if and only if (xi ∨ xj)
is a clause of ϕ. This is a contradiction to our assumption
that α satisfies ϕ. Thus, we can conclude that ω is PO under
the profile corresponding to α.

(⇐) Conversely, suppose that α does not satisfy ϕ. That is,
there is a clause (xi∨xj) of ϕ such that α sets both xi and xj
to false. We show that the assignment ω admits a trading cycle
under the profile corresponding to α. Since α sets xi and xj
to false, we know that on+i �i oi and on+j �j oj . Moreover,
since (xi ∨ xj) is a clause of ϕ, we know that oj �n+i on+i

and oi �n+j on+j . Thus, 〈oi, i, on+i, n+ i, oj , j, on+j , n+
j〉 is a trading cycle under this preference profile, and hence ω
is not PO.

Each possible preference profile occurs with probabil-
ity 2−n. The number of satisfying truth assignments ϕ is
then exactly equal to 2n times the probability that assign-
ment ω is PO. Thus, PO-PROBABILITY is #P-hard. �

5 Pairwise Model
A possibly PO assignment exists for the pairwise model, if
the ‘certainly preferred’ relation of each agent is acyclic:
one can derive a possible linear order consistent with the
certainly preferred relation and then run serial dictatorship.
In the presence of cycles, however, there is no guarantee that
an instance admits a possibly PO assignment.

Theorem 6 Under the pairwise uncertainty model, if the
certainly preferred relation is cyclic, then there may not exist
a possibly PO assignment.

Proof: We prove this by showing that the following example
with three agents and three items does not admit a possibly
PO assignment. The pairwise preferences for the agents 1, 2
and 3 over the items a, b and c are as depicted. All the three
agents have the same certainly preferred relations.

1 : a �cert
1 c, c �cert

1 b, b �cert
1 a

2 : a �cert
2 c, c �cert

2 b, b �cert
2 a

3 : a �cert
3 c, c �cert

3 b, b �cert
3 a

Take assignment abc. It is not PO because it is Pareto
dominated by bca. By symmetry no other assignment is PO
as well. �

We next show, with an argument similar to that of the
proof of Theorem 3 in (Aziz et al. 2017b), that the problem
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of checking whether a PO assignment exists is NP-complete
under pairwise preferences even in the absence of uncertainty.

Theorem 7 Given an instance of the assignment problem
with deterministic pairwise preferences, the problem of de-
ciding if a PO assignment exists is NP-complete.

Proof: Under deterministic preferences, possibly PO and
certainly PO coincide. The problem is in NP because it can
be checked in polynomial time whether a given assignment
is certainly PO (Corollary 1).

To prove NP-hardness we reduce from SERIALDICTA-
TORSHIPFEASIBILITY. Let (N,O,�′, i, o) be an instance
of this problem with n agents and n items. We construct an
instance (N ′, O′,�) of deterministic pairwise preferences
as follows. Let o′, o′′ be fresh items not appearing in O,
let O′ = O ∪ {o′, o′′}, and let N ′ = N ∪ {n+ 1, n+ 2}.

Intuitively, the (linear) preference �cert
i is obtained

from �′i by replacing o with o � o′ � o′′. The prefer-
ence �cert

j for each j ∈ N \ {i} is obtained from �′j by
replacing o with the cycle o � o′ � o′′ � o. Finally, the
preferences �cert

n+1 and �cert
n+2 are constructed by having the

cycle o � o′ � o′′ � o on the top, followed by the items
in O \ {o} (in arbitrary order). Formally:

• For agent i:
– For each pair of items o1, o2 such that o 6∈ {o1, o2},

let o1 �cert
i o2 if and only if o1 �′i o2.

– Let o �cert
i o′, o �cert

i o′′ and o′ �cert
i o′′.

– For each item o1 ∈ O \ {o}, let o1 �cert
i o, o1 �cert

i o′,
and o1 �cert

i o′′ if and only if o1 �′i o.
– For each item o1 ∈ O \ {o}, let o �cert

i o1, o′ �cert
i o1,

and o′′ �cert
i o1 if and only if o �′i o1.

• For each agent j ∈ N \ {i}:
– For each pair of items o1, o2 such that o 6∈ {o1, o2},

let o1 �cert
j o2 if and only if o1 �′j o2.

– Let o �cert
j o′, o′ �cert

j o′′ and o′′ �cert
j o.

– For each item o1 ∈ O \ {o}, let o1 �cert
j o, o1 �cert

j o′,
and o1 �cert

j o′′ if and only if o1 �′j o.

– For each item o1 ∈ O \ {o}, let o �cert
j o1, o′ �cert

j o1,
and o′′ �cert

j o1 if and only if o �′j o1.

• For both agents j ∈ {n+ 1, n+ 2}:
– For each pair of items o`, o`′ ∈ O \{o}, let o` �cert

j o`′

if and only if ` > `′.
– For each item o` ∈ O \ {o}, let o �cert

j o`, o′ �cert
j o`,

and o′′ �cert
j o`.

– Let o �cert
j o′, o′ �cert

j o′′ and o′′ �cert
j o.

We claim that there is a permutation π under which agent i
gets item o when serial dictatorship is run on (N,O,�′) if
and only if there is an assignment that is PO for (N ′, O′,�
). (⇒) Suppose that there is a permutation π under
which agent i gets item o when serial dictatorship is run
on (N,O,�′) (resulting in assignment ω). Construct the
permutation π′ for agents N ′ obtained from π by placing

the agents n + 1, n + 2 directly after agent i. Then Gen-
SD(N ′, O′,�cert, π′) returns the assignment p′ = p ∪ {n+
1 7→ o′, n+ 2 7→ o′′}. This assignment p′ is PO.

(⇐) Suppose that there is an assignment p′

for (N ′, O′,�cert) that is PO. By Theorem 2, we know that
there exists a permutation π of the agents in N ′ such that
executing Gen-SD with this permutation on (N ′, O′,�cert)
yields p′. Let π = (π0, i, π1), i.e., π0 is the sequence of
agents appearing in π before agent i, and π1 is the sequence
of agents appearing in π after agent i. By construction
of �cert, we know that o is picked before o′ and o′′,
because o′ and o′′ are dominated in every preference order
whenever o has not yet been picked. Moreover, we know that
agent i must pick item o, because whenever o, o′, o′′ have
not yet been picked, item o is dominated in every preference
order except agent i’s. Thus, after the agents in π0 have
picked the unique undominated remaining item in their
preference order, all items that agent i prefers to item o
(in �′i) have been picked. Note that agents n+ 1 and n+ 2
are not in π0 since, as long as item o is not picked, both of
these agents are confused. Thus, (π0, i) can be extended (by
appending the rest of agents in N in arbitrary order) to a
permutation π′ under which agent i gets item o when serial
dictatorship is run on (N,O,�′) with π′. �

Since possibly PO and certainly PO assignments coincide
with PO assignments for deterministic pairwise preferences,
we get the following corollary.

Corollary 4 For the pairwise uncertainty model, EXISTS-
POSSIBLYPO-ASSIGNMENT and EXISTSCERTAINLYPO-
ASSIGNMENT are NP-complete even if pairwise preferences
are all deterministic.

The proof of Theorem 7 exploits the fact that certainly pre-
ferred relations can be cyclic under the pairwise uncertainty
model. What if we disallow cycles in certainly preferred
relations? Our next result shows that checking whether a cer-
tainly PO assignment exists is NP-complete for instances of
pairwise uncertainty model, even if the certainly preferred
part of the preferences is acyclic.

Theorem 8 For the pairwise uncertainty model, EXISTS-
CERTAINLYPO-ASSIGNMENT is NP-complete even if the
certainly preferred part of the preferences is acyclic.

As a corollary, for the pairwise model, ASSIGNMENT-
WITHHIGHESTPO-PROB is NP-hard even if the certainly
preferred part of the preferences is acyclic.

Theorem 9 For the pairwise uncertainty model, PO-
PROBABILITY is #P-complete.

Proof: It is straightforward to show that PO-PROBABILITY
is in #P. Hardness for #P can be shown by following the
reduction used in the proof of Theorem 5. In this reduction,
each agent either has a certain linear preference, or a pref-
erence where they are indifferent between their two most
preferred items (and have a certain linear preference over
all other items). These preferences can straightforwardly be
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expressed in the pairwise model, hence PO-PROBABILITY is
#P-hard under this model as well. �

6 Ranking Model
In the ranking model, each agent i reports a bistochastic ma-
trix Mi of size n × n. The rows of the matrix correspond
to indices of items and the columns to the rank of the items.
Note that if the matrix is a permutation matrix (with only
0-1 entries), then the ranking model degenerates to a linear
preference. We say that a permutation matrix P is consistent
with a bistochastic matrix Q if for each Pij = 1, we have
that Qij > 0. We say that a linear preference �i is consistent
with a ranking preference if the permutation matrix repre-
senting �i is consistent with the ranking preference matrix.
For any ranking preference matrix Mi for agent i, we will
also consider a corresponding ‘consistency graph’ which is
a bipartite graph (O ∪ R,E) where R = {1, . . . , n} is the
set of possible ranks and (o, r) ∈ E if i expresses non-zero
probability for o to be in rank r.

By Birkhoff’s theorem (Lovász and Plummer 2009), any
bistochastic matrix can be represented as a convex combi-
nation of at most quadratic number of permutation matrices.
Hence, a ranking preference profile can always be repre-
sented as a lottery preference profile. This representation
is not necessarily unique; that is, a ranking preference pro-
file may have several or possibly even exponentially many
lottery preference profile representation. Due to this reason,
it is not clear whether the PO probability of a matching
is well-defined under the ranking model. In view of this
we clarify the definitions of possibly PO and certainly PO
that we are using for the ranking model. We say that an as-
signment is certainly PO under the ranking model if it is
certainly PO for all lottery preference profiles that repre-
sent the ranking preference profile. Likewise, we say that
an assignment is possibly PO under the ranking model if
it is possibly PO for some lottery preference profile that
represents the ranking preference profile. Next, we argue
that Corollaries 1 and 2 regarding ISPO-PROBABILITYONE
and ISPO-PROBABILITYNONZERO hold under the ranking
model by showing that “possibly preferred” (and hence “cer-
tainly preferred”) and “possibly most preferred item in a set”
can be checked in polynomial time.

Given a ranking preference profile �, we say that b �cert
i c

if b �′i c in each linear preference profile �′ that is in the
support of some lottery preference profile that represents �.
Note that a linear preference is in the support of some lottery
preference that represents a ranking preference if and only if
the linear preference is consistent with the ranking preference.
The negation of b �cert

i c holds if there exist j, k ∈ [n] such
that j < k and there is a linear preference consistent with the
ranking preferences in which b gets rank k and c gets rank j.
The relation b 6�cert

i c can be tested by checking whether there
exist j, k ∈ [n] such that j < k and the consistency graph
corresponding to the ranking preferences admits a perfect
matching in which (b, k) and (c, j) are part of the matching.

Given a ranking preference profile �, we say that a is a
possibly most preferred item of agent i among a set of items
O′, if there is a linear preference consistent with� in which a
is the most preferred item in setO′. The latter can be checked

in polynomial time as follows. For each possible rank j for
item a, we construct a corresponding graphGj = (O∪R,E)
which is derived from the consistency graph by removing
all edges involving a except (a, j), as well as removing all
edges (o′, k) where o′ ∈ O′ \ {a} and k ≤ j. Then a is a
possibly most preferred item of i in O′ if and only if there
exists a perfect matching for some Gj .

Any ranking preference profile admits a possibly PO as-
signment that can be computed by finding a linear preference
profile consistent with the ranking preference profile and then
running serial dictatorship.

Theorem 10 For the ranking uncertainty model, a possibly
PO assignment always exists and can be computed in polyno-
mial time.

On the other hand, just like the pairwise and the compact
indifference models, EXISTSCERTAINLYPO-ASSIGNMENT
is NP-complete under the ranking model. The proof is an
adaptation of a result by Aziz et al. (2017b, Theorem 6).

Theorem 11 For the ranking uncertainty model,
EXISTSCERTAINLYPO-ASSIGNMENT is NP-complete.

Next we show that PO-PROBABILITY is #P-complete for
instances for which PO probability is well defined due to the
existence of a unique lottery model representation.

Theorem 12 For the ranking uncertainty model, PO-
PROBABILITY is #P-complete.

Proof: It is straightforward to show that PO-PROBABILITY
is in #P. Hardness for #P can be shown by using the re-
duction used in the proof of Theorem 5. In this reduction,
each agents either has a certain linear preference, or a pref-
erence where they are indifferent between their two most
preferred items (and have a certain linear preference over
all other items). These preferences can straightforwardly be
expressed in the ranking model. Thus, for the ranking model,
PO-PROBABILITY is #P-hard as well. �

7 Conclusions
We presented some general characterization and algorithmic
results that apply to large classes of uncertainty models. We
then extended the study to three uncertainty models that are
especially compact (at most polynomial in the number of
agents and items). For the pairwise model, it will be interest-
ing to see if hardness results still hold if we impose stronger
types of stochastic transitivity properties (Fishburn 1973).
Another interesting direction is considering ex ante Pareto op-
timality with respect to plausible utility functions (Aziz et al.
2015). We observe that most of our computational results are
similar for the three compact models we consider. One inter-
esting contrast is that EXISTSPOSSIBLYPO-ASSIGNMENT
is polynomial-time solvable for the Compact Indifference
model and the Ranking model whereas it is NP-complete for
the Pairwise model.
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