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Abstract

We study Fisher markets that admit equilibria wherein each
good is integrally assigned to some agent. While strong ex-
istence and computational guarantees are known for equilib-
ria of Fisher markets with additive valuations (Eisenberg and
Gale 1959; Orlin 2010), such equilibria, in general, assign
goods fractionally to agents. Hence, Fisher markets are not
directly applicable in the context of indivisible goods. In this
work we show that one can always bypass this hurdle and, up
to a bounded change in agents’ budgets, obtain markets that
admit an integral equilibrium. We refer to such markets as
pure markets and show that, for any given Fisher market (with
additive valuations), one can efficiently compute a “near-by,”
pure market with an accompanying integral equilibrium.
Our work on pure markets leads to novel algorithmic re-
sults for fair division of indivisible goods. Prior work in dis-
crete fair division has shown that, under additive valuations,
there always exist allocations that simultaneously achieve
the seemingly incompatible properties of fairness and effi-
ciency (Caragiannis et al. 2016); here fairness refers to envy-
freeness up to one good (EF1) and efficiency corresponds to
Pareto efficiency. However, polynomial-time algorithms are
not known for finding such allocations. Considering relax-
ations of proportionality and EF1, respectively, as our notions
of fairness, we show that fair and Pareto efficient allocations
can be computed in strongly polynomial time.

1 Introduction
Fisher markets are fundamental models of resource alloca-
tion in mathematical economics (Brainard and Scarf 2000).
Such markets consist of a set of divisible goods along with a
set of buyers who have prespecified budgets and valuations
(over all possible bundles of the goods). In this work we fo-
cus on the basic setup wherein the valuations of the buyers
are additive. In an equilibrium of a Fisher market, goods are
assigned prices, each buyer spends its entire budget select-
ing only those goods that provide maximum value per unit of
money spent, and the market clears. The relevance of mar-
ket equilibria (specifically from a resource-allocation per-
spective) is substantiated by the first welfare theorem which
asserts that such equilibria are always Pareto efficient (Mas-
Colell, Whinston, and Green 1995, Chapter 16).
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The convex program of Eisenberg and Gale provides a
remarkable characterization (and, in conjunction, a proof
of existence) of equilibria in Fisher markets with addi-
tive valuations: the primal and dual solutions of their con-
vex program correspond to the equilibrium allocations and
prices, respectively (Eisenberg and Gale 1959; Nisan et al.
2007). The seminal work of Arrow and Debreu (1954) fur-
ther shows that equilibria exist under more general mar-
ket models and convex settings; see, e.g., Mas-Colell et al.
(1995). The notable aspect of the Eisenberg-Gale charac-
terization is that—in contrast to the encompassing result
of Arrow and Debreu—it provides an efficient method for
finding equilibria under additive valuations. Several algo-
rithmic results have been developed recently for computing
Fisher market equilibria and, in fact, strongly polynomial-
time algorithms are known for the additive case (Orlin 2010;
Végh 2012).

Along with efficiency, market equilibria provide strong
fairness guarantees. A well-known result of Varian (1974)
shows that if in a market all the agents have equal budgets,
then any market equilibrium—specifically called competi-
tive equilibrium from equal incomes (CEEI)—leads to an
envy-free allocation. Envy freeness is a standard solution
concept and it deems an (fractional) allocation of the (di-
visible) goods to be fair if, under it, each agent prefers its
own bundle over that of any other agent (Foley 1967).

However, Fisher markets do not yield a representative
model in the context of indivisible goods. Such goods cor-
respond to discrete resources (that cannot be fractionally as-
signed) and naturally occur in several allocation problems,
e.g., course assignment (Othman et al. 2010) and inventory
pricing (Rotemberg 2011). A market equilibrium, in general,
requires a fractional assignment of goods to agents. Hence,
one cannot simply consider a market with indivisible goods
and expect an equilibrium outcome wherein the goods do not
have to be fractionally assigned. In other words, the desir-
able market properties of efficiency, fairness, and computa-
tional tractability are somewhat confined to divisible goods.

Our work shows that one can bypass this hurdle and,
up to a bounded change in budgets, always obtain mar-
kets that admit integral equilibria. Specifically, we will con-
sider markets that admit an equilibrium wherein each good
is integrally assigned to some agent. We will refer to such
Fisher markets as pure markets. Of course, not all mar-
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kets are pure.1 Nevertheless, the present paper shows that
for every Fisher market (with additive valuations) there ex-
ists a “nearby” market which admits an integral equilibrium.
Specifically, we prove that for any given marketM one can
construct—with a bounded change in the budgets—a pure
market M′. Here, both the markets have the same set of
agents, goods, and valuations, and the absolute change in
any agent’s budget is upper bounded by ‖p‖∞, where p is
the equilibrium price (vector) ofM (Theorem 4 and Theo-
rem 9).

Note that pure markets enable us to treat indivisible goods
as divisible ones and apply standard (Fisher market) results,
such as the first welfare theorem. The fact that the result-
ing equilibrium is integral ensures that—independent of the
analytic treatment—the final allocation does not require the
discrete goods to be fractionally allocated, i.e., it conforms
to a legitimate assignment of the given indivisible goods.
Pure Markets for Discrete Fair Division. Our work on
pure markets leads to novel algorithmic results for discrete
fair division. Specifically, we address fair division of indi-
visible goods among agents with additive valuations. Note
that there are no monetary transfers in this setup, i.e., unlike
the market setting, here we do not have budgets or prices.

Classical notions of fairness—e.g., envy-freeness and
proportionality2—typically address allocation of divisible
goods, and are not directly applicable in the discrete setting.
For instance, while an envy-free and proportional allocation
of divisible goods always exists (Stromquist 1980), such an
existential result does not hold when the goods are indivisi-
ble.3

To address this issue, in recent years cogent analogues of
envy-freeness and proportionality have been proposed for
addressing the discrete version of the fair-division problem.
A well-studied solution concept in this line of work is envy-
freeness up to one good (Budish 2011): an (integral) alloca-
tion is said to be envy-free up to one good (EF1) iff each
agent prefers its own bundle over the bundle of any other
agent up to the removal of one good. Along the lines of EF1,
a surrogate of proportionality—called proportionality up to
one good—has also been considered in prior work (Conitzer,
Freeman, and Shah 2017). In particular, an allocation is said
to be proportional up to one good (PROP1) iff each agent re-
ceives its proportional share after the inclusion of one extra
good in its bundle.4

The work of (Lipton et al. 2004) shows that as long as the
valuations of the agents are monotone an EF1 allocation can
be computed efficiently. This result is notably general, since
it guarantees the existence of EF1 allocations under arbi-

1Consider a market of a single good and two agents with equal
budgets.

2A division among n agents is said to be proportionally fair iff
each agent gets a bundle of value at least 1/n times her value for
the grand bundle of goods.

3If a single indivisible good has to be allocated between two
agents, then, under any allocation, the losing agent will be envious
and will not achieve proportionality.

4In a fair-division problem with n agents, the proportional share
of an agent i is defined to the 1/n times the value that i has for the
entire set of goods.

trary, combinatorial (monotone) valuations. Caragiannis et
al. (2016) established another attractive feature of this solu-
tion concept: under additive valuations, there always exists
an allocation which is both EF1 and Pareto optimal (PO).
Though, polynomial-time algorithms are not known for find-
ing such a fair and efficient allocation–the work of (Barman,
Krishnamurthy, and Vaish 2018) provides a pseudopolyno-
mial time algorithm for this problem.

Under additive valuations, an EF1 allocations is also
PROP1. Hence, in the additive-valuations context, the result
of (Lipton et al. 2004) is also applicable to PROP1. Simi-
larly, via the existence result of (Caragiannis et al. 2016),
we get that if the agents’ valuations are additive, then there
exists an allocation that is both PROP1 and PO.

We will show that—in contrast to the known pseudopoly-
nomial result for finding EF1 and PO allocations (Barman et
al. 2018)—one can compute allocations that are PROP1 and
PO in strongly polynomial time (Corollary 10). This result
highlights the applicability of our work on pure markets.

We also consider another, natural relaxation of EF1,
which we refer to as EF1

1: this solution concept requires that
any agent i is not envious of any other agent k, up to the
inclusion of one good in i’s bundle and the removal of one
good from k’s bundle. We develop an efficient algorithm for
computing allocations of indivisible goods that are simulta-
neously EF1

1 and PO (Corollary 11).
It is relevant to note that the work of Barman et al. (2018)

can also be considered as one that finds pure markets with
limited change in budgets. However, in this sense, the result
of Barman et al. (2018) is not stronger than the one obtained
in the present paper. That result does provide a stronger fair-
ness guarantee (EF1 and PO in pseudopolynomial time), but
one can show that the algorithm of Barman et al. (2018) can
lead to larger (than the ones obtained in the present paper)
perturbations in the budgets.5 Overall, the pure-market ex-
istence result obtained in this work (and the accompanying
budget-perturbation bound) is not weaker than the one ob-
tained in (Barman, Krishnamurthy, and Vaish 2018). Also, in
contrast to that work, the present algorithm runs in strongly
polynomial time and is able to address unequal budgets.
Our Techniques: We establish the result for pure markets
via a constructive proof. In particular, we develop an effi-
cient algorithm that starts with an equilibrium of the given
market and rounds its (fractional) allocation to obtain an in-
tegral one. In particular, our algorithm integrally assigns all
the goods, which to begin were fractionally assigned. The
algorithm does not alter the prices of the goods. We obtain
a pure market at the end by setting the new budgets to ex-
plicitly satisfy the budget-exhaustion condition with respect
to the computed allocation and the unchanged prices. While
the algorithm is quite direct, the sequence in which it allo-
cates the goods is fairly relevant. A careful curation ensures
that the new budgets are close to the given ones. Notably, in
our empirical study (Section 5), it takes less time to execute
this rounding than to compute an equilibrium of the given

5The full version of this paper provides an example in which the
current algorithm outperforms (in terms of budget perturbations)
the one developed in Barman et al. (2018)
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Fisher market.
In Section 4 we show that the integral allocation we obtain

(via rounding) satisfies notable fairness and efficiency guar-
antees. Given that fair-division methods are widely used in
practice,6 efficient and easy-to-implement algorithms—such
as the ones developed in this work—have a potential for di-
rect impact.
Additional Related Work: An interesting work of Babaioff
et al. (2017) considers markets wherein the indivisibility of
goods is explicitly enforced. In particular, in their framework
each agent selects its most preferred subset of goods, among
all subsets that satisfy the budget constraint. Hence, frac-
tional selection/allocations are ruled out in this setup. For
such integral markets, existence of equilibria is not guaran-
teed. By contrast, we solely focus on pure/fractional mar-
kets, wherein equilibria necessarily exist. The key distinc-
tion here is that a pure market is a fractional market that
happens to admit an integral equilibria. While a pure market
is integral in the sense of Babaioff et al. (2017), the indivis-
ibility of goods is not explicitly enforced in this framework.

Babaioff et al. (2017) characterize the existence of equi-
libria in integral markets with two agents, at most five goods,
and generic budgets. On the other hand, this paper estab-
lishes that, in the space of Fisher markets, pure (and, hence,
integral) markets are dense, up to bounded change in bud-
gets.

2 Notation and Preliminaries
Fisher market is a tupleM := 〈[n], [m],V, e〉wherein [n] =
{1, 2, . . . , n} denotes the set of agents, [m] = {1, 2, . . . ,m}
denotes the set of goods, V = {v1, v2, . . . , vn} denotes
the valuation profile, and e = (e1, e2, . . . , en) denotes the
budget vector. The valuation profile V specifies the cardi-
nal preferences of each agent i ∈ [n] over the set of goods
[m] via a valuation function vi : [0, 1]

m 7→ R≥0. For any
agent i ∈ [n], the parameter ei ∈ R+ represents agent i’s
budget/endowment.

A bundle of goods is a vector s = (s1, s2, . . . , sm) ∈
[0, 1]m in which sj represents the allocated quantity of the
good j. In particular, the value that an agent i ∈ [n] has for
a bundle s ∈ [0, 1]m is denoted as vi(s). A bundle s is said
to be integral if under it each good is allocated integrally,
i.e., for each j ∈ [m] we have sj ∈ {0, 1}. Note that an
integral bundle s corresponds to the subset of goods {j ∈
[m] | sj = 1}. If s is an integral bundle, we will overload
notation and let s also denote the corresponding subset of
goods, i.e., s := {j ∈ [m] | sj = 1}.

Throughout, we will assume that agents have nonnegative
and additive valuations, i.e., for each agent i ∈ [n] and any
bundle s, we have vi(s) :=

∑
j∈[m] vi,jsj , where vi,j ≥ 0

denotes the value agent i has for good j.
Allocation: An allocation x ∈ [0, 1]

n×m refers to a
collection of n bundles (x1,x2, . . . ,xn) where xi =
(xi,1, xi,2, . . . , xi,m) ∈ [0, 1]m is the bundle allocated to
agent i ∈ [n]. Furthermore, in an allocation at most one
unit of each good is allocated, i.e., for all j ∈ [m], we have

6See, e.g., Spliddit (Goldman and Procaccia 2015): http://www.
spliddit.org/

∑
i∈[n] xi,j ≤ 1. In other words, an allocation corresponds

to a fractional allocation of the goods among the agents. We
will say that an allocation x is integral iff its constituent bun-
dles are integral, x ∈ {0, 1}n×m.
Market outcome and equilibrium: For a Fisher market
M = 〈[n], [m],V, e〉, a market outcome is tuple (x,p)

where x ∈ [0, 1]
n×m corresponds to an allocation and

the price vector p = (p1, p2, . . . , pm) associates a price
pg ∈ R≥0 with each good g ∈ [m].

Given a price vector p, write MBBi to denote the set
of goods that provide agent i the maximum possible util-
ity per unit of money spent, MBBi := {g ∈ [m] |
vi,g/pg ≥ vi,j/pj for all j ∈ [m]}. MBBi is called the max-
imum bang-per-buck set of agent i (under the price vector
p) and, for ease of presentation, we will denote the maxi-
mum bang-per-buck ratio by MBBi as well, i.e., MBBi :=
maxj∈[m] vi,j/pj .

An outcome (x,p) is said to an equilibrium of a Fisher
market M = 〈[n], [m],V, e〉 iff it satisfies the following
conditions:
• Market clearing: each good g ∈ [m] is either priced at

zero, pg = 0, or it is completely allocated,
∑n

i=1 xi,g = 1.
• Budget exhaustion: Agents spend their entire budget,

i.e., for all i ∈ [n], the following equality holds∑
g∈[m] xi,gpg = xi · p = ei.

• Maximum bang-per-buck allocation: Each agent i ∈ [n]
spends its budget only on optimal goods, i.e., if xi,g > 0
for good g ∈ [m], then g ∈ MBBi.
We will explicitly use the term integral equilibrium to re-

fer to a market equilibrium (x,p) in which the allocation x
is integral.

Recall that equilibria of markets (with additive valuations)
correspond to optimal solutions of the Eisenberg-Gale con-
vex program (Eisenberg and Gale 1959; Nisan et al. 2007).
Furthermore, in the additive case, strongly polynomial-time
algorithms exist for finding market equilibria (Orlin 2010;
Végh 2012).

The first welfare theorem ensures that equilibrium al-
locations are Pareto efficient, i.e., satisfy a standard mea-
sure of economic efficiency. Specifically, for an instance
〈[n], [m],V〉, an allocation x ∈ [0, 1]

n×m is said to be Pareto
dominated by another allocation y ∈ [0, 1]

n×m if vi(yi) ≥
vi(xi), for each agent i ∈ [n], and vk(yk) > vk(xk) for
some agent k ∈ [n]. That is, compared to allocation x,
every agent is better off under y and at least one agent is
strictly better off. An allocation is said to be Pareto efficient
or Pareto optimal (PO) if it is not Pareto dominated by any
other allocation.
Definition 1 (Fractionally Pareto Efficient Allocation). An
allocation is said to be fractionally Pareto efficient (fPO)
iff it is not Pareto dominated by any fractional allocation
y ∈ [0, 1]

n×m.
Note that an integral allocation x ∈ {0, 1}n×m can be

fPO.
Proposition 2 (First Welfare Theorem; Mas-Colell et al.
(1995)). If (x,p) is an equilibrium of a Fisher market with
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additive valuations, then the equilibrium allocation x is
fractionally Pareto efficient (fPO).

Along with efficiency, market equilibria are known to fair.
In particular, if in a market all the agents have equal en-
dowments, then any market equilibrium—specifically called
competitive equilibrium from equal incomes (CEEI)—leads
to an envy-free allocation (Varian 1974). Envy freeness is a
standard solution concept and it deems an allocation x to be
fair if, under it, each agent prefers its own bundle over that
of any other agent: vi(xi) ≥ vi(xk) for all i, k ∈ [n] (Fo-
ley 1967). Hence, using Proposition 2 and the result of Var-
ian (Varian 1974), we get that CEEI are both fair and effi-
cient.

However, as observed earlier, equilibrium allocations are
not guaranteed to be integral. That is, with indivisible goods,
one can not directly apply the market framework and hope
to retain the desirable properties of efficiency, fairness, com-
putational tractability, or even universal existence.

Our work shows that interestingly, up to a bounded
change in the endowments, one can always bypass this hur-
dle and obtain integral equilibria. Towards this end, the fol-
lowing notion will be useful.
Definition 3 (Pure Market). A Fisher market is said to be
pure iff it admits an integral equilibrium.

As mentioned previously, pure markets enable us to
treat indivisible goods as divisible ones and apply standard
(Fisher market) results, such as the first welfare theorem.
The fact that the resulting equilibrium is integral ensures
that—independent of the analytic treatment—the final allo-
cation does not require the discrete goods to be fractionally
allocated, i.e., it conforms to a legitimate assignment of the
given indivisible goods.
Spending Graph: We will use the construct of a spending
graph to state and analyze our algorithm. Given a market
M = 〈[n], [m],V, e〉 along with an outcome (x,p), the
spending graph G(x,p) is a weighted bipartite graph whose
(bipartition) vertex sets correspond to the set of agents [n]
and the set of goods [m], respectively. In the spending graph,
we have an edge (i, j) between agent i and good j if and
only if xi,j > 0. The weight of any edge (i, j) in G(x,p) is
the amount that agent i is spending on good j, i.e., weight of
edge (i, j) is xi,jpj .

Given a Fisher marketM and an equilibrium (x,p), it is
always possible to rearrange the spending so that the spend-
ing graph is a forest, i.e., we can, in strongly polynomial
time, find an x′ such that (x′,p) is an equilibrium of M
and G(x′,p) is a forest. This fact has been used in com-
puting market equilibrium for markets (Orlin 2010) and for
approximating the Nash social welfare objective (Cole and
Gkatzelis 2015).

3 On the Proximity of Pure Markets
The main result of this section shows that for every Fisher
market there always exists a “nearby” market which is pure.
Our proof of this result is constructive. In particular, we de-
velop a strongly polynomial-time algorithm (ALG) that, for
any given marketM = 〈[n], [m],V, e〉 and its equilibrium
(x,p), finds a pure marketM′ = 〈[n], [m],V, e′〉 such that

the absolute perturbation in endowments is at most ‖p‖∞,
i.e., ‖e − e′‖∞ ≤ ‖p‖∞. ALG, in particular, computes an
integral equilibrium (x′, p) ofM′, thereby certifying that it
is indeed pure.
Theorem 4 (Main Result). Given a Fisher market M =
〈[n], [m],V, e〉 with additive valuations and its equilibrium
(x,p), we can find—in strongly polynomial time—a budget
vector e′ and an integral allocation x′ such that
• (x′,p) is an integral equilibrium of the market M′ =
〈[n], [m],V, e′〉.

• The budget vector e′ is close to e: ‖e′ − e‖∞ ≤ ‖p‖∞.
In addition,

∑n
i=1 e

′
i =

∑n
i=1 ei.

Note that (in contrast to computing an arbitrary equi-
librium) finding an integral equilibrium is computationally
hard, i.e., determining whether a given Fisher market is pure
is an NP-hard problem.7 Hence, a notable aspect of ALG is
that it efficiently finds an integral equilibrium of the accom-
panying pure market.

3.1 Our algorithm
Recall that, for any given market M and its equilibrium
(x,p), we can assume, without loss of generality, that the
spending graph G(x,p) is a forest. Our algorithm, ALG,
constructs a new (integral) allocation x′ by iteratively as-
signing goods to agents until all the goods are allocated. In
ALG, we initialize G to be the spending forest G(x,p) and
root each tree in G at some agent. Then, we assign child
goods to agents i ∈ [n] with no parents (i.e., to root agents),
until adding any more child good to i would violate i’s orig-
inal endowment (i.e., budget constraint) ei. The remaining
child goods are then appropriately assigned to grandchildren
agents. After each such distribution, we delete this parent
agent i and all of its child goods (that have now been al-
loted). Overall, we repeat this specific method of distributing
goods until G is empty.

The integral allocation x′ we construct is a rounding of the
allocation x. In particular, if a good is integrally allocated to
agent i under x, then it will continue to be assigned to i
in x′. Hence, the focus here is to analyze the assignment of
goods which are fractionally allocated (i.e., are not integrally
allocated) in x. We will use the term contested goods to refer
to goods that are fractionally allocated in x. Note that all
the goods considered in the nested while-loops of ALG are
contested.

3.2 Proof for Theorem 4
The runtime analysis of ALG is direct:
Proposition 5. ALG runs in strongly polynomial time.

In Lemma 7 we will show that the output of ALG, i.e.,
(x′,p), is an equilibrium of marketM′ = 〈[n], [m],V, e′〉.
Lemma 8 asserts that the computed endowments e′ are close
to given budgets e. Together, Lemma 7 and Lemma 8 di-
rectly imply Theorem 4.

The following supporting claim shows that ALG main-
tains a useful invariant.

7This hardness result can be established via a reduction from
the Partition problem.
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Algorithm: ALG

Input : A Fisher marketM = 〈[n], [m],V, e〉 with additive
valuations and an equilibrium (x,p) ofM.

Output : An integral allocation x′ and a budget vector e′ such
that (x′,p) is an integral equilibrium of the market
M′ = 〈[n], [m],V, e′〉 and ‖e′ − e‖∞ ≤ ‖p‖∞

1 Set x′ ← (∅, ∅, . . . , ∅), i.e., for any agent i we initialize x′
i ← ∅

/* We construct x′ by assigning goods to
agents until all goods are allocated */

2 Initialize G to be the spending forest of (x,p), i.e., G← G(x,p)
/* Whenever we allocate a good, we delete

the corresponding vertex from G. */
3 Root each tree in the forest G at some agent
4 Allocate all leaf goods to parent agents
/* That is, for all j ∈ [m] if xi,j = 1 then

x′
i ← x′

i ∪ {j} and delete j from G. */
5 while there is an agent i with no parent (i.e., i is a root node) in G

do
6 while there is a good g in the neighborhood of i (i.e., edge

(i, g) is in G) such that p(x′
i ∪ {g}) ≤ ei do

7 Allocate g to agent i: update x′
i ← x′

i ∪ {g} and delete g
from G.

8 end
9 Allocate every remaining child j of i to any (agent) child k of

j and delete j from G. Here, i and k are agents and j is a
good
/* That is, before agent i’s deletion,

its grandchildren inherit the
remaining child goods of i */

10 Delete agent i from G.
11 end
12 e′ ← (p(x′

1),p(x
′
2), . . . ,p(x

′
n))

Claim 6. Throughout the execution of ALG, the graph G is
a forest. In addition, the root and leaves of every tree in G
correspond to agents (i.e., are agent nodes).

Proof. The graph G is initialized to be the spending forest,
and throughout ALG we only delete vertices from G, with-
out ever adding an edge. Hence, G continues to be a forest.

To establish the property about leaf nodes in G, note that
in Step 4 we assign all the leaves which correspond to goods.
Therefore, before the while-loop begins, all leaf nodes corre-
spond to agents. If, for contradiction, we assume that a node
j ∈ [m]—which corresponds to a good—becomes a leaf at
some point of time, then this must have happened due to the
deletion of j’s child node i ∈ [n] (which corresponds to an
agent). However, we delete an agent node i only if it has no
parent in G (this is exactly the case in which i is consid-
ered in the outer while-loop). This contradicts that fact that
ALG would have deleted i, implying that a node j (which
corresponds to a good) never becomes a leaf in G.

Finally, note that at the beginning of ALG the root nodes
correspond to agents: in Step 3 we explicitly root the trees of
G at agent nodes. As before, if we assume, for contradiction,
that a good node j ∈ [m] becomes a root at some point of
time, then this must have happened due to the deletion of
j’s parent node i ∈ [n] (which corresponds to an agent).
However, we delete an agent node i only after all of i’s child
nodes (which includes j) have been assigned (see Step 9).

Therefore, before i’s deletion we would have assigned j to
a grandchild of i (who is guaranteed to exist, due to the fact
that j is not a leaf node). That is, ALG would have deleted j
(from G) before i, contradicting the assumption that j ends
up being a root node. Hence, the stated claim follows for the
root nodes as well.

Lemma 7. For a given marketM = 〈[n], [m],V, e〉 (with
additive valuations) and equilibrium (x,p), let x′ and e′, re-
spectively, be the allocation and the endowment vector com-
puted by ALG. Then, (x′,p) is an integral equilibrium of the
marketM′ = 〈[n], [m],V, e′〉.

Proof. We will first show that ALG ends up allocating every
good. For any good j ∈ [m], consider the iteration in which
its parent node i ∈ [n] is being considered in the outer while-
loop, i.e., the loop after which i gets deleted. Note that the
parent node i is guaranteed to exist since j is never a root
(Claim 6). Furthermore, the algorithm does not terminate
till it deletes all the agent nodes from G, hence there nec-
essarily exists a point of time when the agent node i is under
consideration.

By construction, good j either gets assigned to i or to a
grandchild k ∈ [n] of node i; Claim 6 ensures that k exists.
Hence, we get that all goods are allocated/deleted from G
over the course of the algorithm. Hence, the integral alloca-
tion x′ satisfies the market clearing condition.

By construction, the allocation x′, returned by ALG, is a
rounding of the allocation x. In particular, for every agent
i ∈ [n], the set of goods that i spends on in x′ is a subset
of the goods that i spends on in x, i.e., x′i ⊆ {j ∈ [m] |
xi,j > 0}. Therefore, analogous to x, in x′ agents spend
only on maximum bang-per-buck goods, x′i ⊆ MBBi; note
that the prices of the goods remain unchanged. Moreover,
the budget vector e′ is chosen to satisfy the budget exhaus-
tion condition. Hence (x′,p) is an integral equilibrium of
the marketM′.

Lemma 8. For any given marketM = 〈[n], [m],V, e〉 (with
additive valuations) and equilibrium (x,p), the budget vec-
tor e′ computed by ALG satisfies ‖e′ − e‖∞ ≤ ‖p‖∞ and∑n

i=1 e
′
i =

∑n
i=1 ei.

Proof. In the while-loops of ALG an agent can receive only
contested goods: either the parent good and/or its child
goods. Agents that have no children in G (at the beginning
of the while loops) or are isolated satisfy the endowment
bound directly; such an agent i has at most one contested
good, its parent ĝ, and we have ei − pĝ ≤ e′i ≤ ei + pĝ . Re-
call that p(xi) = ei. Hence, to complete the proof we now
need to obtain the endowment bounds for agents that have
child nodes.

Note that the child nodes (goods) of an agent i are never
deleted before i. The child goods are allocated/deleted only
when agent i is selected in the outer while-loop. If an agent
i has children, but it does not receive any of its child nodes,
then it must be the case that i’s endowment is high enough to
not accommodate any child, g. Specifically, we have p(x′i)+
pg > ei, i.e., e′i ≥ ei − pg . Furthermore, in this case, the
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only good that i may have received during the execution of
the while-loops is its parent good, ĝ, hence e′i ≤ ei + pĝ .

The remainder of the analysis addresses agents who have
children and receive at least one of their child nodes (goods).
For such agents, the condition of the inner while-loop en-
sures that we never over allocate child nodes, e′i = p(x′i) ≤
ei. We will establish a lower bound for e′is by considering
different cases based on whether an agent i ∈ [n] receives
all of its child nodes or just some of them. Here, we write
ĝ ∈ [m] to denote the parent good of agent i in G.

• If an agent i receives all of its child nodes, then e′i =
p(x′i) ≥ p(xi) − pĝ; here, the subtracted term, pĝ , ac-
counts for the fact that i might not have received its parent
good ĝ. Hence, in this case we have e′i ≥ ei − pĝ .

• In case agent i does not receive a child good g, from the
condition in the inner while-loop, we get p(x′i) + pg >
ei. Otherwise, child g would have been included in x′i.
Therefore, e′i = p(x′i) ≥ ei − pg and we get a lower
bound in this case as well.

Overall, the endowments satisfy ‖e′ − e‖∞ ≤ ‖p‖∞.
Note that ALG does not modify the prices of the goods.

Since both the markets M and M′ have the same equilib-
rium prices p, the budget-exhaustion and market-clearing
conditions of M and M′ give us:

∑
i e
′
i =

∑
j pj =∑

i ei.

Remark 1. The proof of Lemma 8 shows that if e′i < ei then
there exists a good g /∈ x′i that was fractionally allocated to
i under x (i.e., xi,g > 0) such that ei ≤ e′i+pg . Note that for
such a good g (via the maximum bang-per-buck condition in
the definition of an equilibrium) we have g ∈ MBBi.

In addition, the analysis ensure that if e′i > ei, then there
exists a good ĝ ∈ x′i ⊆ MBBi (specifically, the parent of i)
such that e′i ≤ ei + pĝ .

From Proposition 5, Lemma 7, and Lemma 8, we directly
obtain Theorem 4.

3.3 An Extension of Theorem 4
The fact that Theorem 4 requires an equilibrium of the given
market is not a computational hurdle. The work of (Orlin
2010) provides a strongly polynomial-time algorithm for
computing an equilibrium (x,p) of a given Fisher market
M. Hence, Theorem 4, along with the result of (Orlin 2010),
leads to the following algorithmic result.

Theorem 9. Given m goods, n agents with additive valua-
tions, V = {v1, . . . , vn}, and a budget vector e. In (strongly)
polynomial time, we can find a budget vector e′, an integral
allocation x′, and a price vector p such that:

• (x′,p) is an integral equilibrium of the (pure) market
M′ = 〈[n], [m],V, e′〉.

• The budget vector e′ is close to e: ‖e′ − e‖∞ ≤ ‖p‖∞
and

∑n
i=1 e

′
i =

∑n
i=1 ei.

4 Pure Markets for Discrete Fair Division
The section addresses the problem of fairly dividing m in-
divisible goods among a set of n agents with nonnega-
tive, additive valuations V = {v1, v2, . . . , vn}. We will de-
note an instance of a fair division problem as a tuple I =
〈[n], [m],V〉.8 Note that for each agent i ∈ [n] the valuation
for a subset of goods S ⊆ [m] satisfies vi(S) =

∑
j∈S vi,j ,

where vi,j ∈ R+ is the value that agent i has for good j.
A prominent solution concept in discrete fair division is

envy-freeness up to one good. Formally, for a fair-division
instance I = 〈[n], [m],V〉, an integral allocation x =
(x1,x2, . . . ,xn) ∈ {0, 1}n×m is said to be envy-free up to
one good (EF1) iff for every pair of agents i, k ∈ [n] there
exists a good g ∈ xk such that vi(xi) ≥ vi(xk \ {g}).

Strong existential guarantees are known for EF1, even
under combinatorial valuations: the work of (Lipton et al.
2004) shows that as long as the valuations of the agents are
monotone an EF1 allocation exists and can be computed ef-
ficiently. (Caragiannis et al. 2016) prove that, in the case of
additive valuations, this notion of fairness is compatible with
(Pareto) efficiency, i.e., there exists an allocation which is
both EF1 and Pareto optimal (PO). However, polynomial-
time algorithms are not known for finding such allocations–
the work of (Barman et al. 2018) provides a pseudopolyno-
mial time algorithm for this problem.

Along the lines of EF1, a surrogate of proportionality—
called proportionality up to one good—has also been con-
sidered in prior work (Conitzer et al. 2017). Formally, an
allocation x = (x1,x2, . . . ,xn) is said to be proportional
up to one good (PROP1) iff for every agent i ∈ [n] there
exists a good g ∈ [m] such that vi(xi ∪ {g}) ≥ vi([m])/n.
Write Propi to denote the proportional share of agent i, i.e.,
Propi := vi([m])/n.

Under additive valuations, EF1 allocations are also
PROP1. Hence, the result of (Lipton et al. 2004) implies that
PROP1 allocations exist when the valuations are additive.
Similarly, via (Caragiannis et al. 2016), we get that if the
agents’ valuations are additive, then there exists an alloca-
tion that is both PROP1 and PO.

We will show that—in contrast to the known pseudopoly-
nomial results for finding EF1 and fPO allocations (Barman
et al. 2018)—one can compute allocations that are PROP1
and fPO in strongly polynomial time (Corollary 10).9 Find-
ing a PROP1 and PO allocation in polynomial time was iden-
tified as an open question in (Conitzer et al. 2017), and our
algorithmic result for this problem highlights the applicabil-
ity of Theorem 9.

In addition, we prove a similar result for a natural re-
laxation of EF1, which we call envy-free up to addition
of a good in the first bundle and removal of another good
from the other bundle (EF1

1). Formally, an integral alloca-
tion x = (x1,x2, . . . ,xn) is said to be EF1

1 iff for every pair
of agents i, k ∈ [n], there exist goods g1 ∈ [m] and g2 ∈ xk,

8We do not have budgets or prices in the fair division setup.
9Recall that fPO is a stronger solution concept that PO, since it

requires that an allocation is not Pareto dominated by any fraction
(and, hence, any integral) allocation. On the other hand, PO rules
out domination solely by integral allocations.
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such that vi(xi∪{g1}) ≥ vi(xk \{g2}). Corollary 11 shows
that an integral allocation, which is both EF1

1 and fPO, can
be computed efficiently.

Corollary 10. Given a fair-division instance with indivis-
ible goods and additive valuations, in strongly polynomial
time we can compute an integral allocation a which is both
PROP1 (fair) and fPO (efficient).

Proof. Given a fair-division instance I = 〈[n], [m],V〉, we
construct a Fisher market M = 〈[n], [m],V, e = ~1〉 by
setting the endowment of each agent equal to one. Theo-
rem 9 shows that in strongly polynomial time we can com-
pute an equilibrium (x,p) of the marketM and, then, round
x to an integral allocation a and obtain a budget vector
e′ such that (a,p) is a integral equilibrium of the market
M′ = 〈[n], [m],V, e′〉 and the budget vector e′ is close to
e = ~1; in particular, ‖e′ −~1‖∞ ≤ ‖p‖∞.

Since a is an equilibrium of the Fisher marketM′, via the
first welfare theorem (Proposition 2), we know that a is fPO.
Next we will prove that a is PROP1 as well.

The conditions that define an equilibrium ensure that for
all agents i ∈ [n] and goods g ∈ ai (i.e., the goods
that are allocated to i in a) we have vi,g

pg
= MBBi :=

maxj′∈[m]
vi,j′

pj′
.10 The proof of Lemma 8 further provides

the guarantee that if e′i < ei, then there exists a good
g ∈ MBBi such that e′i ≥ ei − pg (Remark 1). Using these
facts we will perform a case analysis to show that allocation
a satisfies the stated fairness guarantee:

• If p(ai) = e′i < ei = 1, then there exists a good g ∈
MBBi such that p(ai ∪ {g}) ≥ 1. Therefore,

vi(ai ∪ {g}) = MBBi p(ai ∪ {g})
(vi is additive and ai ⊆ MBBi)

≥ MBBi · 1 (p(ai ∪ {g}) ≥ 1)
= MBBi · p([m])/n

(p([m]) =
∑

i ei = n)
≥ vi([m])/n

(MBBi pj ≥ vi,j for all goods j)
= Propi

• If p(ai) = e′i ≥ ei = 1, then

vi(ai) = MBBi p(ai) (ai ⊆ MBBi)
≥ MBBi · 1 = MBBi p([m])/n

≥ vi([m])/n = Propi.

Overall, we get that for any fair-division instance I, a
PROP1 and fPO allocation can be computed in strongly
polynomial time.

Next, we provide a strongly polynomial-time algorithm
for finding integral allocations that are simultaneously EF1

1
and fPO.

10Note that the prices of the goods are the same under the two
equilibria (x,p) and (a,p).

Corollary 11. Given a fair-division instance with indivis-
ible goods and additive valuations, in strongly polynomial
time we can compute an integral allocation a which is both
EF1

1 and fPO.

Proof. Given a fair-division instance I = 〈[n], [m],V〉, we
construct a Fisher market M = 〈[n], [m],V, e = ~1〉 by
setting the endowment of each agent equal to one. Theo-
rem 9 shows that in strongly polynomial time we can com-
pute an equilibrium (x,p) of the marketM and, then, round
x to an integral allocation a and obtain a budget vector
e′ such that (a,p) is a integral equilibrium of the market
M′ = 〈[n], [m],V, e′〉 and the budget vector e′ is close to
e = ~1; in particular, ‖e′ −~1‖∞ ≤ ‖p‖∞.

As noted in Remark 1, in this construction, for each agent
i ∈ [n] we have |e′i−ei| ≤ pg where g is in fact a good that is
fractionally allocated to i under x, i.e., xi,g > 0. Therefore,
the following two properties hold

P1: For each agent i ∈ [n], there exists a good g1 ∈ MBB1

such that p(ai ∪ {g1}) ≥ 1.
If p(ai) = e′i < 1,11, then this inequality follows from the
first part of Remark 1. Otherwise, if p(ai) = e′i ≥ 1, then
the inequity holds trivially–the prices are nonnegative.

P2: For each agent k ∈ [n], there exists a good g2 ∈ ak ⊆
MBBk such that p(ak \ {g2}) ≤ 1.
If p(ak) = e′k > 1, then (as stated in the second part of
Remark 1) we have a good g2 ∈ ak ⊆ MBBk such that
p(ak \ {g2}) ≤ 1. For the complementary case, p(ak) =
e′k ≤ 1, this inequality directly holds.

Properties P1 and P2 imply that allocation a is EF1
1 (here,

for any two agents i and k we select goods g1 and g2 as
specified in the two properties, respectively):

vi(ai ∪ {g1}) = MBBi p(ai ∪ {g1}) (g1 ∈ MBBi)
≥ MBBi · 1 (P1)
≥ MBBi p(ak \ {g2}) (P2)
≥ vi(ak \ {g2})

(MBBi pj ≥ vi,j for all goods j)

5 Some Empirical Results
For an experimental analysis of ALG, we generate random
instances of Fisher markets with equal incomes (e = ~1) and
uniformly random valuations for the agents. Details of our
experimental setup and corresponding empirical results are
deferred to a full version of the paper.

In summary, our implementation (complying with Corol-
laries 10 and 11) always finds an allocation which is PROP1
and EF1

1. In fact, for about 96% of the (randomly generated)
instances, the implemented method finds an envy-free allo-
cation. This suggests that, in practice, our algorithms out-
perform the stated theoretical guarantees. In addition, we
find that it takes notably less time to execute our rounding
method than to compute a market equilibrium (i.e., solve the
Eisenberg-Gale program).

11By construction, ei = 1.
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