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Abstract

Recommendation systems are extremely popular tools for
matching users and contents. However, when content
providers are strategic, the basic principle of matching users
to the closest content, where both users and contents are mod-
eled as points in some semantic space, may yield low so-
cial welfare. This is due to the fact that content providers
are strategic and optimize their offered content to be recom-
mended to as many users as possible. Motivated by modern
applications, we propose the widely studied framework of fa-
cility location games to study recommendation systems with
strategic content providers. Our conceptual contribution is the
introduction of a mediator to facility location models, in the
pursuit of better social welfare. We aim at designing media-
tors that a) induce a game with high social welfare in equi-
librium, and b) intervene as little as possible. In service of
the latter, we introduce the notion of intervention cost, which
quantifies how much damage a mediator may cause to the so-
cial welfare when an off-equilibrium profile is adopted. As a
case study in high-welfare low-intervention mediator design,
we consider the one-dimensional segment as the user domain.
We propose a mediator that implements the socially optimal
strategy profile as the unique equilibrium profile, and show a
tight bound on its intervention cost. Ultimately, we consider
some extensions, and highlight open questions for the general
agenda.

1 Introduction
Publishing, blogging, and content creation are fundamental
to data science. Indeed, many of the AI-based recommen-
dation systems aim at matching users with data created by
content providers. While at first glance this task might be
viewed as purely computational, a major topic that should
be tackled is the participants’ incentives.

To illustrate such incentives, consider the following exam-
ple inspired by Hotelling’s seminal work (Hotelling 1929).
A blogging recommendation system recommends users with
relevant blogs. Two players (i.e., publishers/blog owners)
write one blog each. For simplicity, assume every blog is
represented as a point along the [0,1] segment, e.g., the mix
between news and articles in the blog. Thus, each player
selects a point in that segment. A set of users, where user
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preferences are uniformly distributed along the same seg-
ment, approach the recommendation system to have a rec-
ommendation for one blog. The social cost of the users is de-
fined as the sum of absolute distances between preferences
and recommended contents. As Hotelling demonstrates, the
only pure Nash equilibrium (PNE hereinafter) is obtained
when both players select the center of the segment, produc-
ing identical content. The social cost of the PNE profile is
far from optimum, and users effectively suffer from strate-
gic behavior of the players.

The difference between this example and the one consid-
ered by Hotelling in his seminal work is that in modern ap-
plications, users are not explicitly exposed to players’ con-
tent, but rather the recommendation system serves as a medi-
ator for matching users with content. However, despite their
commercial success, current recommendation systems basi-
cally (very efficiently) implement the above principle: users
are matched with the “closest” content. A prominent exam-
ple is the vector space model for document retrieval in re-
sponse to a user query (Salton, Wong, and Yang 1975). In-
deed, the recommendation system is just a tool for having
the users “choose” the offered content most similar to their
taste.

1.1 The Connection to Facility Location Games
Facility location games (Anderson, De Palma, and Thisse
1992; Brenner 2010; Fournier and Scarsini 2014), which are
extensively studied in economics, operations research and
computer science, portray recommendation systems with
strategic content providers incredibly well, due to the na-
ture of recommendation systems described above. This is
true since in many (and perhaps even most) recommenda-
tion systems, the computational task of matching users with
content is carried out by modeling both into a joint metric
space. In the vast majority of facility location games liter-
ature, it is assumed that users are attracted to their nearest
facility1. In the example above, this amounts to each user
selecting the closest blog to her preference.

Given a strategy profile, i.e., the selection of each player
for a particular mix of news and articles in her blog, the best
(in terms of social cost) recommendation system matches
each user with the nearest blog to her preference. However,

1Some exceptions appear in Subsection 1.4.
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the way the recommendation system operates affects the
strategic behavior of players, and more precisely redefines
player payoffs. As a result, it may induce a game with a dif-
ferent set of PNE, potentially with improved social welfare
(i.e., the social cost with negative sign). This calls for the de-
sign of a mediator that takes into account strategic behavior
of players, aiming at achieving low social cost in equilib-
rium.

1.2 Our Agenda: High Welfare Low Intervention
Mediator Design

Our conceptual contribution is the introduction of a media-
tor to facility location models, in the pursuit of better out-
comes for recommendation systems with strategic content
providers. We aim at designing mediators that a) induce a
game with high social welfare in equilibrium, and b) inter-
vene as little as possible.

To better describe the latter, let NIME be the No Inter-
vention Mediator, namely the default mediator that displays
each user with its nearest content. A question in this regard
is whether a mediator that intervenes with the process can
do better than NIME, in terms of social welfare. Clearly,
one can design a mediator that dictates each player which
content to select, thereby forcing the players to any desired
strategy profile. Consider the DICT mediator that operates as
follows: it commands each player to play a particular strat-
egy, and if she disobeys DICT directs no user to her content.
Indeed, by adopting DICT the mediator designer is guaran-
teed to have any specific strategy profile as the unique PNE
of the induced recommendation game. However, this is a
huge and potential harmful intervention, and doing so may
lead to poor performance in case that specific profile is not
materialized. Crucially, this can happen even when the play-
ers are rational, but some of the assumptions the mediator
holds regarding the players are violated, e.g., players have
constraints on their strategy space, slightly different payoff
functions, they are able to form coalitions and so on.

A major aspect of our approach is the quantification of
intervention cost. Given the above intuition, we define the
intervention cost as the maximal increase in user social cost
incurred when the players use arbitrary strategies (i.e., se-
lect arbitrary contents). Formally, let M denote a media-
tor, S be the set of all strategy profiles, s ∈ S be a strat-
egy profile, and let SC(M,s) denote the social cost under
M and s. The intervention cost of a mediatorM is defined
as sups∈S{SC(M,s)−SC(NIME,s)}. The term inside the
supremum is the increase in social cost compelled byM un-
der a profile s, which is non-negative (due to the definition
of NIME). The intervention cost is therefore the potential
increase in social cost, which might be caused under all pos-
sible (even off-equilibrium) profiles.

Evidently, NIME has a zero intervention cost and high so-
cial cost, and serves as a benchmark for low intervention
cost. On the other hand, DICT has high intervention cost but
low social cost (when dictating the socially optimal strategy
profile), and it serves as a benchmark for low social cost.
The main challenge in our agenda is the design of a media-
tor with low intervention cost and low social cost in equilib-
rium.

1.3 Our Results
This paper presents a case study in high welfare low inter-
vention mediator design. The mathematical model we adopt
in service of the above is based on pure location Hotelling
games (Hotelling 1929), with the [0,1] segment. Section 2
presents a formal mathematical model for the setting, stating
former widely-known results for pure Hotelling games (or
equivalently, recommendation games with NIME as a medi-
ator) on the segment with uniform user distribution. In addi-
tion, in Subsection 2.3 we define the intervention cost, and
bound the intervention cost of DICT.

The main technical results of the paper appear in Section
3. We introduce the Limited Intervention Mediator, LIME.
We provide the intuition behind it, as well as a thorough ex-
ample to illustrate how it operates. We then prove that the
game induced under LIME possesses a unique PNE, which
attains the minimal social cost. Then, we establish upper and
lower bounds on its intervention cost, which are almost tight.
We show that not only is its intervention cost lower than that
of DICT for every n, it is also O( 1

n
). Since DICT and LIME

have the same social cost under (the unique) PNE profile,
the results given in this section provide a highly encourag-
ing answer to the challenge given above.

We subsequently study three natural extensions of the ba-
sic setting. First, we discuss neutral mediators. Informally,
a mediator is neutral if when two players swap their strate-
gies, the mediator’s direction also swaps. We show an im-
possibility result for neutral mediators that aim at optimiz-
ing the social cost in the two-player case. Second, we design
a mediator with a configurable intervention cost. This me-
diator is important where e.g. one seeks to design a media-
tor that minimizes social cost but is penalized for interven-
tion (similarly to regularization in machine learning mod-
els). We show that for some cases of n, it induces Pareto
optimal solutions for the setting. Third, we consider non-
uniform user distributions. We propose the General Lim-
ited Intervention Mediator, which depends on the distri-
bution quantiles solely. We then prove that it always in-
duces a game with a unique PNE. This becomes even more
striking when one recalls that PNE may not exist in facil-
ity location games (with no mediator) (Osborne 1993), and
are generally hard to characterize (see, e.g., (Shilony 1981;
Ewerhart 2015)). We bound its intervention cost (for the
uniform distribution), and show that its intervention cost is
lower than that of DICT.

From an algorithmic perspective, we deal with one-
dimensional problems. This may sound disappointing, but
recall that we intentionally focus on relatively simple, struc-
tured problems, and that this domain is extremely well-
studied in the facility location literature. Due to space con-
straints, the proofs are deferred to the appendix.

1.4 Related Work
The notion of a mediator in a game-theoretic setting was
first proposed by Aumann in his seminal work on Correlated
Equilibrium (Aumann 1974). In the setting Aumann consid-
ers, a mediator may send signals to the players, where the
signal is designed to drive the players to achieve better pay-
offs. The work of Shoham and Tennenholtz (1995) grants
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stronger capabilities to the mediator, by setting constraints
on participants’ behavior. A different type of mediator, con-
sidered by Monderer and Tennenholtz (2004), is allowed to
change player payoffs. As in our work, the mediator is de-
signed to “force” players into playing some desired subset of
their strategy sets with minimal interference with the payoff
functions. Unlike the above work, where the mediator inter-
venes with the outcome of the game to improve the social
welfare of the (strategic) players, in the model we study the
mediator intervenes in order to improve the social welfare of
the (non-strategic) users, as we describe next.

The work of Ben-Basat, Tennenholtz, and Kurland (2017)
introduces a formal model of adversarial information re-
trieval. Each author (a player) has several strategies, where
each strategy corresponds to a document she can pub-
lish. Each pair of document-query (where a document is a
player’s strategy and a query represents a user) has a score,
termed “quality”, which measures the extent to which the
document is relevant to the query. The mediator (i.e., search
engine) provides each user the document with the highest
quality relative to her query, among those selected under
the corresponding strategy profile. In their model, every au-
thor seeks to maximize a function that takes into account the
number of queries for which her document is the most rel-
evant (representing users directed to that document by the
mediator) along with the document-query quality.

As Ben-Basat, Tennenholtz, and Kurland show, display-
ing each user with the document with the highest quality
(i.e., no intervention) may lead to deteriorated content and
low user utility. They argue against no intervention, and
claim that introducing randomization into the mediator leads
to an overall user utility that transcends that of no interven-
tion at all. Nevertheless, they neither a) provide a systematic
approach for doing so under PNE profiles; nor b) show that
a PNE always exists. Recently, Ben-Porat, Rosenberg, and
Tennenholtz (2019) claim in favor of no intervention in a
similar model, and show that no intervention policy leads to
convergence of any better-response dynamics; thus, a PNE
is guaranteed to exist. Importantly, Ben-Basat, Tennenholtz,
and Kurland (2017) as well as Ben-Porat, Rosenberg, and
Tennenholtz (2019) do not consider the task of mediator de-
sign for better outcomes.

The work of Ben-Porat and Tennenholtz (2018a) is the
first to consider mediator design in recommendation systems
with strategic content providers, in a mathematical model
that extends that of Ben-Basat, Tennenholtz, and Kurland
(2017) and Ben-Porat, Rosenberg, and Tennenholtz (2019).
They highlight several fairness-related properties that a me-
diator should arguably satisfy, along with the requirement of
PNE existence. They show that the no-intervention media-
tor satisfies the fairness-related properties, but may lead to
a game without PNEs. Then, they design a mediator that is
based on the Shapley value (Shapley 1952), prove it satisfies
the fairness properties and the game it induces always pos-
sesses a PNE. On the other hand, Ben-Porat and Tennenholtz
(2018a) take an axiomatic approach, and do not address user
utility as one of the axioms. Moreover, they show that the
user utility under their proposed mediator can be arbitrarily
low. In contrast, this paper stems from a user utility opti-

mization point of view, and so are the solution concepts it
proposes.

Several extensions of pure location Hotelling games have
been suggested recently, assuming non-deterministic user
behavior (Feldman, Fiat, and Obraztsova 2016; Shen and
Wang 2017; Ben-Porat and Tennenholtz 2017). More pre-
cisely, users do not select their nearest facility, but rather
have a reaction function, mapping every strategy profile to
a distribution over player indices, possibly skipping all op-
tions. The work of Ben-Porat and Tennenholtz (Ben-Porat
and Tennenholtz 2017) associates users with a reaction func-
tion motivated by decision theory literature, and shows that
the induced facility location game always possesses a PNE,
regardless of the metric space in which users are embed-
ded. Shen and Wang (2017) show a result of similar flavor
for a different reaction function. Interestingly, every reaction
function can be implemented as a mediator. Unlike this line
of research, in this paper (as in the information retrieval set-
ting) the mediator is required to direct users to facilities w.p.
1, i.e., skipping all facilities is not an option. We elaborate
on the latter in Section 5.

Finally, a different line of research in the algorithmic
game theory literature (Nisan et al. 2007) is the study of fa-
cility location, in the context of approximate mechanism de-
sign without money (Procaccia and Tennenholtz 2009). That
literature deals with the case where only one entity dictates
the place of a facility (or several facilities), while user pref-
erences are their private information and are strategically re-
ported (see, e.g., (Schummer and Vohra 2007)). In contrast,
the setting we consider is a complete information setting.

2 Mathematical Formulation
In this section we introduce our formal mathematical model.
The non-cooperative game we consider is formally defined
as follows:

1. A continuous density function g over the unit interval
[0,1], representing user distribution.

2. A set of players [n] = {1,2, . . . , n}, where the pure2 strat-
egy set of player i ∈ [n] is Si = [0,1]. It will sometimes
be convenient to say that player i has/owns a facility in
si if the strategy she adopts is si. The set of all strategy
profiles is denoted by S def

= ∏
n
i=1 Si.

3. A mediatorM is a mapping from the set of strategy pro-
files and users to the set of distributions over player in-
dices, i.e.,M ∶ S × [0,1] → ∆([n]). Given a pure strat-
egy profile s = (s1, . . . , sn) ∈ S, a user t ∈ [0,1] and a
player i ∈ [n], we denote byM(s, t)i the probability that
M will send user t to player i under the strategy profile
s.

4. Given a pure strategy profile s ∈ S, the payoff of each
player i is the proportion of usersM directs to her facility.
Namely, πi(s) = ∫

1
0 M(s, t)i ⋅ g(t)dt. Each player aims

at maximizing her payoff.
According to these assumptions, every game is fully de-
scribed by the number of players, the mediator, and the user

2In this paper we discuss pure strategy profiles only.
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Social Cost (former results) Intervention Cost (Sections 2 and 3)

Number of players Optimal NIME, best PNE NIME, worst PNE In(DICT) In(LIME)

n = 2 1/8 1/4 1/4 1/4 3/16

n = 3 1/12 no PNE exists ≥ 0.278 ∈ (0.236,0.278)
n ≥ 4 1/4n 1/4(n−2) 1/4⌈n/2⌉ ≥ 1/2 − 3/4n + 1/4n2 ∈ ( 2n−4

n2 , 2n−3.5
n2 )

Table 1: A summary of former results known for pure location Hotelling games, and the results of this paper. The social cost is
given for three scenarios: the optimal social cost, for the profile on (see Subsection 2.2); the best PNE in terms of social cost
under NIME; and the worst PNE in terms of social cost under NIME. Under both DICT and LIME, the induced game possesses
a unique PNE, with social cost of 1/4n, namely the optimal social cost. For these mediators, the table reports the bounds on the
intervention cost (see Subsection 2.3) as obtained in Sections 2 and 3.

distribution function, i.e., G (n,M, g). In addition, unless
stated otherwise, g is the uniform distribution; hence, for
convenience, we shall use the notationG (n,M) to describe
the n-player game induced by selectingM as a mediator.

Equilibrium For a vector v = (v1, . . . vn), we denote by
v−i

def
= (v1, . . . vi−1, vi+1, . . . vn) the vector that does not

contain the i-th coordinate of v.
A strategy profile s ∈ S is called a pure Nash equilibrium

(PNE hereinafter) if for every i ∈ [n] and every s′i ∈ Si it
holds that πi(s′i,s−i) ≤ πi(s). We say that player i has a
beneficial deviation under a strategy profile s = (si,s−i) if
there exists s′i ∈ Si such that πi(s′i,s−i) > πi(s).

2.1 Social cost
We remark that any mediator always directs a user to one of
the facilities selected by the players; thus, the player payoffs
sum to one under every strategy profile s, i.e., ∑n

i=1 πi(s) =
1. Consequently, we view the social cost of the users as the
public welfare. In the blogging example given above, we
consider the distance between a user’s preferences and the
actual attribute of the blog as the extent to which she is sat-
isfied with that blog. Clearly, this perspective is identical to
the one considered by Hotelling (1929), albeit the motiva-
tion of Hotelling is the physical world. Motivated by trans-
portation cost, Hotelling defines the cost a customer (i.e., a
user) suffers as the distance he has to travel to reach his near-
est facility. This notion is naturally extended to the mediated
setting.
Definition 1 (Social cost). Given a strategy profile s and a
mediator M, the social cost is the sum of distances users
must travel to reach their recommended facility. Formally,
SC ∶ S → R≥0 is defined by

SC(M,s) = ∫
1

0

n

∑
i=1
M(s, t)i ⋅ ∣si − t∣ g(t)dt.

2.2 No Intervention Mediator
We denote by NIME the No-Intervention Mediator. Namely,
NIME sends every user to his nearest facility, breaking ties
uniformly. Formally,

NIME(s, t)i =
1∣si−t∣≤mini′ ∣si′−t∣

∑n
j=1 1∣sj−t∣≤mini′ ∣si′−t∣

.

By implementing NIME we recover the non-mediated ver-
sion of the setting, where under every strategy profile each

user is attracted to his nearest facility, as is in pure location
Hotelling games. Given n, we denote by on = (on1 , . . . , o

n
n),

where oni
def
= 2i−1

2n
, the sequence of n-socially optimal loca-

tions. These are optimal in the following sense:

Claim 1 (e.g. (Ben-Porat and Tennenholtz 2018b)). It holds
that SC(NIME,on) = infs∈S SC(NIME,s) = 1

4n
.

It turns out that this is the unique socially optimal profile,
up to renaming the players. Moreover, for any fixed strat-
egy profile, it is apparent that employing NIME results in
the lowest possible social cost w.r.t. that particular profile.
Namely,

Claim 2. For every strategy profile s and every mediator
M, it holds that SC(NIME,s) ≤ SC(M,s).

However, as we show later, the set of PNE depends on
the mediator; hence, a PNE under NIME may not be in
equilibrium under another mediator, and vice versa. Since
we care about the social cost in equilibrium, this turns out
to be crucial. Pure location Hotelling games (or equiva-
lentlyG(n,NIME) for any n) have been studied extensively
in the past decade, and its equilibrium structure is widely
known (see, e.g., (Eaton and Lipsey 1975; Fournier and
Scarsini 2014)). For completeness, we state the following
well-known results for G(n,NIME):

• The only PNE for n = 2 is (1/2, 1/2).

• There is no PNE for n = 3, although a mixed NE exists
(Shaked 1982).

• For n ∈ {4,5} a unique PNE exists (up to renaming the
players).

• For n ≥ 6, there are infinite PNEs.

For an elaborated discussion of these results, the reader is
referred to (Eaton and Lipsey 1975). Table 1 summarizes
the social cost for NIME. Notice the social cost under the
worst PNE, which is a factor of two of the optimal feasible
social cost.

2.3 Intervention Cost
Indeed, a mediator that implements the n-socially optimal
locations as a PNE can greatly decrease the social cost. By
intervening with the market and using a basic punishing
mechanism, one can drive the players to play any arbitrary
profile, by intervention that makes that profile the only PNE.
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We denote by DICT the mediator3 that dictates the strat-
egy profile on, the n-socially optimal locations. Namely,
DICT operates as follows: given a strategy profile s, let
A = {i ∶ si = o

n
i }. If A is not empty, DICT(s) directs every

user t to its nearest facility from those of the players in A,
i.e., DICT(s, t)i = 1i∈A ⋅ NIME(s ∩A, t)i. Otherwise, if A
is empty, it directs every user to a player selected at random.
It is apparent that
Claim 3. Consider G(n,DICT) for any n ≥ 2. The unique
PNE is on.

However, sometimes the strategy profile being material-
ized is not the equilibrium profile. As elaborated above,
a mediator intervening with the system to decrease social
cost may hence have implicit negative effects. It is therefore
highly desired to design a mediator that not only drives the
players to a “good” equilibrium (in terms of social cost), but
also does not intervene “that much”. To quantify the extent
to which a mediator intervenes with the natural market, we
introduce the following measure.
Definition 2 (intervention cost). The intervention cost of a
mediator M is the maximum difference between the social
cost ofM and that of NIME (i.e., the No-Intervention Medi-
ator), when the maximum is taken over all strategy profiles.
Formally,

In(M)
def= sup

s=(s1,...sn)∈S
{SC(M,s) − SC(NIME,s)} ,

where the subscript n emphasizes the dependency on the
number of players.

Notice that SC(M,s) − SC(NIME,s) is the sum of dis-
tances M compels the users to travel beyond the minimal
distance they can travel under s, which is non-negative. The
intervention cost is the supremum of this term over all, pos-
sibly off-equilibrium profiles. Indeed, the intervention cost
captures the measure of intervention by the mediator. By
definition of NIME, it has an intervention cost of zero, i.e.,
In(NIME) = 0 for every n. In addition, the intervention cost
as defined above also demonstrates the great amount of in-
tervention employed by DICT.

To illustrate it, consider the consequences of a strategy
profile other than on being materialized under DICT. Take
for example the two-player game,G(2,DICT), and the strat-
egy profile s = (s1, s2) = (0,1). This profile represents the
case where the offered contents are varied to the extreme.
Both players defy their commands; thus, DICT sends every
user to a facility selected uniformly at random, and every
user travels a distance of 1/2 in expectation. Summing over
all users we get, SC(DICT,s) = 1/2. The social cost un-
der no mediation is SC(NIME,s) = 1/4; hence, the inter-
vention cost of DICT is lower bounded by SC(DICTs) −
SC(NIME,s) = 1/4. In fact, this profile can be extended
to any n-player game by splitting the players evenly on the
segment’s endpoints, showing that In(DICT) ≥ 1/4 for any
n. However, using a different construction we show a much
tighter bound that depends on n. More precisely,

3One can think of other dictatorship mediators as well, by vary-
ing the punishment in case of disobedience.

Algorithm 1: Limited Intervention Mediator
Input: A strategy profile s and a user t
Output: A location in s

1 if ∃i ∈ [n − 1] such that t ∈ ( 2i−1
2n

, 2i+1
2n

) then
2 l ← s ∩ [0, 2i−1

2n
] ,r ← s ∩ [ 2i+1

2n
,1]

3 if l ≠ ∅ and r ≠ ∅ then
4 return NIME(l ∪ r, t)
5 else if l ≠ ∅ or r ≠ ∅ then
6 w.p. 1 − ε return NIME(l ∪ r, t), otherwise

return random(s, t)
7 else // all facilities are inside ( 2i−1

2n
, 2i+1

2n
)

8 return NIME(s, t)

9 else // t is outside ∪i∈[n−1] (
2i−1
2n

, 2i+1
2n

)

10 return NIME(s, t)
11 Function random(s, t):
12 return an element from s uniformly at random.

Lemma 1. For any n ≥ 3, it holds that In(DICT) ≥ 1
2
−

3
4n

+ 1
4n2 .

Due to its high intervention cost (among other properties)
using DICT as a mediator may not be the best solution. In
the next section we devise a mediator that implements on as
the unique equilibrium, but unlike DICT has a substantially
low intervention cost.

3 Limited Intervention Mediator (LIME)
In this section we take advantage of the game structure to
devise a mediator that encourages the players to select the
n-socially optimal locations on, but intervenes substantially
less than DICT. This is done by exploiting the equilibria
structure under no mediation. According to the characteriza-
tion of PNE profiles (Eaton and Lipsey 1975), under NIME
a profile can be in equilibrium only if its peripheral facilities
(i.e., leftmost and rightmost facilities) are paired. In addi-
tion, if beneficial deviations do not exist, the proportion of
users coming from the left/right of any facility cannot be
greater than the total proportion of users served by any other
facility.

Consider the Limited Intervention Mediator described in
Algorithm 1, and referred to as LIME hereinafter for abbre-
viation. The intuition behind LIME is the following: between
every two locations that belong to on, we construct a poten-
tially intervened interval (PII). The users in every PII are
not directed to a facility located in the same PII, but rather
to the closest facility outside of it. In addition, if a PII does
not have a facility located from its left or from its right (ex-
clusive or), the users in that PII are sent to a random player
w.p. ε, where ε > 0 is an arbitrarily small constant.

To facilitate understanding of the LIME mediator, we pro-
vide the following example, which is further illustrated in
Figure 1.a.

Example 1. Consider G(4,LIME), and the strategy profile
s = (1/16, 4/16, 10/16, 12/16). User t1, located in 0.5/16, is di-
rected by LIME to player 1’s facility in 1/16, since t1 is out-
side the PIIs (Line 10). User t2, who is located in 3/16, is
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Figure 1: Three strategy profiles for G(4,LIME). The blue (dotted) segments represent potentially intervened intervals (PIIs),
and the numbered circles are the locations selected by the corresponding players. Sub-figure (a) visualizes Example 1. Sub-
figure (b) exemplifies a case where all players locate their facilities in the PII (6/16, 10/16). In this case, LIME directs every user
outside the PIIs to his nearest facility; every user in (6/16, 10/16) is also directed to her nearest facility (Line 8 of Algorithm 1);
and every user inside (2/16, 6/16) or (10/16, 14/16) is directed to his nearest facility w.p. 1−ε, and with the remaining probability to
a facility selected uniformly at random (Line 6). The unique PNE of this game (due to Theorem 1) is demonstrated in Sub-figure
(c).

inside the PII (2/16, 6/16). Notice that this PII has a facility
from its left and a facility from the right. Namely, accord-
ing to the if condition in Line 3, r = s ∩ [6/16,1] ≠ ∅, and
l = s ∩ [0, 2/16] ≠ ∅; thus, t2 is directed to his nearest fa-
cility outside (2/16, 6/16), which is 1/16 (Line 4). User t3 is
inside the PII (6/16, 10/16), and is therefore directed to his
nearest facility outside this PII, player 3’s facility in 10/16

(PIIs are open intervals, and this facility lies in the exterior of
(6/16, 10/16)). User t4 is inside (10/16, 14/16), and this PII does
not have a facility from its right (i.e., r = s∩ [14/16,1] = ∅);
thus, w.p. 1 − ε LIME directs him to the facility in 10/16, and
with the remaining probability he is directed to a facility se-
lected uniformly at random (Line 6).

The only event not covered by Example 1 is the case
where all the facilities are located in the same PII, as illus-
trated in Figure 1.b.

3.1 Pure Nash Equilibrium
We now show that LIME is carefully constructed to miti-
gate players’ incentives. In particular, we show that on is
the unique PNE of G(n,LIME). First, we show that under
any PNE, players are not encouraged to locate their facilities
in PIIs.

Lemma 2. Consider G(n,LIME) for any n ≥ 2. If s is an
equilibrium profile, then sj ∉ ( 2i−1

2n
, 2i+1

2n
) for every j ∈ [n]

and i ∈ [n − 1].

Next, we leverage Lemma 2 to show that there is a
unique equilibrium under LIME, which is composed of the
n-socially optimal locations, i.e., on. The case of n = 2 is an
interesting exception and is therefore discussed separately in
Subsection 4.1.

Theorem 1. Consider G(n,LIME) for any n ≥ 3. The
unique PNE (up to renaming the players) is on.

See Figure 1.c for illustration. Importantly, Theorem 1
holds for any ε < 1/2, and implies that on is an exact PNE of

G(n,LIME) and not an approximated PNE. In addition, un-
der the profile on all the facilities are outside the PIIs; hence,
every user is directed to his nearest facility. Consequently,
Corollary 1. Consider G(n,LIME) for any n ≥ 3.
The unique PNE, on, attains the optimal social cost,
SC(LIME,on) = 1

4n
.

Therefore, the social cost of LIME under the PNE profile
matches the optimal (see Table 1).

3.2 Intervention Cost
Having demonstrated that LIME obtains the optimal social
cost in the (unique) equilibrium, we now claim that its in-
tervention cost is low. By definition of the LIME mediator,
it suffices to consider users inside PIIs only, as users outside
PIIs are directed to their nearest facility; hence, they do not
contribute to the intervention cost. Moreover, for simplicity,
we take ε to be arbitrarily small (see Line 6), and neglect it in
our analysis. By doing so we make the bounds more mean-
ingful, and do not harm the results obtained in the previous
sub-section.

For n = 2, i.e., the two-player game, the intervention cost
of LIME can be determined precisely.
Proposition 1. It holds that I2(LIME) = 3

16
.

We now consider games with n ≥ 3 players, which re-
quire a more delicate treatment. First, we lower bound the
intervention cost of LIME.
Lemma 3. For any n ≥ 3, it holds that In(LIME) ≥ 2n−4

n2 .
Next, we move on to upper bounding the intervention cost

of LIME.
Theorem 2. For any n ≥ 3, it holds that In(LIME) ≤
2n−3.5

n2 .
Notice that the upper bound almost matches the lower

bound. We summarize the intervention cost of LIME in Ta-
ble 1. Observe that not only does LIME intervene less than
DICT, but also its intervention cost diminishes in a 1/n scale,
similarly to the optimal social cost (which is 1/4n).
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4 Extensions
Beyond the main analysis of the paper given in the previous
sections, we find it important to examine the three following
extensions.

4.1 Neutral Mediators
Dilemmas other than intervention cost may arise when im-
plementing a mediator. To illustrate such dilemmas and in-
tertwine our recommendation games with computational so-
cial choice (Brandt et al. 2016), we analyze the two-player
game. As Theorem 1 shows, on is the unique PNE for n ≥ 3.
InG(2,LIME), however, LIME does not induce a game with
a unique PNE.

Proposition 2. Consider G(2,LIME). A strategy profile
(s1, s2) is a PNE if and only if (s1, s2) ∈ { 1

4
, 3
4
} × { 1

4
, 3
4
}.

Notice that the selection of the socially optimal locations
remains a PNE, similarly to greater values of n, but this
PNE is not unique. To clarify the intuition behind the lat-
ter phenomena, consider the profile (1/4, 1/4). According to
Line 6 in Algorithm 1, LIME directs all users in the seg-
ment (1/4, 3/4) to a random player w.p. ε. Under this profile,
random direction collides with directing these users to their
nearest facility; hence, the randomness LIME employs for
breaking symmetry is not enough and other tools should be
applied. In fact, this problem can be solved by adding the
following (rather complicated) tie-breaker: under (1/4, 1/4)
break ties in favor of player 1, and under (3/4, 3/4) break
ties in favor of player 2. When augmented to LIME, this tie-
breaker induces a game with the socially optimal locations
as the unique PNE.

Indeed, our notion of intervention cost is not affected
by such tie-breaking intervention. However, the mediator
should treat players fairly, in some sense of the word. This
fact is meaningful with respect to the generality of our
agenda, since it introduces other considerations that involve
the players rather than the users, borrowing ideas from so-
cial choice theory. The most immediate characterization of
fairness in our setting is through the notion of neutrality.
Formally, a mediatorM is neutral if for every i, j ∈ [n] and
s = (s−{i,j}, si, sj) it holds that πi(s) = πj(s−{i,j}, sj , si).
Noticeably, the DICT mediator is not neutral, while the
LIME mediator and all other mediators discussed in the pa-
per and the appendix are neutral. The inability of LIME to
handle the two-player game then becomes apparent: it turns
out that for every neutral mediator that induces a game with
a PNE, there is a PNE when both players select the same
location.

Proposition 3. There is no neutral mediator such that

• (x, y) is a PNE for some x, y ∈ [0,1] such that x ≠ y, and

• for every z ∈ [0,1], (z, z) is not a PNE.

So, no neutral mediator implementing the socially optimal
locations as a unique PNE exists for n = 2, while for n ≥ 3
we show LIME does precisely that under low intervention
cost.

Algorithm 2: GLIME
Input: A strategy profile s, a user t
Output: A location in s

1 ai ← q2i−1/2n for i ∈ [n − 1]
2 if ∃i ∈ [n] such that t ∈ (ai, ai+1) then
3 l ← s ∩ [0, ai] ,r ← s ∩ [ai+1,1]
4 if l ≠ ∅ and r ≠ ∅ then
5 w.p. 1

2
return NIME(l, t), otherwise return

NIME(r, t)
6 else if l ≠ ∅ or r ≠ ∅ then
7 w.p. 1 − ε return NIME(l ∪ r, t), otherwise

return random(s, t)
8 else
9 return NIME(s, t)

10 else
11 return NIME(s, t)

4.2 Configurable Intervention Cost
In some situations it might be beneficial to control the
amount of intervention. A mediator may offer a tradeoff
between social cost in equilibrium and intervention cost.
Namely, we devise a parameterized mediator, where its pa-
rameter determines a desired intervention cost. The media-
tor attains the desired intervention cost but suffers some in-
crease in its social cost in equilibrium (compared to the op-
timal one). For some values of n we show decisive positive
results for the applicability of such a mediator in creating
desired tradeoffs. This extension is deferred to the appendix.

4.3 Non-Uniform User Distribution
The results obtained for LIME do not hold for general user
distribution, since players may have beneficial deviations.
However, the case of non-uniform user distribution is ap-
pealing, especially given the fact that PNEs are hard to char-
acterize (see, e.g., (Shilony 1981; Ewerhart 2015)) or may
not even exist (Osborne 1993). In this subsection we devise
a mediator for general user distribution, showing initial re-
sults for this setting as well. Let g be an arbitrary continu-
ous function supported in the [0,1] segment, and denote by
G(n,M, g) the game induced by the mediatorM, n play-
ers and g as the user distribution function. Let qa be the
a-th quantile of g. Consider the General Limited Interven-
tion Mediator described in Algorithm 2, and referred to as
GLIME hereinafter for abbreviation. GLIME operates sim-
ilarly to LIME, but carries out two things differently. First,
it incorporates the quantiles of g instead of those of the uni-
form distribution (on defined earlier). The other difference
is given in Line 5. Instead of directing users in PIIs to their
nearest facility outside that PII, it directs such users w.p. 1/2

to the nearest facility right of the PII (if such exists), and
with the remaining probability to the nearest facility left of
the PII. Importantly, GLIME induces games with a unique
PNE, which is highly desired.
Lemma 4. Consider G(n,GLIME, g) for any n ≥ 3 and
general density function g. The unique PNE (up to renaming
the players) is s = (q2i−1/2n)

n
i=1.
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Next, we bound the intervention cost of GLIME. Since
the analysis for general distributions is highly challenging,
we leave it for future work and only focus on its intervention
cost under the uniform distribution.
Proposition 4. For any n ≥ 2, it holds that In(GLIME) ≥
1
4
− 1

2n
+ 1

2n2 .
Indeed, while the intervention cost of GLIME is greater

than that of LIME, it is better than that of DICT.
Lemma 5. For every n, In(GLIME) < In(DICT).

5 Discussion
Another interesting solution concept that can be employed,
if the domain permits it, is to allow the mediator to direct
users in some cases with w.p. less than 1. Namely, to skip the
players’ offers and avoid producing a recommendation. Ben-
Porat and Tennenholtz (2018a) implement this idea while
adopting an axiomatic approach to player fairness, and in-
troduce a mediator that induces a PNE for games with any
user space (e.g., k-dimensional space or even non-metric
space). However, they do not discuss user welfare. This sug-
gests one should seek mediators that balance user welfare
and player welfare simultaneously, hopefully by not inter-
vening too much.
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