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Abstract

We consider a game-theoretic model of information retrieval
with strategic authors. We examine two different utility
schemes: authors who aim at maximizing exposure and au-
thors who want to maximize active selection of their content
(i.e., the number of clicks). We introduce the study of author
learning dynamics in such contexts. We prove that under the
probability ranking principle (PRP), which forms the basis
of the current state-of-the-art ranking methods, any better-
response learning dynamics converges to a pure Nash equi-
librium. We also show that other ranking methods induce a
strategic environment under which such a convergence may
not occur.

1 Introduction
Information retrieval is probably the most central task car-
ried out by consumers and users of on-line media. The ba-
sic information retrieval task involves ranking documents
in a corpus by their relevance to the information needs ex-
pressed in a query. In adversarial retrieval settings such as
the Web, information resources (contents) are owned by
strategic bodies - website owners (henceforth authors). Au-
thors can strategically change their content in order to im-
prove their rankings in response to a query in a practice
referred to as search engine optimization (SEO) (Gyöngyi
and Garcia-Molina 2005). Therefore, the authors are play-
ers in a game, altering their content to increase their utility:
increase exposure of their content (in a plain content set-
ting) or to increase selection of their content (“clicks” in a
sponsored content setting). In this strategic game, the search
engine serves as a mediator between users and authors, and
attempts to match queries and websites.

Despite the tremendous amount of work on information
retrieval and SEO published during past decades, mathe-
matical modeling of the aforementioned strategic behavior
has only been formally suggested and studied recently (Ben-
Basat, Tennenholtz, and Kurland 2015; Ben-Basat, Tennen-
holtz, and Kurland 2017; Raifer et al. 2017). One cen-
tral question in this regard is whether learning dynamics,
whereby at every step one author alters her content to in-
crease her utility, is likely to converge. Convergence would
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suggest that authors should only invest a considerably lim-
ited amount of time altering their websites until their utility
cannot be further improved. An accompanying question is
whether such convergence occurs when state-of-the-art ap-
proaches to information retrieval, aiming at ranking docu-
ments in the corpus according to estimated relevance proba-
bilities with respect to a given query, are used. The basis for
all such retrieval methods is the probability ranking princi-
ple (PRP) (Robertson 1977).

In this paper we introduce what is, to the best of our
knowledge, the first attempt to explore the learning dynam-
ics of strategic behavior in information retrieval systems
such as the Web, through a formal theoretical model. Our
main result proves that under the PRP, any better-response
learning dynamics converges to a pure Nash equilibrium.
This result is obtained for the two prevalent utility schemes:
authors seeking content exposure (i.e., exposure-targeted),
and authors seeking to increase “clicks” in content selec-
tion (i.e., action-targeted). Interestingly, this learning dy-
namics convergence property, which rarely exists in games,
is obtained even though our class of games are not poten-
tial games (Monderer and Shapley 1996). We also show that
other plausible ranking methods may not induce such con-
vergence, which further highlights the significance of our
results.

1.1 Related Work
The concept of mediators in strategic environments is widely
known to the game-theory community (Ashlagi, Monderer,
and Tennenholtz 2009; Aumann 1974; Monderer and Ten-
nenholtz 2009), and the design of a mediator (or in a differ-
ent terminology, a mechanism) is often called mechanism
design (Nisan and Ronen 1999). In the context of informa-
tion retrieval, a search engine can be viewed as a mediator
between two parties: users and authors.

Considering strategic behavior in an information retrieval
context is the aim of Ben-Basat, Tennenholtz, and Kurland
(2017). The work of Ben-Basat, Tennenholtz, and Kurland
presents a game-theoretic approach to information retrieval,
and illustrates that the myopic static view falls short in dy-
namic and adversarial settings. Ben-Basat, Tennenholtz, and
Kurland explicitly assume that users will select the high-
est ranked result, a somewhat strong assumption but nev-
ertheless justified by a large body of empirical work (But-
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man et al. 2013; Joachims et al. 2005; Liu and Wei 2016;
Ghose, Goldfarb, and Han 2012). Note that in this case, PRP
coincides with ranking the most relevant document highest.
Ben-Basat, Tennenholtz, and Kurland analyze the user so-
cial welfare, defined as the quality of documents available
in the presence of strategic behavior of the authors. Interest-
ingly, they demonstrate that introducing randomization into
a ranking function can sometimes lead to social welfare that
transcends that of applying the PRP. In this paper we also
adopt the game-theoretic approach to information retrieval,
but explore a different criterion, which is the learning dy-
namics in games induced by the selection of the PRP as
the mediator. Furthermore, beyond the action-targeted util-
ity suggested in Ben-Basat, Tennenholtz, and Kurland, we
also analyze exposure-targeted utility.

Ben-Porat and Tennenholtz (2018b) consider mediator
design in recommendation systems with strategic content
providers. They highlight several fairness-related properties
that a mediator should arguably satisfy, along with the re-
quirement of pure Nash equilibrium existence. They claim
against PRP, as they show that in their mathematical model
the PRP mediator (termed TOP in their work) satisfies the
fairness-related properties, but may lead to a game without
pure Nash equilibria and hence without better-response con-
vergence. However, their mathematical model differs from
the one in this paper, since e.g. they allow the mediator to
present an empty list of documents, which is highly unlikely
in information retrieval settings.

Designing a mediator for improved social welfare was re-
cently proposed by Ben-Porat et al. (2019), who also make
the connection between recommendation systems and facil-
ity location games (Hotelling 1929). In their model as well,
matching users with their nearest facility may yield a low so-
cial welfare in case the content providers are strategic. Their
goal is to design a mediator that optimizes welfare in equi-
librium and does not intervene too much.

In this work, however, we do not study the social welfare,
but rather focus on the learning dynamics. Learning dynam-
ics is an important concept in machine learning and game
theory (Cesa-Bianchi and Lugosi 2006; Claus and Boutilier
1998; Freund and Schapire 1999; Palaiopanos, Panageas,
and Piliouras 2017; Syrgkanis et al. 2015; Meir et al. 2010;
Lev and Rosenschein 2012), and work on learning dynam-
ics in games is considered instrumental, e.g., to understand-
ing ad auctions (Cary et al. 2014). Better-response learn-
ing dynamics are appealing to the (algorithmic) game the-
ory community, as they only assume a minimal form of ra-
tionality: under any given profile, a player will act to in-
crease her individual utility. However, general techniques for
showing better-response learning convergence in games are
rare, and are based typically on coming up with a potential
function (Monderer and Shapley 1996), see e.g. (Garg and
Jaakkola 2016; Palaiopanos, Panageas, and Piliouras 2017;
Ben-Porat and Tennenholtz 2018a). However, as exact po-
tential functions imply the games are congestion games
(Rosenthal 1973), it is easy to observe that our games do
not fit that category.

Another interesting class of games which are not potential
games for which better-response dynamics always converge

is (Milchtaich 1996). However, that setting is quite remote
from ours, as in Milchtaich’s work the players share a com-
mon set of strategies.

1.2 Our Contribution
Our main conceptual contribution is the explicit analysis of
learning dynamics in information retrieval systems that is
motivated by strategic behavior. Our demonstration of con-
vergence serves as an important justification for the use of
the PRP, and should be taken into account when designing
stable and robust information retrieval systems.

The key technical contribution of this paper is the proof
that under PRP any better-response dynamics converges
to a pure Nash equilibrium. We prove this claim for both
exposure-targeted and action-targeted utility schemes. As
stated above, the convergence of better-response learning
dynamics in our setting is obtained although the class of
games we consider do not have an exact potential function.
Moreover, we show that other ranking methods induce a
strategic environment under which such convergence may
not occur. Together, our results provide strong novel game-
theoretic justification to the PRP and illustrate its applicabil-
ity in an adversarial context such as the Web.

1.3 Paper Organization
The rest of the paper is organized as follows. Section 2 for-
malizes the model we adopt, as well as an informal intro-
duction to the relevant core game-theoretic concepts and an
illustrative example. In Section 3 we analyze better-response
learning with the PRP mediator for both utility schemes. In
Section 4 we show non-learnability of mediators other than
the PRP, and Section 5 is devoted to discussion and future
work. Due to space limitations, some of the proofs of this
paper are deferred to the supplementary material.

2 Problem Statement
An authors game is composed of a set of authorsN = [n]

def
=

{1, 2, . . . , n}, each owning one document/website/blog.
M = [m] is the set of topics, and we assume both n and m
are finite. An author’s pure strategy space is the set of all top-
ics, i.e., she can choose to write her document on any topic.
We further assume that each document is concerned with a
single topic. The set of all pure strategy profiles is denoted
by A = Mn, and each strategy profile a = (a1, . . . an)
corresponds to a set of documents. A query distribution D
overM is publicly known, where each query symbolizes the
user mass associated with that topic. Given a topic k, we de-
note by D(k) the demand for topic k. We further assume
w.l.o.g. that D(1) ≥ D(2) ≥ . . . ≥ D(m). That is, the top-
ics are sorted according to the query distribution mass in a
non-increasing order.

The matrix Q ∈ [0, 1]n×m is the quality matrix, where
Qj,k represents the quality for author j’s document if she
decides to write on topic k. This modeling allows an author
to have remarkable aptitude for one topic and poor aptitude
for another. For example, an economic guru is able to write
about sports, but his writing quality w.r.t. sports is substan-
tially lower than economics.
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The function R is the mediator, which plays the role of a
ranking function or a search engine. The mediator ranks the
documents selected by the authors w.r.t. a given query (or
equivalently, a topic). We assume for simplicity that users
always read the document ranked first. This assumption is
consistent with many applications, e.g. the use of personal
assistants in mobile devices, where only the first ranked item
is shown to the user. Thus, we let R(Q, k,a) denote a dis-
tribution over the set of documents selected under a w.r.t.
a topic k ∈ M , which represents the probability of being
displayed in the first position. For ease of notation, we shall
also denote Rj(Q, k,a) as the probability that author j is
ranked first under the distribution R(Q, k,a).

The last component u is the utility function, which maps
every strategy profile to a real-valued vector of length n. In
this paper, we consider two different utility functions which
are motivated by current applications.

Under the exposure-targeted utility, denoted by uEx , an
author’s utility is the number of impressions her document
receives. Formally,
Definition 1 (Exposure-targeted utility). The exposure-
targeted utility of author j under a strategy profile a is given
by

uExj (a)
def
=

m∑
k=1

1aj=k ·D(k) ·Rj(Q, k,a).

Note that uEx depends solely on the user mass of the topic
she writes on and the probability of the mediator display-
ing her document. The other utility function is the action-
targeted utility, denoted by uAc.
Definition 2 (Action-targeted utility). The action-targeted
utility of author j under a strategy profile a is given by

uAcj (a)
def
=

m∑
k=1

1aj=k ·D(k) ·Rj(Q, k,a) ·Qj,k.

Namely, an author’s utility is the user mass of her selected
topic times the probability she is ranked first times the qual-
ity of her document.

Overall, an authors game can be represented as a tuple
G = 〈N,M,D,Q,R, u〉.

It is convenient to quantify the following; given a strategy
profile a, letBk(a) denote the highest quality of a document
on topic k , i.e.,

Bk(a)
def
= max

1≤j≤n
{Qj,k · 1aj=k}.

Moreover, we denote by Hk(a) the number of authors
whose documents have the highest quality among those who
write on topic k under a,

Hk(a)
def
= |{j | j ∈ [n], Qj,k · 1aj=k = Bk(a)}|.

Unless stated otherwise, we analyze games with a particu-
lar mediator, which is based on the PRP. Since we restrict the
ranking list to include one rank only, the PRP coincides with
ranking first the highest quality document on that topic. We
denote by RPRP the mediator that displays the document
with the highest quality. In case there are several documents
with the highest quality, RPRP ranks first each one of them
with equal probability. Formally,

Definition 3 (The PRP Mediator). Given a quality matrix
Q, a topic k and a strategy profile a, the RPRP ranks first
the document of each author j with a probability of

RPRPj (Q, k,a)
def
=

{
1

Hk(a)
Qj,k · 1aj=k = Bk(a)

0 otherwise
.

2.1 Further Game Theory Notation
We now informally introduce some basic game theory con-
cepts used throughout this paper. For an action profile
a = (a1, . . . , aj , , . . . , an) ∈ A, we denote by a−j =
(a1, . . . , aj−1, aj+1, . . . , an) ∈ A−j the action profile of
all authors except author j. A strategy a′j ∈ Aj is called
a better response of author j w.r.t. a strategy profile a if
uj(a

′
j ,a−j) > uj(a). Similarly, a′j ∈ Aj is said to be a best

response if uj(a′j ,a−j) ≥ maxaj∈Aj
uj(aj ,a−j) . We say

that a strategy profile a is a pure Nash equilibrium (herein
denoted PNE) if every author plays a best response under a.

Given a strategy profile a ∈ A, an improvement step is
a profile (a′j ,a−j) such that a′j is a better response of au-
thor j w.r.t. a. An improvement path γ = (a1,a2, . . . )
is a sequence of improvement steps, where the improve-
ments can be performed by different authors. Namely, in
any improvement step along the improvement path exactly
one author deviates from the strategy she selected in the
previous step, but different authors can deviate in different
steps. When the path γ is clear from the context, we denote
by pr the author that improves in step r. Since the num-
ber of strategy profiles is finite, every infinite improvement
path must contain an improvement cycle. A non-cooperative
game G has the finite improvement property (FIP for brevity)
if all the improvement paths are finite; in such a game ev-
ery better-response dynamics converges to a PNE (Monderer
and Shapley 1996).

2.2 An Illustrative Example
To further clarify our notation and setting, we provide the
following example. Consider a game with n = 2 authors,
m = 3 topics, a query distribution massD such thatD(1) =
0.5, D(2) = 0.3, D(3) = 0.2, a quality matrix

Q =

(
0.1 0.4 0.8
0.9 0.4 0.2

)
,

andRPRP as the mediator. Given the utility function, the in-
duced game can be viewed as a normal form bi-matrix game,
as presented in Figure 1.

First, consider the exposure-targeted utility function. Con-
sider the strategy profile (a1, a2) = (2, 2). Under this strat-
egy profile the two authors write on topic 2, and their qual-
ity on that topic is the same, i.e., Q1,2 = Q2,2 = 0.4; thus,
R1(Q, 2, (2, 2)) = R2(Q, 2, (2, 2)) = 0.5 and

uEx1 (2, 2) = uEx2 (2, 2) =
D(2)

2
= 0.15.

Notice that author 2 can improve her utility by deviating
to topic 1, i.e., to the strategy profile (2, 1). Indeed, this is
an improvement step w.r.t. (2, 2). In this case, her utility is
uEx2 (2, 1) = 0.5. Clearly (2, 1) is a PNE of this game.
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[ topic 1 topic 2 topic 3

topic 1 0, 0.5 0.5, 0.3 0.5, 0.2
topic 2 0.3, 0.5 0.15, 0.15 0.3, 0.2
topic 3 0.2, 0.5 0.2, 0.3 0.2, 0

]
,

(a) exposure-targeted

[ topic 1 topic 2 topic 3

topic 1 0, 0.45 0.05, 0.12 0.05, 0.04
topic 2 0.12, 0.45 0.06, 0.06 0.12, 0.04
topic 3 0.16, 0.45 0.16, 0.12 0.16, 0

]
(b) action-targeted

Figure 1: The normal form games induced by the example in Subsection 2.2. Subfigure (a) represents the utilities of author
1 (row) and author 2 (column) under the exposure-targeted utility function, while Subfigure (b) represents the utilities under
action-targeted utility function.

The action-targeted utility function induces a different bi-
matrix game. The reader can verify that under this utility
scheme, the unique PNE is (3, 1).

3 Better-Response Learning with the PRP
Mediator

In this section we show that under the PRP mediator, every
better-response dynamics converges to a PNE, for both util-
ity schemes. To make this claim more concrete, we use the
following definition.
Definition 4. We say that a mediator R is u-learnable if
every game induced by R and the utility function u has the
FIP property.

Clearly, if any game that consists of (R, u) has the FIP
property, then the authors can learn a PNE using any better-
response dynamics. We use the above definition to crystal-
lize our goals for this section: we wish to show that RPRP
is both uEx-learnable and uAc-learnable. Namely, in Sub-
section 3.1 we show that under the PRP mediator and the
exposure-targeted utility function, every improvement path
is finite. In Subsection 3.2 we prove the equivalent statement
for the action-targeted utility function.

Before we go on, we claim that the class of games induced
by the PRP mediator does not have an exact potential.
Proposition 1. The class of games induced by RPRP and
either one of uEx or uAc does not have an exact potential.

Proof sketch of Proposition 1. We show that the necessary
condition for the existence of an exact potential (Monderer
and Shapley 1996) does not hold for a general authors game
with n ≥ 3 authors. This result is obtained for both utility
schemes.

As mentioned in Section 1 above, showing the conver-
gence of any better-response dynamics in the lack of exact
potential is challenging, and is nevertheless our goal for the
rest of this section. In light of that, we shall introduce a fur-
ther notation.
Definition 5. Given a finite improvement path γ =
(a1, . . .al), we define

Wk(γ)
def
= min

1≤r≤l
{Hk(a

r)},

i.e., Wk(γ) is the minimal number of authors writing docu-
ments with the highest quality on topic k.

Note that the minimum is taken over all steps in γ.

3.1 Exposure-Targeted Utility
We now focus on games with RPRP and uEx, namely the
PRP mediator and the exposure-targeted utility function. We
show that every improvement path is finite, suggesting that
any better-response dynamics converges. The proof of this
convergence relies on several supporting claims.

The following Proposition 2 claims that in every improve-
ment step, the improving author writes with a quality of at
least the highest quality obtained in the preceding improve-
ment step, on that particular topic.

Proposition 2. Let γ be a finite improvement path, and let
ar+1
pr = k for an arbitrary improvement step r. It holds that
Qpr,k ≥ Bk(ar).

We now bound the utility the improving author obtains in
the corresponding improvement step, when her document’s
quality does not exceed the highest quality (on that particular
topic) in the preceding improvement step.

Proposition 3. Let γ be a finite improvement path, and let
ar+1
pr = k for an arbitrary improvement step r. If Qpr,k ≤
Bk(a

r), then

uExpr (ar+1) ≤ D(k)

Wk(γ) + 1
.

Next, we characterize a property that must hold in im-
provement cycles, under the false assumption that such ex-
ist. We prove that if an improvement cycle exists, the quality
of the first-ranked document is constant throughout the im-
provement cycle; this must hold for every topic.

Lemma 1. If c = (a1, . . . ,al = a1) is an improvement
cycle, then for every improvement step r and every topic k it
holds that Bk(ar) = Bk(a

r+1).

Proof sketch. We give here a high-level overview of the
proof and refer the reader to the appendix for the formal
proof.

Under the false assumption that an improvement cycle
exists, assume that the claim does not hold. Namely, as-
sume that c = (a1, . . . ,al = a1) is an improvement cy-
cle (w.l.o.g. c is a simple improvement cycle), and that
there exist an improvement step r and a topic k such that
Bk(a

r) 6= Bk(a
r+1).

Recall that D(1) ≥ · · · ≥ D(m), i.e., the topics are
sorted according to the query distribution mass in a non-
increasing order. We prove by induction on the topic index k
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that Bk(ar) ≤ Bk(a
r+1) holds for every r, 1 ≤ r ≤ l − 1.

Clearly, if this holds for every improvement step r then

Bk(a
1) ≤ · · · ≤ Bk(al) = Bk(a

1);

thus, all inequalities hold in equality and Bk(a
r) 6=

Bk(a
r+1) cannot occur.

Base, k = 1: Assume the assertion does not hold for k = 1;
hence, there exists r, 1 ≤ r ≤ l − 1, such that B1(a

r) >
B1(a

r+1). This means that there exists an author who writes
with the highest quality on topic 1 in the step r, and then
she deviates to another topic in step r + 1. Moreover, due
to the strict inequality, that author is the unique author to
write with the highest quality on topic 1 in step r; hence, her
utility in step r is exactly D(1). When she deviates, she can
obtain at most D(2), but recall that D(1) ≥ D(2); hence,
this deviation is not beneficial.
Step: Assume the assertion holds for k ∈ {1, 2, . . .K − 1},
i.e., Bk(ar) = Bk(a

r+1) for every step r. We show that
BK(ar) > BK(ar+1) for a step r implies that the improv-
ing author in improvement step r deviates to a topic with a
lower index. Using the bound obtained in Proposition 3 and
the induction hypothesis, we show that there must be an im-
proving author which does not increase her utility after pre-
forming the deviation, which is clearly a contradiction.

Lemma 1 implies that the only element that varies
throughout an improvement cycle, if such exists, is the num-
ber of authors who write on each topic. In particular, the
highest quality on each topic remains constant. It also sug-
gests that any improving author is not the only author writ-
ing the highest quality document on the topic to which she
deviated.

Consider an arbitrary improvement step, and denote by k
the topic that the improving author writes on in the improve-
ment step. The improving author joins a (non-empty) set of
authors which are already writing documents with the high-
est quality on topic k. Since we deal with a cycle, at some
point an author abandons topic k, and deviates to another
topic, say k′. In Lemma 2 we bound the utility of the im-
proving author (deviating to topic k) with that of the author
who deviated to k′.
Lemma 2. If c = (a1, . . . ,al = a1) is an improvement
cycle, then for every improvement step r and topic k such
that ar+1

pr = k there exist (r′, k′) such that ar
′+1
pr′

= k′ and

D(k)

Wk(c) + 1
<

D(k′)

Wk′(c) + 1
.

Proof sketch. Let r, k be such that ar+1
pr = k. By defini-

tion of improvement step arpr 6= k. From Lemma 1 we
know that Bk(ar) = Bk(a

r+1); thus, Qpr,k = Bk(a
r) and

Hk(a
r) 6= Hk(a

r+1). Afterwards, we prove another claim
which guarantees that there exists r′ such that

D(k)

Wk(c) + 1
= uExpr′ (a

r′)

holds. In addition, pr′ is the improving author, and so

D(k)

Wk(c) + 1
= uExpr′ (a

r′) < uExpr′ (a
r′+1). (1)

Clearly, ar
′+1
pr′

= k′ 6= k. Lemma 1 indicates that
Bk′(a

r′) = Bk′(a
r′+1); hence, Qpr′ ,k′ ≤ Bk′(a

r′). Hav-
ing showed that the condition of Proposition 3 holds, we in-
voke it for r′, k′ and conclude that

uExpr′ (a
r′+1) ≤ D(k′)

Wk′(c) + 1
.

Combining this fact with Equation (1), we get

D(k)

Wk(c) + 1
<

D(k′)

Wk′(c) + 1
.

In Theorem 1 below we leverage Lemma 2 to show that
improvement cycles cannot exist.
Theorem 1. RPRP is uEx-learnable.

Proof of Theorem 1. To show thatRPRP is uEx-learnable it
suffices to show that every improvement path is finite. More-
over, every improvement path cannot contain more than a
finite number of different strategy profiles, as m and n are
finite; therefore, if γ is infinite it must contain an improve-
ment cycle. We are left to prove that γ cannot contain an
improvement cycle.

Assume by contradiction that γ contains an improve-
ment cycle c = (a1,a2, . . . ,al = a1). Let r1 be an ar-
bitrary improvement step and denote by k1 the topic such
that ar1+1

pr1
= k1. From Lemma 2 we know that there exist

(r2, k2) such that ar2+1
pr2 = k2 and

D(k1)

Wk1(c) + 1
<

D(k2)

Wk2(c) + 1
.

Since ar2+1
pr2

= k2, we can now use Lemma 2 again in order
to find (r3, k3) such that ar3+1

pr3
= k3 and

D(k2)

Wk2(c) + 1
<

D(k3)

Wk3(c) + 1
.

This process can be extended to achieve additional
k4, k5, . . . , km+1 such that

D(k1)

Wk1(c) + 1
<

D(k2)

Wk2(c) + 1
< . . . <

D(km+1)

Wkm+1
(c) + 1

.

Since there are only m topics and that the inequality above
contains m + 1 elements, there are at least two elements
which are identical; thus we obtain a contradiction. We de-
duce that an improvement cycle cannot exist.

Theorem 1 concludes the analysis of the exposure-
targeted utility function.

3.2 Action-Targeted Utility
After analyzing games with exposure-targeted utility, we
proceed to action-targeted utility. The main result of this
subsection is that RPRP is uAc-learnable, which is analo-
gous to the main result of the previous one. Interestingly,
achieving this result requires a more subtle treatment. To
motivate it, consider the following: under uEx, in a case
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where the quality of an author’s document on topic k ex-
ceeds the quality of all other authors writing on topic k, she
will not deviate to a topic with a higher index (a topic with
a lower or equal user mass). This, however, is not true for
uAc. For instance, consider the strategy profile (2, 1) in the
example given in Subsection 2.2. Under uEx, author 1 can-
not increase her utility by deviating to topic 3 (a topic with
a lower user mass). In contrast, under uAc, author 1 can im-
prove her utility by deviating to topic 3. To assist in that, let
Sk(γ) denote the highest quality of a document written on
topic k throughout a finite improvement path γ. Formally,
Definition 6. Given a topic k and an improvement path γ =
(a1, . . . ,al),

Sk(γ)
def
= max

1≤r≤l
{Bk(ar)}.

In Proposition 4 we bound the utility of an improving au-
thor in an improvement step.
Proposition 4. Let γ be a finite improvement path, and let
ar+1
pr = k for an arbitrary improvement step r. If Qpr,k ≤
Bk(a

r), then

uAcpr (a
r+1) ≤ D(k) · Sk(γ)

Wk(γ) + 1
.

Notice that Sk(γ) ≤ 1 for every k and every γ; thus, the
bound given in Proposition 3 trivially holds for uAc. How-
ever, proving this tighter bound becomes essential for re-
futing the existence of improvement cycles under uAc. By
proving additional supporting lemmas (which are further
elaborated in the appendix), we show that
Theorem 2. RPRP is uAc-learnable.

4 Non-Learnability under Other Mediators
In the previous section we showed a powerful result: RPRP
is both uEx-learnable and uAc-learnable. In other words,
when using RPRP , any better-response dynamics con-
verges; this is true for both utility schemes. In fact, RPRP is
not the only mediator under which such convergence occurs.
For instance, LetRRAND be the random mediator, such that
for any author j and any topic k,

RRANDj (Q, k,a)
def
=

{
1∑n

i=1 1ai=k
aj = k

0 otherwise
.

By showing that under uEx any game with RRAND can be
reduced to a game with RPRP , we conclude that
Proposition 5. RRAND is uEx-learnable.

Proof sketch. We prove the claim by showing that under
uEx any game with RRAND can be reduced to a game with
RPRP , such that the two games are strategically equivalent.
This is done by taking any game G with RRAND as the me-
diator and a quality matrix Q, and reduce it to a game G′
with RPRP as the mediator and Q′ as the quality matrix,
such that Q′j,k = 1 for every j ∈ N and k ∈M .

Since both G,G′ consists of the exposure-targeted utility
function, we omit the super-script Ex and use the super-
script G to specify the utility of author j under the strategy

profile a in G, i.e., uGj (a), and equivalently uG
′

j (a) for G′.
By definition of exposure-targeted utility and RPRP , for ev-
ery valid j and a it holds that

uG
′

j (a) =

m∑
k=1

1aj=k ·D(k) ·RPRPj (Q′, k,a)

= D(aj) ·RPRPj (Q′, aj ,a)

= D(aj) ·
1

Haj (a)

= D(aj) ·RRANDj (Q, aj ,a)

=

m∑
k=1

1aj=k ·D(k) ·RRANDj (Q, k,a) = uGj (a).

Since G′ possesses RPRP as the mediator, Theorem 1 guar-
antees that G′ has the FIP property. Since we showed G and
G′ are strategically equivalent, G also has the FIP property,
and in particular does not contain improvement cycles.

Notice that RRAND treats every document the same, re-
gardless of its quality. However, in many (and perhaps even
most) scenarios mediators seek to promote high-quality con-
tent. Therefore, the reader may wonder whether other plau-
sible mediators are uEx-learnable or uAc-learnable. We now
focus on a wide and intuitive family of mediators, which we
term scoring mediators.
Definition 7. LetR be a mediator. We say thatR is a scoring
mediator if there exists a non-decreasing function f : R →
R+ such that for every Q, k,a and author index j it holds
that

Rj(Q, k,a)
def
=

{
f(Qj,k)∑n

i=1 1ai=k·f(Qi,k)
aj = k

0 otherwise
.

It this case, we denote R = Rf for the corresponding f .
Under a scoring mediator every author receives a proba-

bility according to the proportion of her score over the sum
of the scores of all author writing on that topic. Notice that
if Rf is a scoring mediator such that the corresponding f is
constant, we getRf = RRAND. In addition, this family also
includes celebrated mediators, e.g. the softmax function (for
f(Qj,k) = eQj,k ), which is very popular in machine learn-
ing applications, or the linear function (for f(Qj,k) = Qj,k)
that is common in probabilistic models for decision mak-
ing (for instance, in the Bradley—Terry model (Bradley and
Terry 1952)). Noticeably, the RPRP is not a scoring medi-
ator. In the rest of this section, we show non-convergence
of better-response dynamics for general families of scoring
mediators.

4.1 Exposure-Targeted Utility
In this subsection we prove that, under mild assumptions,
scoring mediators are not uEx-learnable (as opposed to
RRAND). We restrict ourselves to mediators for which the
corresponding function f is continuous, and exhibits the fol-
lowing property: the ratio between the score of the highest
quality and the lowest quality is greater than two (note that
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this property holds trivially if the score of the lowest quality
is zero, i.e., f(0) = 0). Among others, this class of medi-
ators contains mediators based on softmax and linear func-
tions, as described above.
Theorem 3. Let Rf be a scoring mediator. If f is a con-
tinuous function such that f(1) > 2f(0), then Rf is not
uEx-learnable.

Proof sketch. It is sufficient to show that for every f that
satisfies the theorem’s conditions, we can construct a game
instance with an improvement cycle. We exploit the prop-
erties of f to construct a game with four authors and three
topics, and show that an improvement cycle exists. Let Rf
be a scoring mediator with the corresponding function f ,
which we assume exhibits f(1) > 2f(0). Due to the In-
termediate Value Theorem, there exist x1, x2, x3 such that
0 < x3 < x2 < x1 ≤ 1 and

f(x2)

f(x3)
>

2f(x1)

f(x2)
> 2.

For brevity, denote c1 = f(x1)
f(x2)

and c2 = f(x2)
f(x3)

, and ob-
serve that c2 > 2c1. Consider a game with |N | = 4 authors,
|M | = 3 topics and a quality matrix Q such thatx1 0 0

x1 x2 0
x2 0 x3
0 x3 x2

 .

The only missing ingredient is the distribution D over the
topics. The selection of such D is crucial: we shall select D
to allow improvement cycles. Denote

D(1) =
1

2− 3ε
,D(2) =

1− 2ε

2(2− 3ε)
, D(3) =

1− 4ε

2(2− 3ε)
,

for some 0 < ε ≤ 1
4 . It can be verified that D is a valid dis-

tribution over the set of topics. Consider the strategy profiles

a1 = (1, 1, 1, 2), a2 = (1, 2, 1, 2), a3 = (1, 2, 3, 2),

a4 = (1, 2, 3, 3), a5 = (1, 1, 3, 3), a6 = (1, 1, 1, 3).

In the rest of the proof we show that ε can be selected such
that the cycle c = (a1,a2,a3,a4,a5,a6,a7 = a1) is an
improvement cycle of the game we constructed. More pre-
cisely, we prove that for every r, 1 ≤ r ≤ 6, uExpr (ar) <

uExpr (ar+1). This suggests thatRf is not uEx-learnable.

While all it takes to prove Theorem 3 is to show a single
game instance with an improvement cycle, we can actually
construct infinitely many games which do not possess FIP.
Moreover, our construction can be viewed as a sub-game in
a much broader game, i.e., with more authors and topics.

4.2 Action-Targeted Utility
When analyzing scoring mediators, an additional difference
between the two utility schemes emerges. In the improve-
ment cycle constructed in the proof of Theorem 3, there ex-
ists an improvement step in which the improving author de-
creases the quality of her document but still increases her

utility. Under the action-targeted utility function, such a de-
crease may not be translated to improved utility. Namely, the
technique employed in Theorem 3 for constructing a game
that possesses an improvement cycle might not work here.
Nevertheless, the following theorem shows non-learnability
under uAc of scoring mediators that boost high-quality con-
tent. For example, a mediatorRf where the corresponding f
satisfies f(1) > 6f( 12 ) assigns a substantially higher score
to the highest quality than a mediocre one.
Theorem 4. Let Rf be a scoring mediator. If f is a con-
tinuous function such that f(1) > 2(2α− 1)f

(
1
α

)
for some

α > 1, then Rf is not uAc-learnable.
Notice the resemblance between the condition of Theo-

rem 3 to that of Theorem 4. Due to space limitations, ad-
ditional results on the non-learnability of other scoring me-
diators under uAc are omitted and further elaborated in the
appendix.

5 Discussion
We introduced the study of learning dynamics in the context
of information retrieval games. Our results address learn-
ing in the framework introduced by Ben-Basat, Tennenholtz,
and Kurland (2017), where authors are action-targeted as
well as for a complementary type of information retrieval
game in which the authors’ aim is to maximize their expo-
sure. In particular, our results show that a mediator that oper-
ates according to the PRP (Robertson 1977) induces a game
in which learning-dynamics converges; the latter is true for
both exposure-targeted and action-targeted utility schemes.
Moreover, we have also demonstrated that this convergence
is a virtue of the PRP, and does not apply for other relevant
mediators.

One prominent question is the time required for the au-
thors to converge, namely, finding the worst-case length of
an improvement path. It turns out that there is a class of
games where the length of the best-response paths is easy
to analyze.

Consider the exposure target utility, and assume that D is
strictly decreasing, the number of authors equals the number
of topics, and that the matrix Q is generic, i.e., has n × m
distinct values. The induced game exhibits a unique equi-
librium: topic 1 is assigned to the author with the highest
quality w.r.t. topic 1. Topic 2 is assigned to the author with
the highest quality on that topic, from the set of authors who
were not assigned before. Clearly, the PNE is computed by
following this process until every author/topic is assigned.
Consequently, any best-response dynamics where the au-
thors play in a round-robin fashion will converge after at
most a quadratic number of improvement steps in the num-
ber of authors. A similar observation applies to action tar-
geted utility under a slightly different notion of generality of
Q. The general question of convergence rate is nevertheless
left open.

Our model, as any other novel model that pretends to ex-
plain theoretical aspects of real-world systems, has its lim-
itations. To name a few, we assume the set of authors and
topics are fixed, while in reality they are often dynamic; we
assume that the quality of documents is perfectly observed

1786



by the mediator, which only approximates modern search
engines. Although not ultimate, we do believe that our mod-
eling, which extends a model that is already acknowledged
as valuable (Ben-Basat, Tennenholtz, and Kurland 2017),
serves as an important justification for the use of the PRP,
and may be an important step for future work to circumvent
the limitations presented above. We note that our learning
dynamics is based on applying an author’s response to the
current behavior of other authors. In fact, this assumes that
the only information available to the author is the quality
of the documents currently published, and assumes nothing
about information available to an author on other authors’
(unobserved) qualities. Relaxing the assumption that pub-
lished documents’ qualities can be observed goes beyond the
scope of our work, and may be a subject for future research.

An interesting future direction is to expand the informa-
tion retrieval setting to a setup where each author’s docu-
ment may include several topics. This issue is treated in a
preliminary manner in (Ben-Basat, Tennenholtz, and Kur-
land 2017) and it may be of interest to see whether our
results can be extended to that context as well. It may be
also interesting to study the quality of the equilibrium (as
far as users’ social welfare is concerned) reached under
PRP. Would the best equilibrium be obtained under better-
response learning dynamics?
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