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Abstract

Much of the social choice literature examines direct voting
systems, in which voters submit their ranked preferences over
candidates and a voting rule picks a winner. Real-world elec-
tions and decision-making processes are often more complex
and involve multiple stages. For instance, one popular voting
system filters candidates through primaries: first, voters affil-
iated with each political party vote over candidates of their
own party and the voting rule picks a candidate from each
party, which then compete in a general election.
We present a model to analyze such multi-stage elections, and
conduct the first quantitative comparison (to the best of our
knowledge) of the direct and primary voting systems with two
political parties in terms of the quality of the elected candi-
date. Our main result is that every voting rule is guaranteed to
perform almost as well (i.e., within a constant factor) under
the primary system as under the direct system. Surprisingly,
the converse does not hold: we show settings in which there
exist voting rules that perform significantly better under the
primary system than under the direct system.

Introduction
If I could not go to heaven but with a party, I would
not go there at all.

– Thomas Jefferson, 1789

Thomas Jefferson, like many of the US constitution’s au-
thors, believed that political parties and factions are a bad
thing (see also Hamilton, Madison, and Jay (1787)). This
view stemmed from a long history of British and English
political history, in which prison sentences and executions
were possible outcomes in the battle between factions for
supremacy at the Royal court (Simms 2007). However, both
in Britain and in the Unites States, once their respective leg-
islative assemblies gained political force, parties turned out
to be quite unavoidable. Even Jefferson had to start his own
party, which ended up quite successful, and was able to van-
quish the opposing party from political existence (Wilentz
2005).

Fast forwarding to today, political parties have become
the bedrock of parliamentary politics throughout the world.
In particular, one of political parties’ main roles – if not the
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most important (especially in presidential systems) – is to se-
lect the candidates which are voted for by the general public.
The mechanisms by which parties make this selection are
varied, and they have evolved significantly throughout the
past 150 years. But in the past few decades there has been
a marked shift by parties throughout the world towards in-
creasing the ability of individual party (or unaffiliated) mem-
bers to influence the outcome, and in some cases, to be the
only element to determine party candidates (Cross and Blais
2011). In particular, US parties have changed their election
methods since the 1970s to focus the selection of presiden-
tial, congressional and state-wide candidates on popular sup-
port by party members via primaries (Cohen et al. 2008).

Despite this long and established role of parties in whit-
tling down the candidate field in elections, the treatment of
a parties’ role in elections within the multiagent systems
community has been quite limited. While various candidate
manipulation attacks have been investigated (e.g., Sybil at-
tacks (Conitzer and Yokoo 2010)), and there is recent re-
search into parties as a collection of similar minded candi-
dates (e.g., in gerrymandering, across different districts), the
role of parties in removing candidates has not been explored.

The focus of this paper is the primary voting system, in
which each party’s electorate selects a winner from among
the party’s candidates, and among these primary winners, an
ultimate election winner is selected by the general public.
Our goal is to compare this system to the direct voting sys-
tem, in which all voters directly vote over all candidates.

Our Results
Our contribution is twofold. First, we formulate a model
which allows a quantitative comparison of the two voting
systems. Our model is a spatial model of voting in which
voters and candidates lie in an underlying multi-dimensional
space, and voter preferences are single-peaked. This allows
us to compare each candidate’s social utility in terms of its
total distance to the voters. We make the evaluation met-
ric formal using the notion of distortion advocated by a
recent line of research (Procaccia and Rosenschein 2006;
Boutilier et al. 2015). Our results focus on 2 parties, each
selecting a single candidate, with both candidates presented
to the general voting public.

Second, we use this model to present a comparison of the
direct and primary voting systems. In particular, we show
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that no voting rule performs much worse (by more than a
constant factor) under the primary system than under the
direct system. While the converse holds in some cases, we
show settings in which it does not, and there exist voting
rules that perform much better under the primary system
than under the direct system.

It is important to note that while we write of parties, vot-
ers and elections, this multi-step model applies to a vari-
ety of decision-making processes by agents. An organiza-
tion selecting an “employee of the month” may ask each
unit to nominate a single candidate, and then choose from
amongst them. A city may ask its regional subdivisions to
assess which roads require urgent fixing, and then the city
council decides from these options where to invest its efforts.
Fundamentally, in many cases where the potential number of
options is huge, it is common to use subdivisions to cull the
options and present only a few of them for discussion and
vote. In such cases, our multi-stage model is apt.

Related Work
The analysis of regular, direct elections is long and varied,
both in the social sciences and in AI (Brandt et al. 2016).
In our particular setting, the voters are located in a metric
space, with their preferences related to their distance from
candidates. Such settings have been widely investigated in
the social science literature since the work of Downs (1957),
recently summarized by Schofield (2008). In particular, we
focus on the idea of distortion in such elections, a topic
broached by Procaccia and Rosenschein (2006) for voters
with a utility function, but investigated in the context of
voters in metric spaces in a series of papers (Anshelevich,
Bhardwaj, and Postl 2015; Anshelevich and Postl 2017;
Skowron and Elkind 2017) for most common voting rules.
Feldman, Fiat, and Golomb (2016) explored such a setting
for strategyproof mechanisms.

Discussing changes to the set of candidates has been
mainly focused on two paths of research. Strategic candi-
dates, investigation of which began with the work of Dutta,
Jackson, and Le Breton (2001) – followed by Dutta, Jack-
son, and Le Breton (2002) discussing strategic candidacy
in tournaments, and recently further explored by Brill and
Conitzer (2015), Polukarov et al. (2015) and others – deals
mainly with finding equilibria. The other is the addition and
removal of candidates, as a form of control manipulation,
which was studied by Bartholdi III, Tovey, and Trick (1992);
see the summaries by Brandt et al. (2016) and Rothe (2015).

Investigating parties’ selection methods and their effect
on the election has mostly been done in the social sciences.
Kenig (2009) details the range of selection methods parties
use, and there has been significant focus on more demo-
cratic methods for leader selection (Cross and Katz 2013),
which seems to be a general trend in many Western coun-
tries (Cross and Blais 2011). There is also significant lit-
erature on particular party elections in various countries,
such as Britain (Jobson and Wickham-Jones 2010), Belgium
(Wauters 2010), Israel (Hazan 1997), and many others. Nat-
urally, the most widely examined country is the US, in which
political parties have been a fixture of political life since its

early days (Wilentz 2005). The most recent extensive sum-
mary of research on it is due to Cohen et al. (2008), who
try to explain how party power-brokers influence the party
membership vote. Norpoth (2004) uses primary data to pre-
dict election results, and notably Sides et al. (2018) show
that primary voters are very similar to “regular” voters. In
computational fields, recent interest in proxy voting (Cohen-
sius et al. 2017; Kahng, Mackenzie, and Procaccia 2018), in
which voters give other agents the ability to vote for them,
may be related to how modern parties are viewed and ana-
lyzed.

Model
For k ∈ N, define [k] = {1, . . . , k}. Let V = [n] de-
note a set of n voters, and A denote a set of m candidates.
We assume that voters and candidates lie in an underlying
metric space M = (S, d), where S is a set of points and
d is a distance function satisfying the triangle inequality
and symmetry. More precisely, there exists an embedding
ρ : V ∪A→ S mapping each voter and candidate to a point
in S. For a set X ⊆ V ∪ A, we slightly abuse the notation
and let ρ(X) = {ρ(x) : x ∈ X}. Also, for x, x′ ∈ V ∪ A,
we often use d(x, x′) instead of d(ρ(x), ρ(x′)) for notational
convenience.

In this work, we assume that voters and candidates addi-
tionally have an affiliation with a political party. Specifically,
we study a setting with two parties1, denoted −1 and 1. The
party affiliation function π : V ∪ A → {−1, 1} maps each
voter and candidate to the party they are affiliated with. For
p ∈ {−1, 1}, let Vp = π−1(p) ∩ V , Ap = π−1(p) ∩ A,
np = |Vp|, and mp = |Ap|. We require np ≥ 1 for each
p ∈ {−1, 1}. Our main result (Theorem 2) holds even if
there are independent voters not affiliated with either party.

Collectively, an instance is the tuple I = (V,A,M, ρ, π).
Given I , our goal is to find a candidate a ∈ A as the win-
ner. The social cost of a is its total distance to the voters,
denoted CI(a) =

∑
i∈V d(i, a). For party p ∈ {−1, 1}, let

CIp (a) =
∑
i∈Vp d(i, a). Hence CI(a) = CI−1(a) + CI1 (a).

We also use for X ⊆ V , CIX(a) =
∑
i∈X d(i, a). Given

an instance I , we would like to choose a candidate aOPT ∈
arg mina∈A C

I(a) that minimizes the social cost. We shall
drop the instance from superscripts if it is clear from the
context.

However, we do not observe the full instance. Specifically,
we do not know the underlying metric M or the embedding
function ρ. Instead, each voter i ∈ N submits a a vote, which
is a ranking (strict total order) �i over the candidates in A
by their distance to the voter. Specifically, for all i ∈ N
and a, b ∈ A, a �i b ⇒ d(i, a) ≤ d(i, b). The voter is
allowed to break ties between equidistant candidates arbi-
trarily. The vote profile −→� I = (�1, . . . ,�n) is the collec-
tion of votes. Given an instance I , its corresponding election
EI = (V,A,

−→� I , π) contains all observable information.
In the families of instances that we consider, we fix the

1The model can be extended to multiple parties in a reasonably
straightforward manner, but for simplicity’s sake, we shall focus on
only 2 parties.
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number of candidates m and let the number of voters n to
be arbitrarily large. This choice is justified because in many
typical elections (e.g., political ones), voters significantly
outnumber candidates. Let Iαm,M be the family of instances
satisfying the following conditions.
• Each party has at least an α fraction of the voters affiliated

with it, i.e., np ≥ α · n for each p ∈ {−1, 1}. Note that
α ∈ [0, 0.5]: α = 0.5 is the strictest (exactly half of the
voters are affiliated with each party), while α = 0 imposes
no conditions; in the latter case, we omit the superscript
α.

• The number of candidates is at most m.
In particular, we shall focus on a few cases ofM :

M = ? This allows M to be an arbitrary metric space.
M = Rk The metric space should be M = (Rk, d), where
d is the standard Euclidean distance.

M = sep-Rk This means the embedding ρ must be such
that ρ(V−1∪A−1) and ρ(V1∪A1) are linearly separable.2
In this case we shall take the metric to be M = (Rk, d)
with d as the standard Euclidean distance. In plain words,
the voters and candidates affiliated with each party reside
in a certain part of the metric space, separate from those
affiliated with the other party. In a single dimension, this
means there exists a threshold on the line such that voters
and candidates affiliated with one party lie to the left of it,
while those affiliated with the other party lie to the right.
Note that this is the only choice of M that restricts the
embedding ρ based on party affiliation π.
These families of instances are related by the following

relation. For all k,

Iαm,sep-Rk
⊂
⊂

Iα
m,Rk

Iα
m,sep-Rk+1

⊂
⊂
Iαm,Rk+1 ⊂ Iαm,?

Voting Rules and Distortion
A voting rule f takes an election as input, and returns a win-
ning candidate from A. We say that the cost-approximation
of f on instance I is

φ(f, I) =
CI(f(EI))

mina∈A CI(a)
,

and given a family of instances I, the distortion of f with
respect to I is

φI(f) = sup
I∈I

φ(f, I).

Since distortion is a worst-case notion, we have that when
I ⊆ I ′, φI(f) ≤ φI′(f) for every voting rule f .

Standard voting rules choose the winning candidate in-
dependently of party affiliations. These include rules such
as plurality, Borda count, k-approval, veto, and STV. We
refer readers to the book by Brandt et al. (2016) for their

2Two sets of points are linearly separable if the interiors of their
convex hulls are disjoint, or equivalently, if there exists a hyper-
plane that contains each set in a distinct closed halfspace.

definitions. We call a voting rule affiliation-independent
if f(E) = f(E′) when elections E and E′ differ only
in their party affiliation functions. Since an affiliation-
independent voting rule f ignores party affiliations, we have
φIα

m,sep-Rk
(f) = φIα

m,Rk
(f). All of the above-mentioned

rules, in addition to being affiliation-independent, share the
property of being unanimous, i.e., they return candidate a
when a is the top choice of all voters.

Stages and Primaries
Given an affiliation-independent voting rule f , voting sys-
tems with primaries employ a specific process to choose the
winner, essentially resulting in a different voting rule f̂ that
operates on a given election E = (V,A,

−→� , π) as follows:

1. First, it creates two primary elections: for p ∈ {−1, 1},
define Ep = (Vp, Ap,

−→�p, πp), where −→�p denotes the
preferences of voters in Vp over candidates in Ap, and
πp : Vp → {p} is a constant function.

2. Next, it computes the winning candidate in each primary
election (primary winner) using rule f : for p ∈ {−1, 1},
let a∗p = f(Ep).

3. Finally, let Eg = (V,
{
a∗−1, a

∗
1

}
,
−→�g, π) be the general

election, where −→�g denotes the preferences of all voters
over the two primary winners. The winning candidate is
f̂(E) = maj(Eg), which is what most voting rules be-
come when dealing with only 2 candidates.3 Here, maj is
the majority rule, which, given two candidates, picks the
one that a majority of voters prefer; our results are inde-
pendent of its tie-breaking.

This resembles systems employed by the main US, Cana-
dian and other countries’ parties, in which a party’s mem-
bers vote on their party’s candidates to select a winner of
their primary. In other systems, such selection could be a
multi-stage process.

Given an affiliation-independent voting rule f , the goal
of this paper is to compare its performance under the direct
system, in which f is applied on the given election directly,
to its performance under the primary system, in which f̂ is
applied on the given election instead. Formally, given a fam-
ily of instances I and an affiliation-independent voting rule
f , we wish to compare φI(f) and φI(f̂) (henceforth, the
distortion of f with respect to I under the direct and the
primary systems, respectively).

Small Primaries Are Terrible
Recall that in a family of instances Iαm,M, we require that
at least α fraction of voters be affiliated with each party, i.e.,
np ≥ αn for each p ∈ {−1, 1}. In other words, each primary
election must have at least αn voters.

3If one of the parties has no affiliated candidates, then the pri-
mary winner of the other party becomes the overall winner. In a
setting with more than 2 parties, or where each party nominates
several candidates, the general election can use f to determine the
outcome (or use some other voting process).
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We first show that when a primary election can have very
few voters (α = 0), every reasonable voting rule has an un-
bounded distortion in the primary system, even with respect
to our most stringent family of instances Im,sep-R.

Theorem 1. For m ≥ 3, φIm,sep-R(f̂) = ∞ for every
affiliation-independent unanimous voting rule f .

Proof. Consider an instance I ∈ Im,sep-R in which voter 1 is
located at 0 and affiliated with party−1, while the remaining
n − 1 voters are located at 1 and affiliated with party 1. All
m candidates are affiliated with party −1: one is at 0, and
the rest are at 1.

The candidate a∗ at 0 becomes the primary winner of
party −1, and trivially becomes the overall winner. Its so-
cial cost is C(a∗) = n − 1. In contrast, an optimal can-
didate aOPT at 1 has social cost C(aOPT ) = 1. Hence,
C(a∗)

C(aOPT )
= n − 1. Since the number of voters n is un-

bounded, φIm,sep-R(f̂) =∞.

Theorem 1 continues to hold even if we require that at
least a constant fraction of candidates be affiliated with each
party: we could simply move a constant fraction of the can-
didates from 1 to 3, and the proof would still go through.

On the other hand, if we require that at least a constant
fraction of voters be affiliated with each party, the result
changes dramatically.

Large Primaries Are Never Much Worse
For every affiliation-independent voting rule f , we bound
the distortion of f̂ in terms of the distortion of f for every
instance. Note that this is stronger than comparing the worst-
case distortions of f and f̂ over a family of instances.

Given an instance I = (V,A,M, ρ, π) and party p ∈
{−1, 1}, we say that Ip = (Vp, Ap,M, ρp, πp) is the pri-
mary instance of party p, where ρp and πp are restrictions of
ρ and π to Vp ∪ Ap. The primary election Ep of party p is
precisely the election corresponding to instance Ip.

Theorem 2. Let I = (V,A,M, ρ, π) be an instance. For
p ∈ {−1, 1}, let Ip be the primary instance of party p, and
np = |Vp| ≥ αn. Then,

φ(f̂ , I) ≤ 3 · 1− α+max(φ(f, I−1), φ(f, I1))

α
.

Further, for a socially optimal candidate aOPT ∈
arg mina∈A C

I(a), we have a bound depending only on the
distortion of the primary election of its party:

φ(f̂ , I) ≤ 3 ·
1− α+ φ(f, Iπ(aOPT ))

α
.

For each family of instances I that we study, it holds that
for every instance I ∈ I, both its primary instances, if seen
as direct elections, are also in I (since the party division
has no effect on the direct election distorition). Hence, we
can convert the instance-wise comparison to a worst-case
comparison.

Corollary 3. For every α > 0, k ∈ N, family of instances
I ∈

{
Im,?, Im,Rk , Im,sep-Rk

}
, and affiliation-independent

voting rule f ,

φI(f̂) ≤ 3 · 1− α+ φI(f)

α
.

Note that φI(f) ≥ 1 by definition. Hence, we can write
φI(f̂) ≤ 6

α · φI(f). In other words, for every affiliation-
independent voting rule f , its distortion under the primary
system is at most a constant times bigger than its distortion
under the direct system, with respect to every family of in-
stances that we consider.

To prove Theorem 2, we need two lemmas. The first
lemma shows that if the distortion of a rule f for a primary
instance Ip is low, then the corresponding primary winner
a∗p is nearly as good as any candidate in Ap for the overall
election as well. The intuition is that when voters in V \ Vp
drive up the social cost of a∗p (i.e., when they are far from
a∗), they must do so for every candidate in Ap.
Lemma 4. Let a∗p denote the primary winner of party p.
Then

C(a∗p) ≤
1− α+ φ(f, Ip)

α
· min
a∈Ap

C(a).

Proof. Let θ = φ(f, Ip) (hence θ ≥ 1). Fix an arbitrary
a ∈ Ap. Then, CVp(a

∗
p) ≤ θ · CVp(a). Now,

C(a∗p) = CVp(a
∗
p) + CV \Vp(a

∗
p)

≤ θ · CVp(a) + CV \Vp(a) + (n− np) · d(a, a∗p)
≤ θ · C(a) + (n− np) · d(a∗p, a), (1)

where the second transition follows due to the triangle in-
equality. We also have d(a∗p, a) ≤ d(a∗p, i) + d(i, a) for any
i ∈ Vp. Thus,

d(a∗p, a) ≤
CVp(a

∗
p) + CVp(a)

np

≤ 1 + θ

np
· CVp(a) ≤

1 + θ

np
· C(a). (2)

Substituting Equation (2) into Equation (1), and using the
fact that n−npnp

≤ 1−α
α , we get the desired result.

Our next lemma shows that the primary winner that wins
the general election is not much worse than the primary win-
ner that loses the general election.
Lemma 5. Let a∗−1 and a∗1 be the two primary winners, a∗ ∈{
a∗−1, a

∗
1

}
be the winner of the general election, and â ∈{

a∗−1, a
∗
1

}
\ {a∗}. Then,

C(a∗) ≤ 3 · C(â).
Proof. Because a∗ wins the general election by a major-
ity vote, there must exist X ⊆ V , |X| ≥ n

2 such that
d(i, a∗) ≤ d(i, â) for every i ∈ X . Combining with the
triangle inequality d(a∗, â) ≤ d(a∗, i) + d(i, â), we get
d(i, â) ≥ d(a∗,â)

2 for every i ∈ X . Hence,

C(â) ≥ n

2
· d(a

∗, â)

2
⇒ d(a∗, â) ≤ 4

n
· C(â). (3)
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Now, we have

C(a∗) =
∑
i∈X

d(i, a∗) +
∑

i∈V \X

d(i, a∗)

≤
∑
i∈X

d(i, â) +
∑

i∈V \X

(d(i, â) + d(a∗, â))

≤ C(â) + n

2
· d(a∗, â), (4)

where the second transition follows because d(i, a∗) ≤
d(i, â) for i ∈ X , and d(i, a∗) ≤ d(i, â) + d(a∗, â) due to
the triangle inequality. Substituting Equation (3) into Equa-
tion (4), we get the desired result.

We are now ready to prove our main result.

Proof of Theorem 2. Recall that a∗−1 and a∗1 are the primary
winners. Let p ∈ {−1, 1} be such that a∗p is the winner of
the general election. Let aOPT ∈ arg mina∈A C(a) be a
socially optimal candidate. We consider three cases.

• Case 1: aOPT ∈ Ap. That is, the optimal candidate and
the winner are affiliated with the same party. In this case,
Lemma 4 yields

φ(f̂ , I) ≤ 1− α+ φ(f, Ip)

α
=

1− α+ φ(f, Iπ(aOPT ))

α
.

• Case 2: aOPT ∈ A−p, aOPT = a∗−p. That is, the optimal
candidate and the winner are affiliated with different par-
ties, and the optimal candidate is a primary winner. In this
case, Lemma 5 yields

φ(f̂ , I) ≤ 3.

• Case 3: aOPT ∈ A−p, aOPT 6= a∗−p. That is, the optimal
candidate is affiliated with a party different than that of
the winner, and is not a primary winner. In this case, we
use both Lemmas 4 and 5 to derive

φ(f̂ , I) =
C(a∗p)

C(aOPT )
=

C(a∗p)

C(a∗−p)
·
C(a∗−p)

C(aOPT )

≤ 3 · 1− α+ φ(f, I−p)

α

= 3 ·
1− α+ φ(f, Iπ(aOPT ))

α
.

Thus, in each case, we have the desired approximation.

Note that our proof of Theorem 2 does not preclude the
existence of independent voters. Specifically, we can allow
the party affiliation function π to map a subset of voters V0
to a neutral choice (say 0), have these voters only vote in
the general election and not in either primary election under
the primary system, and the proof of Theorem 2 would still
go through. Additionally, we can also relax the restriction
that all voters vote in the general election. That is, we can
assume that a subset of voters Vg ⊆ V vote in the general
election under the primary system, assume |Vg| ≥ γn, and a
version of Theorem 2 in which the constant 3 in the bound
is replaced by 4−γ

γ would hold. This requires a generaliza-
tion of Lemma 5, omitted due to space constraints. Finally,

notice that we do not use the assumption that both parties
use the same voting rule f in their primaries. The theorem
extends easily to allow the use of different voting rules, with
the distortion under the primary system still being bounded
in terms of the maximum of the distortions in the two pri-
mary elections.

Large Primaries Are Not Better
Without Party Separability

While we showed in the previous section that a voting rule
does not perform much worse under the primary system than
under the direct system, we now show that it does not per-
form any better either, at least in the worst case over all in-
stances with at most m candidates. The result continues to
hold even if we require each party to have at least a constant
fraction of the voters.

Note that this result is weaker than Theorem 2 because
it is a worst-case comparison instead of an instance-wise
comparison. However, it still applies to all voting rules f .
It applies to any metric that does not require separability of
parties, in particular to Im,? and Im,Rk .

Theorem 6. For α ∈ [0, 0.5], k ∈ N, M ∈
{
?,Rk

}
(i.e. when the metric space does not require party separa-
bility), and affiliation-independent voting rule f , we have
φIαm,M(f̂) ≥ φIαm,M(f).

Proof. We shall denote Iαm,M as I. We want to show that
for every instance I ∈ I, there exists an instance I ′ ∈ I
such that φ(f̂ , I ′) ≥ φ(f, I). This would imply the desired
result.

Fix an instance I = (V,A,M, ρ, π) ∈ I. Let aOPT ∈
A denote an optimal candidate in I , and a∗ = f(EI).
Note that φ(f, I) = CI(a∗)

CI(aOPT )
. Construct instance I ′ =

(V ′, A,M, ρ′, π′) as follows.

• Let V ′ = V ∪ Ṽ , where Ṽ is a new set of voters and
|Ṽ | = |V |.

• Let ρ′(x) = ρ(x) for all x ∈ V ∪A, and ρ(x) = ρ(aOPT )

for all x ∈ Ṽ . That is, ρ′ matches ρ for existing voters and
candidates, and the new voters are co-located with aOPT .

• Let π′(x) = −1 for all x ∈ V ∪ A, and π′(x) = 1 for
all x ∈ Ṽ . That is, all existing voters and candidates are
affiliated with party−1, while all new voters are affiliated
with party 1.

First, let us check that I ′ ∈ I. Since I has m candidates,
so does I ′. Further, in I ′, we have |V ′−1| = |V ′1 | = |V ′|/2,
which satisfies the constraint corresponding to every α ∈
[0, 0.5]. Hence, we have I ′ ∈ I.

Let us apply f̂ on I ′. One of its primary instances, I ′−1,
is precisely I . Hence, the primary winner of party −1 is
f(I ′−1) = f(I) = a∗. Because there are no candidates affil-
iated with party 1, a∗ becomes the overall winner.4

4Even if we require each party to have at least one affiliated
candidate, the proof essentially continues to hold. In this case, we
can add one candidate affiliated with party 1 that is located suffi-
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Next, CI
′
(a∗) ≥ CI(a∗) because V ⊂ V ′. Also,

CI
′
(aOPT ) = CI(aOPT ) because aOPT has zero distance

to all voters in V ′ \ V . Together, they yield

φ(f̂ , I ′) =
CI
′
(a∗)

CI′(aOPT )
≥ CI(a∗)

CI(aOPT )
= φ(f, I), (5)

as desired.

Our proof actually establishes a slightly stronger result.
Instead of showing φIαm,M(f̂) ≥ φIαm,M(f), we actually

show φI0.5m,M(f̂) ≥ φIαm,M(f).

Separability and Its Advantages
The analysis for Im,sep-Rk is not so straightforward. In the
proof of Theorem 6, we co-located the new voters affiliated
with party 1 and aOPT affiliated with party −1. This was
allowed because non-separable metrics like ? and Rk place
no constraints on the embedding.

With Iαm,sep-Rk , we need the voters and candidates affili-
ated with one party to be separated from those affiliated with
the other. Hence, this operation of putting all of one party’s
voters at the location of aOPT belonging to another party
would be allowed only if, in the original instance I , aOPT
is on the boundary of the convex hull of ρ(V ∪ A). While
this is not the case for all instances, we only need this in
at least one worst-case instance for f , i.e., for at least one
I ∈ Iαm,sep-Rk with φ(f, I) = φIα

m,sep-Rk
(f). Equation (5)

would then yield the desired result. More generally, it is suf-
ficient if, given any ε > 0, we can find an instance I such
that φ(f, I) ≥ φIα

m,sep-Rk
(f) − ε and aOPT is at distance at

most ε from the boundary of the convex hull of ρ(V ∪A).
Interestingly, (Anshelevich, Bhardwaj, and Postl 2015)

show that this is indeed the case for plurality and Borda
count (see the proof of their Theorem 4). Thus, we have the
following.
Proposition 7. Let f be plurality or Borda count. Then,
φI0.5m,sep-R

(f̂) ≥ φIm,?(f).
However, known worst cases for the Copeland rule (An-

shelevich, Bhardwaj, and Postl 2015) and STV (Skowron
and Elkind 2017) do not satisfy this requirement. It is un-
known if these rules admit a different worst case that satis-
fies it.

This raises an important question. Does Proposition 7
hold for all affiliation-independent voting rules? We shall
shortly answer this negatively.

More precisely, we construct an affiliation-independent
voting rule f such that φIαm,sep-R

(f̂) � φIαm,sep-R
(f) for ev-

ery α > 0. That is, with large primaries, f performs much
better under the primary system than under the direct sys-
tem, when voters and candidates are embedded on a line and
the separability condition is imposed.

ciently far from all the voters, ensuring that a∗ still becomes the
overall winner. This would show φIα

m+1,M
(f̂) ≥ φIα

m,M
(f) be-

cause instance I ′ may now have m+ 1 candidates.

Note that instances in Im,sep-R are highly structured. For
instance, it is known that when voters and candidates are
embedded on a line, there always exists a weak Condorcet
winner (Black 1948), and selecting such a candidate results
in a distortion of at most 3 (Anshelevich, Bhardwaj, and
Postl 2015). Hence, we have φIm,sep-R(f) = 3 for every
Condorcet-consistent, affiliation-independent voting rule f .5

Our aim in this section is to construct an affiliation-
independent voting rule ffail that with respect to Im,sep-R has
an unbounded distortion in the direct system, but at most a
constant distortion in the primary system.

Definition 1. Let ffail be an affiliation-independent voting
rule that operates on election E = (V,A,

−→�) as follows. Let
A = {a1, . . . , am}, and t = (m+ 1)/2.

• Special Case: If m ≥ 9, m is odd, n ≥ m2, and −→� has
the following structure, then return a1.

1. For voter 1, a1 �1 . . . �1 am.
2. For voter 2, am �2 . . . �2 a1.
3. For voter 3, at−1 is the most preferred, and
am−2 �3 a1 �3 am−1 �3 am.

4. For voter 4, at+1 is the most preferred, and
a3 �4 am �4 a2 �4 a1.

5. For j ∈ [m− 2], for voter i = 4 + (2j − 1),
aj+1 �i aj+2 �i aj , and for voter i′ = 4 + 2j,
aj+1 �i′ aj �i′ aj+2.

6. For every other voter v, at is the most preferred.
• If E does not fall under the special case, then apply any

Condorcet consistent voting rule (e.g., Copeland’s rule).

Note that m being odd ensures that t is an integer, and
m ≥ 9 ensures that a1, a3, at−1, at, at+1, am−2, and am
are all distinct candidates. The significance of n ≥ m2 will
be clear later.

We will now establish that a worst-case instance of ffail
falls under the special case; for this instance, we need to
show that at is socially optimal; that ffail returns a1 on this
instance; and most importantly, that the structure of −→� en-
sures that the optimal candidate at is sufficiently far from
both the leftmost and the rightmost candidates.

We prove this last fact in the following lemma.

Lemma 8. Let I = (V,A,M, ρ, π) ∈ Im,sep-R be an in-
stance for which the corresponding election EI falls under
the special case of ffail. Then the following holds.

1. Either ρ(a1) ≤ . . . ≤ ρ(am), or ρ(a1) ≥ . . . ≥ ρ(am),
or |ρ(A)| = 2.

2. If |ρ(A)| 6= 2, min {d(at, a1), d(at, am)} ≥ d(a1,am)
4 .

The proof of the lemma, and the proof of the next theorem
is omitted due to space constraints.

Theorem 9. For m ≥ 9 and constant α ∈ (0, 0.5],
φIαm,sep-R

(f̂fail) is upper bounded by a constant, whereas
φIαm,sep-R

(ffail) is unbounded.
5(Anshelevich, Bhardwaj, and Postl 2015) also proved that no

affiliation-independent (deterministic) voting rule can have distor-
tion better than 3, even with respect to Im,sep-R.
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Figure 1: The distortion values for various settings (Direct, Primary-split and Primary-random) and voting rules for k ∈ {1, 3}.
Each bar represents the average distortion over 1000 instances. Within each figure, all of the bars represent average distortion
over the same set of voter and candidate locations, but not necessarily party affiliations. ANOVA on all elections returned
p < 10−9 when k = 1 and p < 10−5 when k = 3

Using Simulations to Go Beyond Worst Case
So far we compared the distortion of a voting rule under the
direct and primary systems, taken in the worst case over a
family of instances. In practice, such worst case instances
may not arise naturally. In this section, we compare the dis-
tortion of a voting rule under the direct and primary systems,
in the average case over simulated instances. To control for
the effect of vastly different numbers of voters or candidates
affiliated with the two parties, we place the restriction that
half of the voters and half of the candidates must be affiliated
with each party. Furthermore, we wish to examine instances
in which voters and candidates affiliated with one party are
separated from those affiliated with the other party.

We fix the metric space to be [0, 1]k for k ∈ {1, 3, 5, 7, 9}
with the Euclidean distance. We generate 1000 instances sat-
isfying the following restrictions. First, we place a set V of
n = 1000 voters at uniformly random locations in [0, 1]k.
Next, we find a hyperplane dividing voters into two equal
halves. Due to symmetry, we simply find a threshold t on
the kth coordinate such that the locations of half of the vot-
ers (call this set V−1) have a smaller kth coordinate, while
the locations of the rest (call this set V1) have a greater kth

coordinate. We do not affiliate the voters yet. Next, we place
m
2 = 10 candidates (call this set A−1) uniformly at random

on one side of the hyperplane, and m
2 = 10 candidates (call

this set A1) uniformly at random on the other side.
Once the locations of the voters and candidates are fixed,

we create two instances. In one instance (“split”), we as-
sign V−1 ∪ A−1 to party −1, and assign V1 ∪ A1 to party
1. This instance belongs to I0.5m,sep-Rk . In the other instance
(“random”), we assign half of the voters and half of the can-
didates chosen uniformly at random to party−1, and the rest
to party 1. This instance belongs to I0.5m,Rk , but not necessar-
ily to I0.5m,sep-Rk . This allows us to directly compare the ef-
fect that separability has on the distortion. Finally, we run
five voting rules — plurality, Borda, STV, Copeland and
maximin — on both instances under the direct and primary
systems, and measure the distortion. Note that their distor-
tion under the direct system would be identical for both in-
stances because the two instances only differ in party affili-
ations. Thus, for each rule, we obtain three numbers: Direct,

Primary-split, and Primary-random. We average the distor-
tion numbers across the 1000 instances.

See Figure 1 for selected simulation results. The results
for k > 3 resemble those for k = 3 in their comparison of
the direct versus the primary system; the only difference is
that the overall distortions are lower for higher k. To com-
pare the three distortion numbers in each case, we ran a re-
peated measures ANOVA comparing the distortion values,
and in all but 2 of 25 cases, had a p value under 0.05 (the
two cases had k = 9).

Perhaps the most important observation is that our simula-
tion results stand in direct contrast to our worst-case bounds.
In almost all of our settings, the distortion under the pri-
mary system (split and random) is better than that the distor-
tion under its direct counterpart, and often shows a signifi-
cant improvement. This is especially noticeable in the non-
Condorcet consistent rules (plurality, Borda and STV), as
in all but 3 of 15 cases the distortion significantly improves
the primary system in both cases. This effect is most pro-
nounced with plurality. With Condorcet consistent rules, the
distortion values are very low, regardless of whether the di-
rect system is used or the primary system. In general, as we
increase the dimension k, the groups become more homoge-
nous and the p values grow, while distortions approach 1.

Overall, the simulation results show a distortion that is far
below our theoretical worse-case results. We suspect that the
reason for this difference might have to do with our choice
of uniform voter and candidate distributions, and distortion
numbers might differ under different distributions.

Discussion
Our paper initiates the novel quantitative study of multi-
stage elections (and their comparison to single-stage elec-
tions), but leaves plenty to explore. Some directions are
fairly straightforward extensions of our results. The most
straightforward question is to tighten our bounds. There is
also the question of explaining the trends we observe in the
average case, which sometimes differ from our worst-case
results. A next step would be to study realistic distributional
models of voter preferences and candidate positions in the
political spectrum, and analyze their effect on distortion.

Other extensions are seemingly more involved. Extending
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our framework to more than two parties requires the use of a
ranked voting rule in the general election, which may signif-
icantly affect the analysis. Interestingly, such an extension
would also incorporate independent candidates because one
can imagine an independent candidate to be a party of their
own. Examining the use of multiple and different voting
rules as Narodytska and Walsh (2013) do for two-step voting
(though without candidate elimination between stages) is an
enticing direction. For example, in a multi-party direct sys-
tem, we may use plurality, whereas in the primary system,
the parties may use STV. It is also reasonable to consider
that each party has its own voting rule. It would be inter-
esting as well to examine party manipulation techniques in
primary systems. Similarly, it is reasonable to believe that
candidates may also strategically shift, to some extent, their
location following the primaries, to make themselves more
appealing to the general electorate.

We believe that the study of multi-stage elections and
party mechanisms can not only contribute novel theoretical
challenges to tackle, but can also bring research on computa-
tional social choice closer to reality and increase its impact.
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