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Abstract

In a multi-unit market, a seller brings multiple units of a
good and tries to sell them to a set of buyers that have mon-
etary endowments. While a Walrasian equilibrium does not
always exist in this model, natural relaxations of the concept
that retain its desirable fairness properties do exist. We study
the dynamics of (Walrasian) envy-free pricing mechanisms
in this environment, showing that for any such pricing mech-
anism, the best response dynamic starting from truth-telling
converges to a pure Nash equilibrium with small loss in rev-
enue and welfare. Moreover, we generalize these bounds to
capture all the (reasonable) Nash equilibria for a large class
of (monotone) pricing mechanisms. We also identify a natural
mechanism, which selects the minimum Walrasian envy-free
price, in which for n=2 buyers the best response dynamic con-
verges from any starting profile. We conjecture convergence
of the mechanism for any number of buyers and provide sim-
ulation results to support our conjecture.

Introduction
The question of allocating valuable resources is one of the
central problems faced by human society, starting from the
division of land to modern variants such as allocating com-
putational resources to the users of an organization or selling
goods in online markets. A crucial development in answer to
the question of how to exchange goods (optimally) occurred
with the invention of money, i.e., of pricing mechanisms that
aggregate information about the supply and demand of the
goods in order to facilitate trade. The price mechanism was
formalized and studied systematically starting with the 19th
century, in the works of Fisher (2000), Walras (1874) and
Arrow and Debreu (1954), but its complexity was under-
stood only much more recently (Nisan et al. editors 2007).
The basic setting in a free market consists of a set of agents
that come to the market with their initial endowments (e.g.
money or products for sale) and aim to purchase goods1 in
a way that maximizes their utility subject to the initial bud-
get constraints. Walrasian (market) equilibria are outcomes
where demand and supply are perfectly balanced, satisfy de-
sirable fairness and efficiency properties, and are guaranteed
to exist under certain conditions (Arrow and Debreu 1954).

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Possibly after selling their initial bundles.

While the market equilibrium concept is a powerful ab-
straction applicable to any economic environment, other
driving forces of the modern digital economy are less well
understood using traditional economic theory. In particular,
online markets have been growing at an extremely high rate
in the recent past, but they pose many conceptual challeng-
ing questions such as what guiding principles should be used
for designing them, how to model and use information about
the behavior of the consumers, and even how to understand
the product being sold in the first place (as is arguably the
case with the products sold in ad auctions).

In this paper we will be concerned with the high level
question of deriving a theory for how consumers behave. A
scenario motivating our analysis is an online marketplace
where a seller posts a number of goods for sale, while inter-
ested buyers compete for obtaining them by submitting bids
that signal their interest in the goods. The buyers have time
to repeatedly update their bids after seeing the bids submit-
ted by others (i.e., there is a clock that counts the time left
for changing the bids), in order to get better allocations for
themselves or potentially lower the price. This process con-
tinues until a stable state is reached (or the time runs out),
and then the seller allocates the goods based on the final
bids. We are interested in understanding the outcomes at the
end states of this dynamic in multi-unit markets, where the
units on sale are identical, and in quantifying the social wel-
fare of the participants and revenue extracted by the seller.

Studying the outcomes of economic environments where
players repeatedly interact falls under the umbrella of learn-
ing how to play games, and in particular, learning how to
participate in auctions. There has been an extensive body
of work on understanding dynamics in games and auctions
under various behavioral models of agents, such as best-
response, multiplicative weight updates, no regret learning
(e.g., (Freund and Schapire 1999; Roughgarden, Syrgkanis,
and Tardos 2017; Daskalakis and Syrgkanis 2016)). Multi-
unit auctions have been advocated as a lens to the entire
field of (algorithmic) mechanism design (Nisan 2014) and
our scenario is in fact “an environment where repeated best-
response provides reasonable approximation guarantees”,
stated explicitly as a research question by Nisan et al. (2011).

We will focus on studying fair pricing mechanisms as
captured by (Walrasian) envy-free pricing, where the seller
posts a unique price p per unit and each buyer purchases a
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bundle of goods that maximizes its utility given this price.
This type of pricing refers to the fact that no buyer should
“envy” any bundle that it could afford in the market (Gu-
ruswami et al. 2005). Fairness has often not been a con-
sideration in auction design, and in fact for the purpose
of maximizing revenue of the seller it is useful to impose
higher payments to the buyers that are more interested in the
goods. However, there are studies showing that customers
are unhappy with such discriminatory prices (see, e.g., (An-
derson and Simester 2008)), which has lead to a body of
literature focused on achieving fair pricing (Guruswami et
al. 2005; Feldman et al. 2012; Cohen-Addad et al. 2016;
Feldman, Gravin, and Lucier 2015; Anshelevich and Sekar
2017). This situation is not unlike that in learning, where
fairness has emerged as an important property in classifica-
tion tasks (Zafar et al. 2017; Kleinberg, Mullainathan, and
Raghavan 2017), with multiple notions of fairness emerging
in this context.

Our Contributions
We study the (Walrasian) envy-free pricing problem in one
of the most basic scenarios possible, namely linear multi-
unit markets with budgets. There is one seller who comes
equipped with m units of some good (e.g. chairs), while
the buyers bring their budgets. The seller has no value for
the items, while the buyers value both their money and the
goods. The buyers are strategic and a mechanism for envy-
free pricing will have to elicit the valuations from the buyers.
The budgets are known. In the economics literature, budgets
are viewed as hard information (quantitative), as opposed to
preferences, which represent soft information and are more
difficult to verify (see, e.g., (Petersen 2004)). Bulow, Levin,
and Milgrom (2009) provide an example of such an infer-
ence in a real-life actions. Known budgets are also studied
in the auctions literature (Dobzinski, Lavi, and Nisan 2012;
Fiat et al. 2011; Laffont and Robert 1996).

Our goal is to understand the best response dynamics as
well as the entire Nash equilibrium set of such a mechanism,
together with the social welfare and revenue attained at the
stable states. For the best response dynamic, we assume that
at each step of the process a buyer observes the bids of oth-
ers, then updates its own bid optimally given the current state
of the market. Our results are for (Walrasian) envy-free pric-
ing mechanisms and can be summarized as follows.

First, we show that for any such mechanism, the best-
response dynamic starting from the truth-telling profile con-
verges to a pure Nash equilibrium, with the property that
all buyers end up with higher utility and all but possibly
one buyer end up with more items than what they received
at the starting point of the dynamic (Theorem 1). We also
show that given some standard market power metrics, the
welfare and revenue loss because of the dynamic is small
(and actually goes to 0 as the market becomes fully compet-
itive) (Theorems 3 and 4). Furthermore, we show that while
convergence can generally be slow (Theorem 2), there are
classes of natural mechanism that convergence to an equilib-
rium in at most n steps (where n is the number of buyers).

Then, we consider any possible profile as the starting
point and we show that there are mechanisms for which the

dynamic sometimes fails to converge (Theorem 5). On the
positive side, we show that if it does converge to a reason-
able equilibrium, then for many mechanisms of interest, the
good welfare and revenue guarantees are retained (Theorems
6 and 7). We also prove that a known mechanism for the
problem, ALL-OR-NOTHING (Brânzei et al. 2017), actually
converges from any starting point, in the case of two buyers
(Theorem 8) and provide experimental evidence supporting
our conjecture that it converges for any number of buyers.
The omitted proofs are in the full version of the paper 2.

Related Work
The notion of the Walrasian equilibrium was formulated and
studied systematically as early as the beginning of the 19th
century, with the foundational works of Fisher (Brainard and
Scarf 2000), Walras (1874), and Arrow and Debreu (1954).
Its simple pricing scheme and its superior fairness proper-
ties, have lead to the employement of the Walrasian equilib-
rium as an auction mechanism for selling goods (Guruswami
et al. 2005; Babaioff et al. 2014). The 2000 SMRA auction
for 3G licences to UK providers (coined as “The Biggest
Auction Ever” in (Binmore and Klemperer 2002)) as well as
the Product-Mix auction (Klemperer 2010) run by the Bank
of England are prime real-life examples of the employment
of Walrasian pricing mechanisms.

The literature on best-response dynamics on games is
rich (Roughgarden 2009; Chien and Sinclair 2007; Awer-
buch et al. 2008), with questions raised about convergence
and convergence time and the properties of the equilib-
rium which is reached as the results of the dynamic. A
line of work has also considered best-response dynamics
in auctions (Dütting and Kesselheim 2017; Nisan et al.
2011); this is relevant to this work as pricing mechanisms
in our setting can be seen as simple and fair auction mech-
anisms for selling indivisible goods. Our work is also re-
lated to the literature on understanding dynamics of auc-
tions under behavioral assumptions such as no-regret learn-
ing and equilibria of auctions (e.g. for Nash, correlated,
and coarse-correlated equilibria) with corresponding price
of anarchy bounds, e.g. see (Freund and Schapire 1999;
Roughgarden, Syrgkanis, and Tardos 2017; Daskalakis and
Syrgkanis 2016).

Contrary to some of the related work on dynamics (e.g.
see (Kesselheim 2016)), we do not need to make any as-
sumptions about the order in which the buyers best-respond;
our results are independent of this order. A summary on dy-
namics for deciding the allocation of public goods can be
found in (Laffont 1987). Best response dynamics starting
from the true profile have been studied before in voting (see,
e.g. (Brânzei et al. 2013; Meir et al. 2010)). We empha-
size here that while a truthful mechanism with good wel-
fare and revenue guarantees exists for our setting (Brânzei
et al. 2017), providing guarantees for very general classes of
mechanisms as we do here is quite important, as the mech-
anisms that might actually be employed in reality might not
be truthful. A prominent example of this phenomenon is the
Generalized Second Price Auction, which is actually used

2The full version is at https://arxiv.org/abs/1712.08910.
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in practice in favour of its famous truthful counter-part, the
VCG mechanism (see (Nisan et al. editors 2007)) and in
fact, understanding such non-truthful mechanisms theoret-
ically has been a focus of the related literature (Caragiannis
et al. 2015; de Keijzer et al. 2013).

Finally, the question of understanding what can be
achieved with item pricing is particularly important given
the recent emphasis on the theme of complexity versus sim-
plicity in mechanism design (Hartline and Roughgarden
2009), which is inspired by the computational perspective.
Item pricing is a qualitative notion of simple pricing (as op-
posed to more complex pricing schemes, such as pricing dif-
ferent bundles arbitrarily), and is frequently used for selling
goods in supermarkets.

Model and Preliminaries
A linear multi-unit market is composed of a set N =
{1, . . . , n} of buyers and one seller that brings m (indivisi-
ble) units of a good. Each buyer i has a budget3 Bi > 0, and
a valuation vi per unit, such that the value of buyer i for k
units is vi ·k. The seller has no value for the units and its goal
is to extract money from the buyers, while the buyers value
both the money and the good and their goal is to maximize
their utility by purchasing units of the good as long as the
transaction is profitable.

The seller will set a price p per unit and any buyer can
purchase k units at a price of k · p. The outcome of the
market will be a pair (x, p), where p is the unit price and
x = (x1, . . . , xn) ∈ Zn

+ is an allocation, with the prop-
erty that xi is the number of units received by buyer i and∑n

i=1 xi ≤ m.
The utility of buyer i for receiving k units at price p is:

ui(p, k) =

{
vi · k − p · k, if p · k ≤ Bi

−∞, otherwise

The demand of a buyer i at price p is defined as the set of
optimal bundles for the buyer given the price and its bud-
get. Since the units are indistinguishable, the demand set
will simply contain all the bundle sizes that the buyer would
maximally prefer:

Di(p) =


{

min
{
bBi

p c,m
}}

, if vi > p{
0, 1, . . . ,min

{
bBi

p c,m
}}

, if vi = p

{0}, if vi < p.

Thus, if the valuation is higher than the price per unit, the
buyer demands as many units as it can afford (up to exhaust-
ing all the units), while if the valuation is lower, the buyer
wants zero units.

Terminology: A buyer i is said to be hungry at a price p if
vi > p, semi-hungry if vi = p, interested if vi ≥ p, and
uninterested if vi < p.

3Monetary endowment of intrinsic value to all the buyers and
the seller.

Walrasian (Envy-Free) Pricing: An allocation and price
(x, p) represent an envy-free pricing 4 if the price per unit
is p and xi ∈ Di(p) for all i ∈ N , i.e. each buyer gets a
number of units in its demand set at p. A price p is an envy-
free price if there exists an allocation x such that (x, p) is an
envy-free pricing. An allocation x can be supported at price
p if there is an envy-free pricing (x, p).

While an envy-free pricing can always be obtained (e.g.
set p = 1 +B1 + . . .+Bn), it is not always possible to sell
all the units in an envy-free way as can be seen next.

Example 1 (Non-existence of envy-free clearing prices)
Consider a market with m = 3 units and two buyers, Alice
and Bob, with valuations vAlice = vBob = 1.1 and budgets
BAlice = BBob = 1. At any price p > 0.5, no more than
2 units can be sold in total due to budget constraints. At
p ≤ 0.5, both Alice and Bob are interested and want at least
2 units each, but there are only 3 units in total.

Mechanisms and Objectives: We study envy-free pricing
mechanisms and will be interested in the social welfare of
the buyers and the revenue of the seller. A mechanism A for
envy-free pricing receives as input a marketM = (v,B,m)
and outputs an envy-free pricing (x, p). The valuations are
private and will be elicited by A from the agents. The bud-
gets and number of units are known.

The social welfare at an envy-free pricing (x, p) is the to-
tal value of the buyers for the goods allocated to them, while
the revenue is the amount of money received by the seller,
respectively: SW(x, p) =

∑n
i=1 vi · xi, and REV(x, p) =∑n

i=1 xi · p.

Incentives: Buyers are rational agents who strategize when
reporting their valuations, in order to gain better allocations
at a lower price. The truthful valuation profile will be de-
noted by v = (v1, . . . , vn). However, each buyer i can report
any number v′i ∈ <+ as a value, and this will be its strategy.
Given a mechanism A and marketM = (v,B,m), a strat-
egy profile s = (s1, . . . , sn) is a pure Nash equilibrium (or
simply an equilibrium) if no buyer i can find an alternative
strategy s′i that would improve its utility under mechanism
A, given that the strategies of the other buyers are fixed.

Discrete Domain: The valuations and the budgets come
from a discrete domain (an infinite grid): V = {k·ε | k ∈ N}
for some ε > 0. An mechanism will be allowed to choose
the price from an output grid W = {k · δ | k ∈ N}, for some
δ > 0. We note here that if the input and output domains are
continuous, the best-response may not be well-defined.

Dynamics Starting from the Truth
In this section, we consider best-response dynamics and will
focus on the truth-telling profile as a natural starting point of
the dynamic. Given a marketM = (v,B,m), we will de-
note by Hp(v), Sp(v), and Ip(v) the hungry, semi-hungry,
and interested buyers at p, respectively. For a strategy profile

4We note that more complex forms of envy-free pricing are pos-
sible, such as setting a different price per bundle, but our focus will
be on the simplest type of unit pricing.
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s, s−i will denote the strategy profile of all other buyers ex-
cept the i’th one. Our main theorem is that the best response
dynamic always converges to a pure Nash equilibrium when
starting from the truth telling profile.

Theorem 1 (Convergence) Let A be any mechanism. Then
the best response dynamic starting from the truth-telling
profile converges to a pure Nash equilibrium of A. Compared
to the truth-telling outcome, the Nash equilibrium reached
has the property that

- the utility of each buyer is (weakly) higher, and
- the number of units received by each buyer is (weakly)

larger, possibly with the exception of the last deviator.

Proof: For any step k in the best response process, let sk =
(sk1 , . . . , s

k
n) be the vector of valuations reported by all the

buyers at k, and pk the price output by A in this round. For
k = 0 we have s0 = v as the initial (true) valuations. We
show by induction the following properties:

1. The price strictly decreases throughout the best response
process, i.e. pk−1 > pk for every step k ≥ 0.

2. The buyers that appear hungry at pk, i.e.Hpk(sk), are also
hungry at this price with respect to their true valuations,
i.e. vi > pk for all i ∈ Hpk(sk). The buyers that appear
semi-hungry at pk, i.e. Spk(sk), have not changed their
inputs, possibly with the exception of the last deviator,
whose true valuation is greater or equal to pk. The buyers
that appear uninterested at pk are honest, i.e. N \ Ipk(sk)

is such that ski = vi for all i ∈ Ipk(sk).

At k = 0 property 1) holds trivially since there is no
previous price (we can define p−1 =∞), while 2) holds for
the truth-telling valuations. Suppose properties (1− 2) hold
for all steps up to k − 1. We show they also hold at step k.
Let i be the buyer that deviates in step k to some valuation
ski . Let vkj = vk−1j for all buyers j 6= i and pk the new
price selected by A on input vk. We consider a few cases
depending on the deviating buyer.

Case 1: Buyer i appears hungry in round k − 1: sk−1i >
pk−1. By the induction hypothesis, i ∈ Hpk−1(sk−1), and
so vi > pk−1. Then buyer i receives a maximal allocation
in round k − 1 given the price. If i increases the price in
round k, i.e. pk > pk−1, this can only result in buyer i get-
ting (weakly) fewer units at a higher price, which worsens
i’s utility compared to round k− 1. This cannot be a best re-
sponse. Similarly, if i’s deviation resulted in the same price
for round k, pk = pk−1, buyer i would receive at most as
many units at the same price, which is also not an improve-
ment. Thus it must be the case that pk < pk−1.

Moreover, buyer i’s new valuation cannot be smaller than
pk since that would result in i getting no units in round k,
which cannot be better than round k − 1 where buyer i was
hungry with respect to its true value. Since vi > pk−1 > pk,
we get ski ≥ pk and vi > pk. The setHpk(sk) of buyers that
appear hungry in round k contains, in addition to possibly
buyer i, also the following buyers:

• the buyers in Hpk−1(sk−1) \ {i}, which remain hungry
with respect to their true valuations in round k since the
price decreased compared to round k − 1 while their re-
ports have not changed,

• the buyers with valuations sk−1i ∈ (pk, pk−1), which are
honest in round k − 1 and remain honest in round k, with
true values strictly above pk, since none of them deviated
in between.

The set Spk(sk) of buyers that appear semi-hungry in round
k contains only buyers that were honest in round k − 1,
possibly with the exception of i. Thus all the buyers in
Spk(sk) \ {i} have their true (and reported) valuations equal
to pk. If buyer i deviates to ski = pk, then by previous argu-
ments, vi > pk. Finally, the buyers N \ Ipk(sk) that appear
uninterested in round k were honest in round k − 1 and re-
main so in round k, since the deviator i is not one of them.
Thus properties (1-2) hold in round k.

Case 2: Buyer i appears semi-hungry in round k−1: sk−1i =
pk−1. By the description of Spk−1(sk−1), if buyer i is not
honest in round k−1, it must be the case that i was the devi-
ator in round k−1. If buyer imanages to strictly increase its
utility from k− 1 to k, then i’s input in round k− 1 was not
a best response to round k − 2, which is a contradiction. By
the induction hypothesis, it follows that buyer i is honest in
round k − 1. Then i cannot wish to keep the price the same
or increase it, since that would go above its true valuation,
which is vi = sk−1i . Thus i can only decrease the price, so
pk < pk−1 and vi > pk. Similarly, for ski to be an improve-
ment, buyer i should appear interested on the new instance,
so ski ≥ pk.

The set of buyersHpk(sk), which appear hungry in round
k, is a superset of Hpk−1(sk−1) and contains all the buy-
ers with valuations sk−1i in (pk, pk−1), as well as i in case
ski > pk. The set of semi-hungry buyers in round k, Spk(sk),
contains only buyers that were honest in round k − 1, pos-
sibly with the exception of buyer i in case ski = pk. Finally,
the uninterested buyers in round k, N \Ipk(sk), form a sub-
set ofN \Ipk−1(sk−1), were honest in round k−1, and have
not changed their inputs in between. Thus the sets in round k
satisfy the required properties and the price decreased com-
pared to round k − 1.

Case 3: Buyer i appears uninterested in round k−1: sk−1i <
pk−1. Then i ∈ N \ Ipk−1(sk−1), which by the induction
hypothesis only contains honest buyers. Then buyer i’s util-
ity can only improve by decreasing the price and appearing
hungry or semi-hungry in the next round, so pk < pk−1,
ski ≥ pk, and vi > pk. Similarly to the previous cases,
Hpk(sk) contains all of Hpk+1(sk+1) (which continue to be
hungry in round k with respect to both their true and reported
valuations), the buyers with valuations sk−1i ∈ (pk, pk−1)
(which were honest in round k − 1 and have not changed
in between), and buyer i in case ski > pk (recall vi > pk).
The set Spk(sk) contains buyers which were honest in round
k−1 and have the same reports in round k, possibly with the
exception of buyer i in case ski = pk. The set N \ Ipk(sk)
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is a subset of N \ Ipk−1(sk−1), all of which were honest at
k − 1 and kept the same valuations at k.

In all three cases, we obtain that properties (1 − 2) are
maintained in round k, which completes the proof by in-
duction. Then the price strictly decreases in every iteration.
Since the price output is chosen from a discrete grid of non-
negative entries, the best response process either stops or
reaches the smallest grid point available above zero. At this
point the buyers cannot decrease the price further, which im-
plies there are no more best responses.

The improvement properties follow from the description
of the sets Hpk(sk),Spk(sk), N \ Ipk(sk) in the round k
where the best response process stops, which completes the
argument. �

In the full version, we also prove that the loss in the alloca-
tion of the last deviator is sometimes inevitable.

In terms of the convergence rate, in the worst case, con-
vergence can be slow: the buyers can force a mechanism
to traverse the entire input grid by slowly decreasing their
reported valuations with each iteration.

Theorem 2 (Lower bound on convergence time) There is
a mechanism such that for arbitrary (fixed) market param-
eters M = (v,B,m), the best response dynamic takes
Ω(1/ε) steps to converge, where the distance between con-
secutive entries in both input and output domain is at most
ε > 0 5.

However, many natural mechanisms, such as ones that max-
imize or approximate welfare and revenue (Brânzei et al.
2017; Feldman et al. 2012)) converge faster, which we cap-
ture under the umbrella of a consistency property, for which
we obtain that each buyer best responds at most once, and
so the dynamic converges to a pure Nash equilibrium in at
most n steps. Informally, consistency means that the price is
dictated by the sets of hungry and semi-hungry buyers and
not their relative reports.

Social Welfare and Revenue
Next, we will evaluate the effect of the dynamic on the social
welfare and revenue obtained by envy-free pricing mecha-
nisms. We will show that the loss in the objectives is small
if the market is sufficiently competitive. To measure the
level of competition, we define the budget share of a mar-
ketM = (v,B,m) as α(M) = maxi∈N

Bi

REV(M) , where
REV(M) is the maximum possible revenue for valuation
profile v. Intuitively, the budget share measures the frac-
tion of the total revenue that a single buyer can be respon-
sible for; this number is small when the market is compet-
itive. Similar notions of market competitiveness have been
studied before (see, e.g., (Dobzinski, Lavi, and Nisan 2012;
Cole and Tao 2016)).

Theorem 3 (Welfare of the dynamic from truth-telling)
Let A be any mechanism. Then the best response dynamic
starting from the truth-telling profile converges to a pure

5E.g., the entries are at most ε-apart when the input and output
domain are discretized to have the form {k · ε | k ∈ N}.

Nash equilibrium of A, whose loss in welfare compared to
the truth-telling profile is at most the maximum budget.
We also measure the revenue loss due to the dynamic. A
mechanism A is a β approximation for the revenue objective
if for every marketM = (v,B,m), the revenue achieved by
A onM is at least β times the maximum revenue achieved
by any envy-free pricing pair (x, p) onM.
Theorem 4 (Revenue of the dynamic from truthtelling)
Let A be a mechanism that approximates the optimal
revenue within a factor of β ∈ [0, 1] for every market.
Consider any market M = (v,B,m). Then in every
Nash equilibrium of A reached through a best-response
dynamic from truth-telling, the revenue is a (β − α) /2
approximation of the optimal revenue forM, where α is the
budget share of the market.

Proof: Given the marketM = (v,B,m), for any strategy
profile ṽ we define the following notation. Let pA(ṽ) denote
the price and xA

i (ṽ) the allocation to buyer i computed by
mechanism A on input M̃ = (ṽ,B,m). Additionally, let
REVA(ṽ,B) denote the revenue extracted by A on M̃. For
any envy-free price p of M̃, let REV(ṽ,B, p) denote the
maximum possible revenue at the price p. This is achieved
by serving fully all the hungry buyers at p and allocating as
many units as possible to the semi-hungry buyers. Finally,
letREV0(ṽ,B, p) denote the least possible revenue at price
p, which is attained by allocating zero units to each semi-
hungry buyer, and REV(ṽ,B) denote the maximum possi-
ble revenue from the market M̃. For ease of notation, we
will write HpA

(v) to denote the set HpA(v)(v) of hungry
buyers at the price pA(v) computed by A on input v: (and
similarly for the sets SpA(v)(v) and IpA(v)(v)).

Let A be any mechanism that approximates the optimal
revenue within a factor of β. We have two cases:

Case 1. pA(s) = pA(v). A deviating buyer can find a
strictly improving deviation if and only if it can strictly
lower the price. Since the price reached is equal to the
price output on the true valuations, it follows that no
deviation has taken place. Then v is the Nash equilibrium to
which the dynamic converges and there is no loss in revenue.

Case 2. pA(s) < pA(v). The proof of Theorem 1 implies
that in the Nash equilibrium reached from the truth-telling
profile, each buyer receives at least as many units as they
did on the true input v, except possibly the last deviator. Let
` be the last deviator in the best response path from v to s.

Consider the reduced market M′ = (v−`,B−`,m),
which is obtained from the market M by removing buyer
`. Let p−`min be the minimum envy-free price in M′. Our
goal is to lower bound the revenue attained by A in the
Nash equilibrium6, for which it will be sufficient to provide
a lower bound on REV0(s,B) since REVA(s,B, pA(s)) ≥
REV0(s,B, pA(s)).

6Note that the revenue objective is not a function of the real
values and therefore it can be measured by simply the reports and
the corresponding prices.
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First, we claim that pA(s) ≥ p−`min, or equivalently, that
pA(s) is an envy-free price for the marketM′. This follows
from the following fact established by Theorem 1:

During the best response process, the price always de-
creases and at any point in time, the only buyer that
appears semi-hungry from the set IpA(v) (i.e. the set of
interested buyers at v), is the last deviator.

In our case, the last deviator is buyer `. Then for each buyer
i ∈ IpA(v) \ {`}, we have that si > pA(s), while for buyer
` we have s` ≥ pA(s). This implies that

REV0(s,B, pA(s)) = REV0(v−`,B−`, pA(s)).

Thus, it suffices to bound the minimum revenue attain-
able at the price pA(s), that is, REV0(v−`,B−`, pA(s)).

Next, note that since pA(s) ∈ [p−`min, pA(v)), we get
REV0(v−`,B−`, pA(s)) ≥ (1/2)REV(v−`,B−`, pA(v)).
For ease of exposition, let αi = Bi/pA(s) and α∗i =
Bi/pA(v), ∀i ∈ N . Denote by L the set of buyers with val-
uations at least pA(v) in the market M′ = (v−`,B−`,m)
(i.e. buyers j with vj ≥ pA(v)) that can afford at least one
unit at pA(v); note that the set of buyers that get allocated
any items at pA(s) is a superset of L. Additionally, since
pA(v) > pA(s), the set L does not contain any buyers that
are semi-hungry at pA(s) onM′. Moreover, the revenue at
pA(v) is bounded by the revenue attained at the (possibly
infeasible) allocation where all the buyers in L get the max-
imum number of units in their demand. These observations
give the next inequalities:

REV0(v−`,B−`, pA(s)) ≥
∑
i∈L
bαic · pA(s)

REV(v−`,B−`, pA(v)) ≤
∑
i∈L
bα∗i c · pA(v).

Then the revenue loss, denoted by

r =
REV0(v−`,B−`, pA(s))

REV(v−`,B−`, pA(v))
,

can be bounded as follows:

r ≥
∑

i∈L bαic · pA(s)∑
i∈L bα∗i c · pA(v)

≥
∑

i∈L bαic · pA(s)∑
i∈L α

∗
i · pA(v)

=

∑
i∈L bαic · pA(s)∑

i∈LBi
=

∑
i∈L bαic∑
i∈L αi

≥
∑

i∈L bαic∑
i∈L 2 bαic

.

Therefore, the revenue loss is at most 1/2, where we used
the fact that the for any buyer i ∈ L, bαic ≥ 1, and so
αi ≤ bαic + 1 ≤ 2 bαic, since by construction, all buy-
ers in L can afford at least one unit at pA(v) and there-
fore at pA(s). Note that in case the set L is empty, then
Mechanism A extracts zero revenue at the truth-telling pro-
file and the theorem follows trivially. Finally, observe that
REV(v−`,B−`, pA(v)) ≥ REV(v,B, pA(v)) − B`. This
inequality holds because pA(v) is an envy-free price on in-
putM′ = (v−`,B−`,m) and outputting this price results in
a loss of revenue of at most the budget of the removed buyer.
Since Mechanism A outputs price pA(v) on (v,B) and since
it is a β-approximation mechanism for the revenue objective,

it also holds that REV(v,B, pA(v)) ≥ REVA(v,B) ≥
β · REV(v,B).
Tying everything together we have:

REVA(s,B) ≥ REV0(s,B, pA(s))

= REV0(v−`,B−`, pA(s))

≥ 1

2
· REV(v−`,B−`, pA(v))

≥ β

2
· REV(v,B)− B`

2

≥ 1

2
(β − α)REV(v,B),

where the last inequality follows from the budget share def-
inition. This completes the proof. �

Note that as β approaches 1 (that is, A approaches a revenue-
optimal mechanism) and α approaches 0 (that is the market
becomes fully competitive), the revenue attained in the equi-
librium is at least half of the optimum. We can also show the
budget share is necessary. If there is one buyer with a bud-
get share of 100%, then the revenue obtained as a result of
this dynamic can be arbitrarily worse compared to the truth-
telling profile (even for a revenue maximizing mechanism).

Dynamics Starting from Arbitrary Profiles
The natural next question is whether we can get similar con-
vergence and welfare and revenue guarantees when the best-
response dynamic initiates from arbitrary profiles. If we are
interested in the class of all possible mechanisms, then we
prove that this is not always the case.

Theorem 5 (Best-response cycles) There exist mecha-
nisms for which the best response dynamic can cycle when
starting from non-truthful profiles.

Despite the negative nature of the result above, we will
provide several theoretical and experimental guarantees for
natural mechanisms. Before discussing the convergence
properties, we provide the following general result, which
states that, for a large class of mechanisms, if the dynamic
does converge to a reasonable equilibrium, then the the-
oretical guarantees of Theorem 3 and Theorem 4 extend
to this case as well. We state the two extension theorems
below and first provide the following definition of monotone
mechanisms.

Monotone Mechanism: A mechanism is monotone if the
following two properties hold:

• (Price Monotonicity). For any two valuation profiles v
and v′ such that v′i ≤ vi for all buyers i ∈ N (with the
other market parameters fixed), it holds that the price on
v is not lower than the price on v′.

• (Supply Monotonicity). Keeping the valuation of a buyer
and the price unchanged, while increasing the supply, re-
sults in that buyer receiving (weakly) more units.

Theorem 6 (Welfare in non-overbidding equilibria)
Let A be a monotone mechanism. Then in any pure Nash
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Figure 1: The convergence properties of the ALL-OR-NOTHING mechanism when the dynamic starts from 100 different ar-
bitrary profiles, for n = 25,m = 20. The budgets are drawn uniformly at random from [1, 50] (left) and [1, 125] (right). The
differently coloured lines indicate different starting profiles s(0).

equilibrium of A where buyers do not overbid, the loss
in welfare (compared to the truth-telling outcome of A)
is at most γA · B∗, where γA is the maximum number of
semi-hungry buyers that receive partial allocations by A
and B∗ the maximum budget.
Theorem 7 (Revenue in non-overbidding equilibria) Let
A be a monotone mechanism that approximates the optimal
revenue within a factor of β (with 0 ≤ β ≤ 1). Then in
every non-overbidding Nash equilibrium of A, the revenue is
a (β − γA · α) /2 approximation of the optimal revenue for
that instance, where α is the budget share of the market and
γA is the maximum number of buyers that receive partial
allocations by A.
The notion of “partial” allocations refers to buyers that are
indifferent between multiple bundles. Here, the buyers that
are indifferent among multiple bundles are precisely those
whose valuation exactly matches the price, and their demand
set contains all the bundle sizes that they can afford at that
price (semi-hunry buyers). Note that there are many natural
mechanisms with allocation rules that guarantee γA = 1,
and for those, the guarantees of Theorem 4 extend verbatim.

“Overbidding” refers to the behavior in which a buyer
i, with true value vi, declares a bid (value) higher than
its true value per unit. Any overbidding strategy is weakly
dominated by truth-telling and can be ruled out using ar-
guments about uncertainty, risk-aversion or trembling-hand
considerations (Lucier and Borodin 2010; Caragiannis et al.
2015). For this reason, overbidding has been ruled out as
“unnatural” in the literature (e.g. see (Feldman et al. 2013))
and the study of no-overbidding equilibria is common (see
e.g. the incentive properties of the second-price auction)
(Christodoulou, Kovács, and Schapira 2008; Caragiannis et
al. 2015; Bhawalkar and Roughgarden 2011).7

Our final positive theoretical result of the section re-
gards a known-mechanism from the literature, the ALL-OR-
NOTHING MECHANISM (Brânzei et al. 2017). Informally,

7For a more detailed discussion on the no-overbidding assump-
tion and why it is natural, the reader is referred to (Lucier and
Borodin 2010).

the mechanism first computes the minimum envy-free price
and then allocates fully to the hungry buyers (as required
by envy-freeness) and then considers the semi-hungry buy-
ers in some fixed ordering and it allocates to them either as
many units as they can afford or no units at all. We prove that
the mechanism converges from any starting profile when we
have two buyers.
Theorem 8 For n = 2 buyers, the best response dynamic
of the ALL-OR-NOTHING mechanism converges to a Nash
equilibrium from any initial strategy profile.
We remark here that ALL-OR-NOTHING is monotone and
actually guarantees γA = 1, therefore by Theorems 6 and 7,
it is a mechanism that achieves the guarantees of Theorems 3
and 4 in all reasonable equilibria and which converges from
any starting profile, at least when n = 2. Whether it always
convergences for any number of buyers is an open problem.

To this end, in Figure 1, we show experimentally that for
randomly generated profiles, the mechanism actually con-
verges for more buyers as well. We present the convergence
results for values n = 25 and m = 20 and for two differ-
ent choices of budgets, either drawn from [1, 50] or from
[1, 120], but the mechanism actually always converges to
a pure Nash equilibrium from any initial profile, for any
choice of n and m that we have considered. We conclude
with the following conjecture.
Conjecture 1 The best response dynamic of ALL-OR-
NOTHING converges to a Nash equilibrium for any initial
strategy profile, for any number of buyers.

Acknowledgments
This project has received funding from the European Re-
search Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation programme (grant agree-
ment No 740282), from the ISF grant 1435/14 adminis-
tered by the Israeli Academy of Sciences and Israel-USA
Bi-national Science Foundation (BSF) grant 2014389. Aris
Filos-Ratsikas was supported by the Swiss National Science
Foundation under contract No. 200021 165522 and the ERC
Advanced Grant 321171 (ALGAME).

1818



References
Anderson, E., and Simester, D. 2008. Price stickiness and
customer antagonism. Available at SSRN 1273647.
Anshelevich, E., and Sekar, S. 2017. Price doubling and
item halving: Robust revenue guarantees for item pricing.
In EC, 325–342. ACM.
Arrow, K. J., and Debreu, G. 1954. Existence of an equilib-
rium for a competitive economy. Econometrica 22(3):265–
290.
Awerbuch, B.; Azar, Y.; Epstein, A.; Mirrokni, V. S.; and
Skopalik, A. 2008. Fast convergence to nearly optimal so-
lutions in potential games. In EC, 264–273. ACM.
Babaioff, M.; Lucier, B.; Nisan, N.; and Paes Leme, R. 2014.
On the efficiency of the walrasian mechanism. In EC, 783–
800.
Bhawalkar, K., and Roughgarden, T. 2011. Welfare guaran-
tees for combinatorial auctions with item bidding. In SODA.
Binmore, K., and Klemperer, P. 2002. The biggest auction
ever: the sale of the british 3g telecom licences. Econ. J
112(478).
Brainard, W., and Scarf, H. 2000. How to compute equilib-
rium prices in 1891. Cowles Foundation Discussion Paper.
Brânzei, S.; Caragiannis, I.; Morgenstern, J.; and Procaccia,
A. D. 2013. How bad is selfish voting? In AAAI, 138–144.
Brânzei, S.; Filos-Ratsikas, A.; Miltersen, P. B.; and Zeng,
Y. 2017. Walrasian pricing in multi-unit auctions. In MFCS,
80:1–80:14.
Bulow, J.; Levin, J.; and Milgrom, P. 2009. Winning play in
spectrum auctions. Tech report.
Caragiannis, I.; Kaklamanis, C.; Kanellopoulos, P.; Ky-
ropoulou, M.; Lucier, B.; Leme, R. P.; and Tardos, E. 2015.
Bounding the inefficiency of outcomes in generalized sec-
ond price auctions. JET 156:343–388.
Chien, S., and Sinclair, A. 2007. Convergence to approxi-
mate nash equilibria in congestion games. In SODA, 169–
178.
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