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Abstract

Wagering mechanisms are one-shot betting mechanisms that
elicit agents’ predictions of an event. For deterministic wager-
ing mechanisms, an existing impossibility result has shown
incompatibility of some desirable theoretical properties. In
particular, Pareto optimality (no profitable side bet before al-
location) can not be achieved together with weak incentive
compatibility, weak budget balance and individual rationality.
In this paper, we expand the design space of wagering mech-
anisms to allow randomization and ask whether there are ran-
domized wagering mechanisms that can achieve all previ-
ously considered desirable properties, including Pareto opti-
mality. We answer this question positively with two classes of
randomized wagering mechanisms: i) one simple randomized
lottery-type implementation of existing deterministic wager-
ing mechanisms, and ii) another family of randomized wa-
gering mechanisms, named surrogate wagering mechanisms,
which are robust to noisy ground truth. Surrogate wagering
mechanisms are inspired by an idea of learning with noisy
labels (Natarajan et al. 2013) as well as a recent extension
of this idea to the information elicitation without verification
setting (Liu and Chen 2018). We show that a broad set of
randomized wagering mechanisms satisfy all desirable theo-
retical properties.

1 Introduction
Wagering mechanisms (Lambert et al. 2008; 2015; Chen et
al. 2014; Freeman, Pennock, and Vaughan 2017; Freeman
and Pennock 2018) are one-shot betting mechanisms that al-
low a principal to elicit participating agents’ beliefs about
an event of interest without paying out of pocket or incur-
ring a risk. Compared with prediction-market type of dy-
namic elicitation mechanisms, one-shot wagering is possi-
bly preferred due to its simplicity. It is particularly designed
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for agents with immutable beliefs who “agree to disagree”
and who do not update their beliefs. In a wagering mech-
anism, each agent submits a prediction for the event and
specifies a wager, which is the maximum amount of money
that the agent is willing to lose. Then after the event out-
come is revealed, the total wagered money will be redis-
tributed among the participants. Researchers have developed
wagering mechanisms with various theoretical properties. In
particular, Lambert et al. (2008; 2015) proposed a class of
weighted score wagering mechanisms (WSWM) that satisfy
a set of desirable properties, including budget balance, in-
dividual rationality, incentive compatibility, sybilproofness,
among others.1 Chen et al. (2014) later proposed a no-
arbitrage wagering mechanism (NAWM) that removes op-
portunities for participating agents to risklessly profit.

However, in both WSWM and NAWM, it has been ob-
served that a participant only loses a very small fraction of
his total wager even in the worst case. This seems to be un-
desirable in practice as it is against the spirit of betting and a
wager effectively loses its meaning as a budget. Freeman,
Pennock, and Vaughan (2017) first formalized this obser-
vation by indicating that these mechanisms are not Pareto
optimal, where Pareto optimality requires that there is no
profitable side bet among participants before the allocation
of a wagering mechanism is realized. They also proved an
impossibility result: Pareto optimality cannot be satisfied
together with individual rationality, weak budget balance
and weak incentive compatibility. A double clinching auc-
tion (DCA) wagering mechanism (Freeman, Pennock, and
Vaughan 2017) was hence proposed to improve Pareto ef-
ficiency. The parimutuel consensus mechanism (PCM) has
been shown to satisfy Pareto optimality (Freeman and Pen-
nock 2018), but violates incentive compatibility.

This paper is another quest of wagering mechanisms with
better theoretical properties. We expand the design space
of wagering mechanisms to allow randomization on agent
payoffs and ask whether we can achieve all aforementioned
desirable properties, including Pareto optimality. We give a
positive answer to this question: Our randomized wagering
mechanisms are the first ones to achieve Pareto optimality
along with other properties.

We first show that a simple randomized lottery-type im-

1Definitions of some properties can be found in Section 3.
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plementation of existing wagering mechanisms (Lottery Wa-
gering Mechanisms (LWM)) satisfy all desirable properties.
In LWM, instead of receiving re-allocated money from a de-
terministic wagering mechanism, each agent receives a num-
ber of lottery tickets proportional to his payoff in the de-
terministic wagering mechanism. Then, the agent with the
winning lottery wins the total wager (collected from all par-
ticipants).

We then design another family of randomized wagering
mechanisms, the Surrogate Wagering Mechanisms (SWM),
by bringing insights from learning with noisy data (Natara-
jan et al. 2013; Scott 2015) to wagering mechanism design.
A SWM first generates a “surrogate outcome” for each agent
according to the true event outcome. An agent’s reported
prediction is then evaluated using his surrogate but biased
outcome together with a bias removal procedure such that
in expectation the agent receives a score as if his predic-
tion is evaluated against the true event outcome. Despite be-
ing randomized, SWM preserve the incentive properties of
a deterministic wagering mechanism. We show that certain
SWM satisfy all desirable properties of a wagering mecha-
nism. Notably, SWM are robust to situations where only a
noisy copy of the event outcome is available - this property
is due to the fact that we borrow the machinery from the lit-
erature of learning with noisy data in designing SWM. We
believe that this is another unique contribution to the litera-
ture of wagering mechanism design.

The rest of this paper is organized as follows. We discuss
related work in the rest of this section. Section 2 introduces
some preliminaries. We define randomized wagering mech-
anisms as well as desirable theoretical properties for them in
Section 3. Section 4 presents a family of lottery-based wa-
gering mechanisms. A family of surrogate wagering mech-
anisms are introduced in Section 5. Extensive simulations
are conducted in Section 6 to demonstrate the advantages of
randomized wagering mechanisms. Section 7 concludes this
paper. Missing definitions and proofs can be found in the full
version of the paper (Chen, Liu, and Wang 2018).

Related work
The ability to elicit information, in particular predictions and
forecasts about future events, is crucial for many applica-
tion settings and has been studied extensively in the litera-
ture. Proper scoring rules have been designed (Brier 1950;
Jose, Nau, and Winkler 2006; Matheson and Winkler 1976;
Winkler 1969; Gneiting and Raftery 2007) for this purpose.
Later, competitive scoring rule (Kilgour and Gerchak 2004)
and a parimutuel Kelly probability scoring rule (Johnstone
2007) adapt proper scoring rules to group competitive bet-
ting. Both mechanisms are budget balanced so that the prin-
cipal doesn’t need to pay any participant. These spur the
further development of the previously discussed wagering
mechanisms (Lambert et al. 2008; 2015; Chen et al. 2014;
Freeman, Pennock, and Vaughan 2017; Freeman and Pen-
nock 2018) and the examination of their theoretical proper-
ties.

The idea of using randomization in wagering mechanism
design is not entirely new. It first appeared in (Lambert et al.
2008), but not thoroughly studied. They restricted random-

ization to randomly selecting scoring rules to increase the
maximum amount of money an agent can lose in WSWM.
Cummings, Pennock, and Vaughan (2016) proposed to ap-
ply differential privacy technology to randomize the payoff
of wagering mechanisms to preserve the privacy of agents’
beliefs. Our specific ideas of adding randomness are inspired
by recent works on forecasting competition (Witkowski et
al. 2018), surrogate scoring rules (Liu and Chen 2018), and
the literature on learning with noisy labels (Bylander 1994;
Natarajan et al. 2013; Scott 2015).

2 Preliminaries
In this section, we explain the scenario where a wager-
ing mechanism applies and formally introduce the deter-
ministic wagering mechanisms. Consider a scenario where
a principal is interested in eliciting subjective beliefs from
a set of agents N = {1, 2, ..., N} about a random vari-
able (event) X , which takes a value (outcome) in set X =
{0, 1, ...,M − 1},M ≥ 2. The belief of each agent i is pri-
vate, denoted as a vector of occurrence probabilities of each
outcome pi = (pji )j∈X ∈ ∆M−1. Following the previous
work on wagering mechanism, this paper continues to adopt
an immutable belief model for agents. Unlike in a Bayesian
model, agents with immutable beliefs do not update their be-
liefs. The immutable belief model and the Bayesian model
are two extremes of agent modeling for information elicita-
tion, with the reality lies in between and arguably closer to
the immutable belief side as people do “agree to disagree.”
Moreover, Lambert et al. (2015) showed that while WSWM
was designed for agents with immutable beliefs, it continued
to perform well for Bayesian agents who have some innate
utility for trading.

The principal uses a wagering mechanism to elicit private
beliefs of agents. In a wagering mechanism, each agent re-
ports a probability vector p̂i ∈ ∆M−1, capturing his belief,
and wagers an amount of money wi ∈ R+. Similar to Lam-
bert et al. (2008), we assume that wagers are exogenously
determined for each agent and are not a strategic consider-
ation. We use p̂ and w to denote the reports and the wa-
gers of all agents respectively, and use p̂−i and w−i to de-
note the reports and wagers of all agents other than agent
i. In addition, we use WS to denote

∑
i∈S wi for any set

of agents S ⊆ N . After an event outcome x ∈ X is real-
ized, the wagering mechanism redistributes all the wagers
collected from agents according to p̂,w, x. The net-payoff
of agent i is defined as the payoff or the money that agent i
receives from the redistribution minus his wager. A wager-
ing mechanism defines a net-payoff function Πi(p̂;w;x) for
each agent i with wager constraint Πi(p̂;w;x) ≥ −wi and
constraint Πi(p̂;w;x) = 0 whenever wi = 0. The two con-
straints ensure that no agent can lose more than his wager
and no agent with zero wager can gain.

Strictly proper scoring rules and weighted score
wagering mechanisms
Strictly proper scoring rules (Gneiting and Raftery 2007) are
scoring functions proposed and developed to truthfully elicit
beliefs from risk-neutral agents. They are building blocks
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of many incentive compatible wagering mechanisms, such
as WSWM and NAWM. A strictly proper scoring rule re-
wards a prediction p̂i by a score sx(p̂i), according to the re-
alization x of the random variable X . The scoring function
sx(·) is designed such that the expected payoff of truthful
reporting is strictly larger than that of any other report, i.e,
EX∼pi

[
sX(pi)

]
> EX∼pi

[
sX(p̂i)

]
, ∀p̂i 6= pi.

There is a rich family of strictly proper scoring functions,
including Brier scores (for binary outcome event, sx(p̂i) =
1−(p̂i−x)2, where p̂i is agent i’s report of P(X = 1)), loga-
rithmic and spherical scoring functions. Strictly proper scor-
ing rules are closed under positive affine transformations.

WSWM (Lambert et al. 2008) rewards an agent according
to his wager and the accuracy of his prediction relative to
that of other agents’ predictions. The net-payoff of agent i
in WSWM, is formally defined as

ΠWS
i (p̂;w;x) =

wiWN\{i}

WN

(
sx(p̂i)

−
∑

j∈N\{i}

wj
WN\{i}

sx(p̂j)

)
, (1)

where sx(·) is any strictly proper scoring rule bounded
within [0, 1]. WSWM strictly encourages truthful report-
ing of predictions, because the net-payoff of agent i is a
strictly proper scoring rule of his prediction. Meanwhile,∑
i∈N ΠWS

i is always zero by the form of the net-payoff for-
mula, no matter what sx(·) is. This means that the budget
balance property of Eqn. (1) doesn’t depend on the scoring
rules. Our proposed surrogate wagering mechanisms use the
same general form of the net-payoff function (but a different
scoring rule) to guarantee the ex-post budget balance.

3 Randomized wagering mechanisms
We introduce randomized wagering mechanisms as exten-
sions of deterministic wagering mechanisms. Similar to de-
terministic wagering mechanisms, the net-payoff of an agent
in randomized wagering mechanisms depends on all agents’
predictions p̂ and wagers w, as well as the realized out-
come x. But different from deterministic wagering mech-
anisms, the net-payoffs are now random variables. For no-
tational simplicity, we now use Πi(p̂;w;x) to represent the
random variable of agent i’s net-payoff in a randomized wa-
gering mechanism. We use πi(p̂;w;x) to represent the re-
alization of Πi(p̂;w;x). We use Πi and πi as abbreviations
when p̂;w;x are clear in the context. We denote the max-
imum/minimum possible value of a random variable X by
X/X . We denote the joint distribution of Πi(p̂;w;x), i ∈ N
by D(p̂;w;x) and the marginal distribution of Πi(p̂;w;x)
by Di(p̂;w;x).

Definition 1. Given a setN of agents, reports p̂ and wagers
w of agents and the event outcome x, a randomized wa-
gering mechanism defines a joint distribution D(p̂;w;x),
and pays agent i by a net-payoff Πi(p̂;w;x), where
Πi(p̂;w;x), i ∈ N are jointly drawn from D(p̂;w;x).
Moreover, Πi(p̂;w;x) ≥ −wi and Πi(p̂;w;x) = 0 when-
ever wi = 0.

A deterministic wagering mechanism is a special case of
randomized wagering mechanisms when Di(p̂;w;x) is a
point distribution for all agent i ∈ N .

Desirable properties
In the literature, several desirable properties of wagering
mechanisms have been proposed in the deterministic con-
text. Lambert et al. (2008) introduced (a) individual ratio-
nality, (b) incentive compatibility, (c) budget balance, (d)
sybilproofness, (e) anonymity,and (f) neutrality. Chen et al.
(2014) introduced (g) no arbitrage. Freeman, Pennock, and
Vaughan (2017) introduced (h) Pareto optimality. We extend
these properties to the randomized context. These new prop-
erties reduce to the properties defined in the literature for the
special case of deterministic wagering mechanisms.

(a) Individual rationality requires that each agent has
nothing to lose in expectation by participating.
Definition 2. A randomized wagering mechanism is indi-
vidually rational (IR) if ∀i,pi,w, and p̂−i, there exists p̂i
such that

EX∼pi,Πi∼Di(p̂i,p̂−i;w;X)

[
Πi(p̂i, p̂−i;w;X)

]
≥ 0.

(b) Incentive compatibility requires that an agent’s ex-
pected net-payoff is maximized when he reports honestly,
regardless of other agents’ reports and wagers.
Definition 3. A randomized wagering mechanism is weakly
incentive compatible (WIC) if ∀i,pi, p̂i 6= pi, p̂−i,w :

EX∼pi,Πi∼Di(pi,p̂−i;w;X)

[
Πi(pi, p̂−i;w;X)

]
≥ EX∼pi,Πi∼Di(p̂;w;X) [Πi(p̂;w;X)] .

A randomized wagering mechanism is strictly incentive
compatible (SIC) if the inequality is strict.

(c) Ex-post budget balance ensures that the principal
does not need to subsidize the betting.
Definition 4. A randomized wagering mechanism is
weakly ex-post budget-balanced (WEBB) if ∀p̂,w, x :∑
i∈N πi(p̂,w, x) ≤ 0 for any realization (πi)i∈N drawn

from the joint distribution D(p̂,w, x). A randomized wa-
gering mechanism is ex-post budget-balanced (EBB) if the
equality always holds.

(d) Sybilproofness requires that no agent can increase its
expected net-payoff by creating fake identities and splitting
his wager, regardless of other agents’ reports and wagers.
Definition 5. Suppose agent i, instead of participating un-
der one account with reported prediction p̂i and wager wi,
participates under k > 1 sybil accounts, with predictions
and wagers {p̂il , wil}l=1,...,k such that p̂il = p̂i, wil ≥
0,∀l = 1, . . . , k and

∑k
l=1 wil = wi. A randomized wager-

ing mechanism is sybilproof if ∀i, p̂,w,and x, and for all
sybil reports p̂i1 , ..., p̂ik and wagers wi1 , ..., wik , we have

EΠ∼D(p̂;w;x)[Πi(p̂;w;x)]

≥ EΠ′∼D(p̂′;w′;x)

[ k∑
l=1

Πil(p̂
′;w′;x)

]
.
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where p̂, w and Π are the reports, wagers and net-payoffs
when agent i participates under one account and p̂′, w′ and
Π′ are the reports, wagers and net-payoffs when agent i par-
ticipates using k sybils.

(e) Anonymity requires that the distributions of random
net-payoffs do not depend on agents’ identities.

(f) Neutrality requires that the distributions of random
net-payoffs do not depend on the labeling of the outcomes.

Formal definitions of properties (e) and (f) are presented
in Section 4 of the full version (Chen, Liu, and Wang 2018).

(g) No arbitrage requires that no agent can risklessly
make a profit.

Definition 6. A randomized wagering mechanism has no
arbitrage if ∀i, p̂,w(w > 0),∃x such that Πi(p̂,w, x) <
0.

(h) Pareto optimality in economics refers to an effi-
cient situation where no trade can be made to improve an
agent’s payoff without harming any other agent’s payoff.
In an IR wagering mechanism, agents with different be-
liefs can always form a profitable (in expectation) wagering
game if they all have a positive budget. Freeman, Pennock,
and Vaughan (2017) defined Pareto optimality of a wagering
mechanism as a property that agents with different beliefs
will each lose all of his wager under at least one of the event
outcomes. This “worst-case” outcome might be different for
different agents. Thus, before the event outcome is realized,
no agent can commit to secure part of his wager from the
mechanism and no additional profitable wagering game can
be made. We define Pareto optimality for randomized wager-
ing mechanisms in a similar spirit: no agents with different
beliefs can commit to secure part of their wagers before the
event outcome is realized.

Definition 7. A randomized wagering mechanism is Pareto
optimal (PO) if ∀p̂,w,∀i, j ∈ N with p̂i 6= p̂j ,∃l ∈ {i, j}
and x, such that Πl(p̂,w, x) = −wl.

Properties of existing wagering mechanisms
We summarize the properties of existing wagering mecha-
nisms2 in Table 1 in the full paper (Chen, Liu, and Wang
2018). No existing mechanism satisfies all properties (a)-
(h). Moreover, Freeman, Pennock, and Vaughan (2017)
showed an impossibility result that for deterministic wa-
gering mechanisms, it is impossible to achieve properties
IR, WIC, WEBB, and PO simultaneously. For existing ran-
domized wagering mechanisms, the randomized WSWM in
(Lambert et al. 2008) only satisfies PO in the limit of large
population of participants, and the private WSWM (Cum-
mings, Pennock, and Vaughan 2016) does not satisfy WEBB
and PO.

4 Lottery wagering mechanisms
In this section we introduce a family of randomized wager-
ing mechanisms, the lottery wagering mechanisms (LWM),

2WSWM, NAWM, DCA, PCM, randomized WSWM (Lam-
bert et al. 2008), private WSWM (Cummings, Pennock, and
Vaughan 2016)

Mechanism 1 Lottery Wagering Mechanisms

1: Compute the payoff of each agent i under a DET: π′i ←
wi + Πi(p̂;w;x).

2: Each agent has winning probability
π′j∑

i∈N π
′
j
. Draw a

lottery winner i∗ ∈ N .
3: Winner i∗ is assigned a net-payoff

∑
i∈N\{i∗} wi and

any agent j 6= i∗ has a net-payoff −wj .

which extends arbitrary deterministic wagering mechanisms
into randomized wagering mechanisms. We will show that
LWM easily preserve (the randomized version of) the prop-
erties of the underlying deterministic wagering mechanisms,
while achieving Pareto optimality, overcoming the impossi-
bility result.

In lottery wagering mechanisms, each agent receives a
number of lottery tickets in proportion to the payoff he gets
under a deterministic wagering mechanism, and a winner is
drawn from all the lottery tickets to win the entire pool of
wagers. The mechanisms are designed in a way such that
the expected payoff of each agent is equal to his payoff in
the underlying deterministic wagering mechanisms and each
agent has a positive probability to lose all his wager. Hence,
no profitable side bet exists and the mechanisms are Pareto
optimal. We formally present the lottery wagering mecha-
nism that extends an arbitrary deterministic wagering mech-
anism DET in Mechanism 1. To distinguish the payoff from
the net-payoff, we denote the payoff of agent i by π′i .

Lottery wagering mechanisms are powerful in obtain-
ing desirable theoretical properties. We show in Theo-
rem 1 that the lottery wagering mechanism that extends
WSWM, namely Lottery Weighted Score wagering mech-
anism (LWS), satisfies all properties (a)-(h).

Theorem 1. LWS satisfies all properties (a) - (h).

We notice that although LWS satisfies all desirable prop-
erties, it can be unsatisfying because (1) agents have high
variance in payoff and (2) except the winning agent, all other
agents lose money. To alleviate these issues, we can mix
LWS with WSWM by assigning each of them a probabil-
ity to be executed. The resulting mechanism still satisfies all
the properties (a)-(h). The probabilistic mixture allows us to
adjust the variance of the payoffs as well as agents’ winning
probabilities in the resulting mechanism.

5 Surrogate wagering mechanisms

In this section, we propose the surrogate wagering mecha-
nisms (SWM). We first introduce the generic SWM, then a
variant of SWM that achieves the desirable theoretical prop-
erties and at the same time have moderate variance in pay-
offs and higher winning probabilities for accurate predic-
tions. We then notice that randomization opens up the pos-
sibility of dealing with situations where only noisy ground
truth is available. We discuss how to extend our results to
this noisy setting.

1848



Generic surrogate wagering mechanisms
A surrogate wagering mechanism consists of three main
steps: (1) SWM generates a surrogate event outcome for
each agent based on the true event outcome and a random-
ization device; (2) SWM evaluates each agent’s prediction
according to the surrogate event outcome using a designed
scoring function such that the score is an unbiased estimate
of the score derived by applying a strictly proper scoring
rule to the ground truth outcome; (3) SWM applies WSWM
to the scores based on the surrogate event outcome to de-
termine the final net-payoff of each agent. Next, we explain
these three steps in details. For clarity and simplicity of ex-
position, we consider only binary events, i.e., X = {0, 1},
in this section.3

Step 1. Generating surrogate event outcomes A SWM
generates a surrogate event outcome X̃i for each agent i ∈
N . Denote X̃ = (X̃1, X̃2, ..., X̃N ). X̃i’s are drawn indepen-
dently conditional on X , and are specified by SWM. The
conditionally marginal distribution P(X̃i|X), i ∈ N can be
expressed by two parameters, the error rates of the surrogate
outcome: ei1 = P(X̃i = 0|X = 1) and ei0 = P(X̃i = 1|X =

0). The conditionally marginal distribution P(X̃i|X) can be
any distribution satisfying ∀i ∈ N : ei1 + ei0 6= 1.4 We use x̃
and x̃i to denote the realization of X̃ and X̃i respectively.

Step 2. Computing unbiased scores Given a strictly
proper scoring rule sx(·) within [0,1], SWM computes the
score of agent i as ϕ ◦ sx̃i

(p̂i), where

ϕ ◦ sx̃i(p̂i) =
(1− ei1−x̃i

)sx̃i(p̂i)− eix̃i
s1−x̃i(p̂i)

1− ei0 − ei1
. (2)

x̃i is the realized surrogate event outcome for agent i.
Lemma 1 shows that ϕ is an unbiased operator on the score
sx̃i(pi) in the sense that EX̃i|x[ϕ ◦ sX̃i

(p̂i)] = sx(p̂i).

Lemma 1 (Lemma 3.4 of (Liu and Chen 2018)). ∀x ∈
{0, 1},∀p̂i, ei0, ei1 ∈ [0, 1] and ei0 + ei1 6= 1, we have
EX̃i|x[ϕ ◦ sX̃i

(p̂i)] = sx(p̂i).

Lemma 1 implies that if sx(p̂i) is a strictly proper scoring
rule, then ϕ ◦ sx̃i(p̂i) is also a strictly proper scoring rule.

Step 3. Computing net-payoffs In the final step, SWM
computes the net-payoff of agent i using WSWM and the
unbiased score of agent i, i.e., replacing score sx(p̂i) in
Eqn. (1) by score ϕ ◦ sx̃i

(p̂i). Formally, we have

ΠSWM
i (p̂,w, x) =

wiWN\{i}

WN

(
ϕ ◦ sx̃i(p̂i)

−
∑

j∈N\{i}

wj
WN\{i}

ϕ ◦ sx̃j
(p̂j)

)
, (3)

3Extension to multi-outcome events can be found in Section 7.2
in the full version (Chen, Liu, and Wang 2018).

4If e0+e1 = 1, X̃i turns out to be independent withX , and thus
provides no information about X . We thus exclude ei1 + ei0 = 1.

Mechanism 2 Surrogate Wagering Mechanisms

1: Collect the predictions p̂ and wagers w.
2: Select error rate ei0, e

i
1 ∈ [0, 1] and ei0 + ei1 6= 1,∀i.

3: Generate surrogate outcome X̃i,∀i such that P(X̃i =

1|X = 0) = ei0, P(X̃i = 0|X = 1) = ei1.
4: Score each agent i ∈ N according to Eqn. (2).
5: Pay each agent i ∈ N a net-payoff using Eqn. (3).

where x and x̃i, i ∈ N are the event outcome and the surro-
gate event outcome for each agent i respectively.

We formally present SWM in Mechanism 2. Accord-
ing to Lemma 1 (applying to each score terms), we
have ∀i, x, p̂,w : EΠSWM

i ∼D(p̂;w;x)[Π
SWM
i (p̂;w;x)] =

ΠWS
i (p̂;w;x). Because the deterministic WSWM satisfies

properties ((a)-(f)) (Lambert et al. 2008), SWM also satis-
fies these properties. A realization of the score ϕ ◦ sX̃i

(pi)
can be larger than 1, implying that agent i can lose (or win)
more than what he can lose (or win) in the deterministic
WSWM. However, we also notice that for some extreme
values of error rates, the constraint Πi(p̂;w;x) ≥ −wi can
be violated5, i.e., an agent may lose more than his wager,
which makes SWM invalid. In the next section, we show
that by selecting error rates in a subtle way, we can obtain all
the properties (a)-(h) without violating the wager constraint
Πi(p̂;w;x) ≥ −wi.

SWM with Error rate selection (SWME) and
random partition SWME (RP-SWME)
We notice that according to Lemma 1, no matter which
error rates e0, e1 are chosen, the unbiasedness prop-
erty of SWM holds, i.e., EΠi∼D(p̂;w;x)[Π

SWM
i (p̂;w;x)] =

ΠWSWM
i (p̂;w;x). In other words, we can choose the error

rates in an arbitrary way (even depending on p̂,w) without
changing the expected net-payoff6 of each agent under any
realized event outcome. This gives us the flexibility to tune
the maximum amount of money each agent can win or lose
in the game, while preserving the properties ((a)-(f)) inher-
ited from WSWM.

Given reports p̂ and wagers w but not the event outcome
x, the error rate pair that guarantees no wager violation un-
der any outcome x ∈ X and any realization of the random-
ness induced by SWM may not be unique. We propose Al-
gorithm 3 to select a pair of error rates e0, e1 after the reports
and wagers are collected, such that at least one agent loses
all his wager in the worst case w.r.t. the outcome and the
randomness of SWM. We name the mechanism as SWME
when we use Algorithm 3 to select the error rates for SWM.

Lemma 2. SWME has no wager violation and when there
exists at least one report p̂i 6= 0.5, at least one of the agents

5For example, in a wagering game, two agents both wager 1
and report 1 and 0, respectively. Let sx(p̂i) = 1− (x− p̂i)

2, eij =
0.4, i = 1, 2, j = 0, 1. In the worst case of agent 1, the surrogate
outcomes are realized as x̃1 = 0, x̃2 = 1. Then, π1 = −5 < −1.

6The expectation is taken over the randomness of the mecha-
nism conditioned on the event outcome.
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Algorithm 3 Error Rate Selection Algorithm

1: Collect the predictions p̂ and wagers w.
2: ∀i: swi ← minx∈X sx(p̂i), s

b
i ← maxx∈X sx(p̂i).

3: For each agent i ∈ N , compute ri: ri ← 1
2 +

(1− wi
WN

)(swi −s
b
i )+

∑
j∈N\{i}

wj
WN

(swj −s
b
j)

2(2+swi +sbi−
∑

j∈N
wj
wN

(swj +sbj))

4: If minj∈N {rj} = 0.5, set ei1 = ei0 = 0,∀i, else set
ei1 = ei0 = minj∈N {rj},∀i.

Mechanism 4 Random Partition SWME (RP-SWME)
1: Partition agents into groups of two. If N is odd, leave

one group with three agents.
2: Run SWME for each group.

loses all his wager in the worst case w.r.t. the event outcome
and the randomness of SWME.

Note Lemma 2 does not imply PO for SWME - if there
exist two agents who have different predictions and have wa-
ger left even in their own worst cases, they can form a prof-
itable bet against each other. We propose a variant of SWME
to fix this caveat as follows.

Random partition SWME (RP-SWME)
Lemma 2 implies that when agents are partitioned into
groups of two, there will not exist side bets. Meanwhile, a
smaller number of agents imposes less restrictions in select-
ing the error rates, and thus each agent’s wager can be fully
leveraged in the randomization step. We would like to note
that this is a very unique property of SWME: as both shown
in Freeman, Pennock, and Vaughan (2017) and our experi-
mental results, when the number of agents is small, existing
wagering mechanisms (including DCA) all have low risk,
i.e., have only a small portion of wager to lose in the worst
case. This not only implies that SWME is particularly suit-
able for small group wagering but also points out a way to
further improve the risk property of SWME, i.e. via ran-
domly partitioning agents into smaller groups. We formally
present the random partition SWME in Mechanism 4. We
show in next section that RP-SWME achieves all properties
(a)-(h).

Properties of SWME and RP-SWME
Theorem 2. Both SWME and RP-SWME satisfy proper-
ties (a)-(g). In addition, RP-SWME satisfies (h).

Proof. We provide full proofs in Section 6.3 of our full ver-
sion (Chen, Liu, and Wang 2018), but we give the argu-
ments for establishing surrogate wager’s ex-post budget bal-
ance (despite of the randomness), incentive compatibility,
and Pareto optimality.

Budget balance This can be shown via writing down the
sum of net-payoffs defined in Eqn. (3). Our note below Eqn.
(1) also states that the budget balance property doesn’t de-
pend on the specific forms of the scoring functions used.

Strict incentive compatibility First consider SWME. For
an arbitrary profile of reports p̂ and wagers w, Algorithm 3
outputs a profile E of error rates of all agents. Denote by
ϕ̂iE(·) the corresponding surrogate function specified using
the error rate profile E for agent i. For each i and j ∈ N :

EX∼pi,X̃j

[
ϕ̂jE ◦ sX̃j

(p̂j)
]

= piEX̃j |X=1[ϕ̂jE ◦ sX̃j
(p̂j)]

+ (1− pi)EX̃j |X=0[ϕ̂jE ◦ sX̃j
(p̂j)]

= pi · sX=1(p̂j) + (1− pi) · sX=0(p̂j) = EX∼pi [sX(p̂j)],

using Lemma 1. Then, using the linearity of expectation, we
have (here X̃ encodes the randomness in ΠSWME

i )

EX∼pi,X̃

[
ΠSWME

i (p̂,w, X)
]

=
wiWN\{i}
WN

(
EX∼pi,X̃i

[ϕ̂i
E ◦ sX̃i

(p̂i)]

−
∑

j∈N\{i}

wj

WN\{i}
EX∼pi,X̃j

[ϕ̂j
E ◦ sX̃j

(p̂j)]

)

=EX∼pi

[
wiWN\{i}
WN

(
sX(p̂i) −

∑
j∈N\{i}

wj

WN\{i}
sX(p̂j)

)]
=EX∼pi

[
ΠWS

i (p̂,w, X)
]
.

Note the above holds for any possible reports (∀E). Thus
the incentive properties of WSWM will preserve, i.e., truth-
fully reporting agent i’s private belief returns a higher pay-
off. The proof for RP-SWME is similar, with the only dif-
ference in that each agent’s net-payoff is further averaged
over the random partitions (but SIC under each possible par-
tition).

Pareto optimality In RP-SWME, any pair of agents with
different beliefs have a positive probability to be partitioned
into a sub-group. Applying Lemma 2, at least one of them
loses all his wager in the worst case. Thus, by Definition 7,
RP-SWME is PO.

Wager with noisy ground truth
The above method also points out a way to implement a wa-
gering mechanism with a noisy ground truth, as SWM is
able to remove the noise in outcomes in expectation. This
makes wagering possible even when only a noisy copy of
outcome is available. Due to space limitation, we present the
key idea below, while not re-defining all properties w.r.t. the
noisy ground truth X̂ rather thanX . The necessarcy changes
are rather straight-forward.

Suppose we know a noisy estimate X̂ on X , and denote
the error rates of X̂ as ê1, ê0 (which we know, and agents
trust us in knowing these two numbers), we will be able
to reproduce our surrogate wagering mechanism by plug-
ging X̂, ê1, ê0 into Eqn. (2), if we ignore the PO property
for now. Similarly, we will have the wager violation issue
pointed out earlier - we, however, do not have the control of
the error rates directly. An easy fix is via the following affine
transformation of the net-payoffs: given the error rates, sup-
pose, over all possible predictions, wagers and the random-
ness of the mechanism, the largest wager-lose factor of an
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(a) p̂ ∼ Logit, w ∼ Uniform (b) p̂ ∼ Synt., w ∼ Uniform

(c) p̂ ∼ Logit, w ∼ Pareto (d) p̂ ∼ Synt., w ∼ Pareto

Figure 1: Average individual risks varying wagering mechanisms,
prediction and wager distributions and # of agents N

agent that can be achieved is scale, i.e., an agent may lose
at most −scale · wi with scale > 0. We can then re-scale
every agent’s net-payoff by 1/scale. As this affine trans-
formation is predetermined according to the worst case of
all possible inputs, it does not affect the incentive and other
properties of the original surrogate wagering mechanism, as
E
[
ϕ ◦ ΠWS

i (·))
]

= 1
scale · E

[
ΠWS
i (·))

]
.7 To achieve PO, we

can further flip on X̂ . To see this, denote the flipping er-
ror rates of X̃|X̂ as e1, e0. Then the error rates of X̃|X is
given by (the deduction is given in Section 6.4 of the full
version (Chen, Liu, and Wang 2018))

P(X̃i = 1|X = 0) = ei0 · (1− ê0) + (1− ei1) · ê0

P(X̃i = 0|X = 1) = ei1 · (1− ê1) + (1− ei0) · ê1

It’s easy to see that when ê1 + ê0 6= 1, we can tune the error
rates of X̃ via tuning ei1, e

i
0. This step corresponds to the

error selection step in SWME.

6 Evaluation
In this section, we conduct simulations to evaluate the
average-case performance of wagering mechanisms. We
show that LWS and RP-SWME are more efficient than ex-
isting deterministic (weakly) incentive compatible mecha-
nisms WSWM, NAWM and DCA. Meanwhile, we show that
RP-SWME has smaller payoff variance and higher proba-
bility of winning money than LWS.

In the simulations, we generate the predictions of agents
using two models: i). the logit model (Satopää et al. 2014),
ii). the synthetic model (Ranjan and Gneiting 2010; Allard,
Comunian, and Renard 2012; Satopää et al. 2014). The de-
tails of these models can be found in Section 8.1 of the full
version (Chen, Liu, and Wang 2018). We generate the wa-
gers of agents by two distributions: i). a uniform distribu-

7We didn’t apply the scaling in SWME, as the scaling will ef-
fectively decrease the expected payoff of each agent.

(a) p̂ ∼ Logit, w ∼ Uniform (b) p̂ ∼ Synt., w ∼ Uniform

(c) p̂ ∼ Logit, w ∼ Pareto (d) p̂ ∼ Synt., w ∼ Pareto

Figure 2: Average money exchange rate w.r.t. mechanisms, distri-
butions of predictions and wagers, and # of agents N

tion over [0,1], ii). a Pareto distribution with shape param-
eter 1.16 and scale parameter 1, characterizing the “20% of
the population has 80% of the wealth” (Freeman, Pennock,
and Vaughan 2017). We use Brier score as the scoring rule
used in the wagering mechanisms that we evaluate.

Individual risk and money exchange rate. Individual
risk and money exchange rate are two indicators of effi-
ciency of wagering mechanisms.

Individual risk is the percent of wager that an individual
agent can lose in the worst case w.r.t. the event outcome and
the randomness of the mechanisms. The average individual
risk is an indicator of Pareto optimality, because the aver-
age individual risk equaling to 1 (i.e., no one can commit to
secure a positive wager before the wagering game) is a suffi-
cient condition of Pareto optimality. Money exchange rate is
the total amount of money exchanged in the game after the
outcome of a wagering mechanism is realized, divided by
the total amount of wagers. Average money exchange rate
measures the efficiency of an average wagering game.

The simulations on binary events show that for both in-
dividual risk (Fig. 1) and money exchange rate (Fig. 2),
RP-SWME and LWS outperform the incentive-compatible
deterministic wagering mechanisms WSWM and NAWM.
Moreover, LWS beats DCA, which was designed to increase
the risk but is only weakly incentive compatible. The evalu-
ations on multiple events show similar results.

Variance of payoff and probability of winning money.
We evaluate these two metrics by considering an average
agent with a prediction at different level of accuracy. The
accuracy is measured by 1 − |x − p̂i|. The predictions are
generated according to a uniform distribution. Our simula-
tions (Fig. 3) show that RP-SWME has smaller payoff vari-
ance and higher probability of winning money than LWS at
each accuracy level.

More detailed evaluations can be found in Section 8 of the
full version (Chen, Liu, and Wang 2018).
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(a) w ∼ Uniform (b) w ∼ Pareto

(c) w ∼ Uniform (d) w ∼ Pareto

Figure 3: Variance of payoff and probability of winning
money of RP-SWME and LWS

7 Conclusion
We extend the design of wagering mechanism to its ran-
domized space. We propose two of them: Lottery Wagering
Mechanisms (LWM) and Surrogate Wagering Mechanisms
(SWM). We demonstrate the power of randomness by the-
oretically proving that they both satisfy a set of desirable
properties, including Pareto optimality. SWM is also robust
to noisy outcomes. We then carried out extensive experi-
ments to support our theoretical findings.
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