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Abstract

Weighted voting games are a family of cooperative games,
typically used to model voting situations where a number of
agents (players) vote against or for a proposal. In such games,
a proposal is accepted if an appropriately weighted sum of the
votes exceeds a prespecified threshold. As the influence of a
player over the voting outcome is not in general proportional
to her assigned weight, various power indices have been pro-
posed to measure each player’s influence. The inverse power
index problem is the problem of designing a weighted voting
game that achieves a set of target influences according to a
predefined power index. In this work, we study the compu-
tational complexity of the inverse problem when the power
index belongs to the class of semivalues. We prove that the
inverse problem is computationally intractable for a broad
family of semivalues, including all regular semivalues. As a
special case of our general result, we establish computational
hardness of the inverse problem for the Banzhaf indices and
the Shapley values, arguably the most popular power indices.

Introduction
Background and Motivation Weighted voting games are
a classical family of cooperative games that have been ex-
tensively studied in the game theory and social choice liter-
ature. Such games model a common voting scenario where
each agent (player), associated with a weight, casts a “YES”
(for) or “NO” (against) vote: if the weighted sum of the
“YES” votes exceeds a threshold, then the voting outcome is
“YES”, otherwise the outcome is “NO”. Examples of such
practical scenarios are the voting system of the European
Union, stockholder companies and resource allocation in
multiagent systems (Elkind et al. 2008; De Keijzer, Klos,
and Zhang 2014).

Although having a larger weight might help an agent af-
fect the voting outcome, her influence on the result of the
game is not always proportional to her weight. Thus, in-
stead of using agents’ weights, the power of an agent over
the outcome is usually measured in a systematic way by a
power index. Over the years, many power indices have been
proposed and studied, such as the Shapley value (Shapley
1953) (known also as Shapley-Shubik index for weighted
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voting games (Shapley and Shubik 1954)), the Banzhaf in-
dex (Banzhaf III 1964), the Deegan-Packel index (Deegan
and Packel 1978), and the Holler index (Holler 1982). The
problem of computing the agents’ power indices in a given
game has received ample attention and its computational
complexity is well-understood for many game representa-
tions and power index functions (Prasad and Kelly 1990;
Deng and Papadimitriou 1994; Aziz 2008).

Our Contributions In this work, we focus on the inverse
power index problem — that is, the problem of designing
a weighted voting game with a given set of power indices.
As we will explain in detail below, the inverse problem has
been extensively studied in various fields, including game
theory, social choice theory, and learning theory. Various
works have provided heuristic methods, exponential time
algorithms, or polynomial time approximation algorithms
with provable performance guarantees for this problem.

Despite this wealth of prior work on the algorithmic ver-
sion of the inverse problem, its computational complexity
is poorly understood, even for the most popular power in-
dices (Shapley values, Banzhaf indices). In this paper, we
study and essentially resolve the computational complexity
of the inverse power index for weighted voting games with
respect to a broad and extensively studied family of power
indices. Specifically, we prove that the inverse problem is
computationally intractable, under standard complexity as-
sumptions. More specifically, we prove that for a large class
of power indices — that includes the popular Banzhaf and
Shapley indices, the class of semivalues (Weber 1979) —
the inverse problem cannot be in the polynomial hierarchy
(PH), unless the polynomial hierarchy collapses. Prior to this
work, it was conceivable that there exists an (exact) polyno-
mial time algorithm for this problem. It follows from our
hardness result that the existence of such an algorithm is un-
likely.

Related work Several heuristic algorithms for the in-
verse Banzhaf index problem have been proposed in the so-
cial choice and game theory literature. Aziz, Paterson, and
Leech (2007) give an approximation algorithm that given
target Banzhaf indices and a desired `2-distance outputs a
weighted voting game with integer weights that has Banzhaf
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indices within the desired distance. Unfortunately, no the-
oretical guarantees are given about the convergence rate or
the approximation error of this method, and it is not known
whether it converges to the optimal solution. Two related
heuristic algorithms that return weighted voting games with
Banzhaf indices within a given distance from the target in-
dices are given by Laruelle and Widgrén (1998) and Leech
(2003). Similarly to Aziz, Paterson, and Leech (2007), Fa-
tima, Wooldridge, and Jennings (2008) give an iterative ap-
proximation algorithm for the inverse Shapley value prob-
lem that given target Shapley values, a quota and a desired
average percentage difference, outputs a weighted voting
game with the given quota that has Shapley values within
the desired distance. It is shown that each iteration runs in
quadratic time and that the algorithm eventually converges,
but no theoretical guarantees are given regarding the approx-
imation error and the convergence rate.

An exact algorithm for both the inverse Banzhaf index
and inverse Shapley value problems is given by Kurz (2012).
The proposed method relies on integer linear programming
and returns a weighted voting game that minimizes the `1-
distance from the target power indices. Unfortunately, this
method has running time exponential in the number of play-
ers. Another exact but exponential-time algorithm for the in-
verse power index problem is given by De Keijzer, Klos, and
Zhang (2014). The proposed algorithm outputs a weighted
voting game where the power indices of players are as close
to the target vector as possible. The presented algorithm
is based on an enumeration of all weighted voting games:
for each weighted voting game, the algorithm computes the
power indices, their distance from the target ones and it then
outputs the game with the smallest distance. Since there exist
2Ω(n2) weighted voting games with n players, this algorithm
also runs in exponential time.

In addition to the several heuristics and exponential time
algorithms that have been proposed, recent works (De et
al. 2014; De, Diakonikolas, and Servedio 2017) have ob-
tained polynomial time approximation schemes with prov-
able guarantees for the inverse problem with respect to both
the Banzhaf indices and the Shapley values. These algo-
rithms output a weighted voting game whose power indices
have small `2-distance from the target indices.

The inverse power index problem is also important in var-
ious other fields, such as circuit complexity and computa-
tional learning theory, see (O’Donnell and Servedio 2011)
and references therein. In these fields, linear threshold func-
tions, which are equivalent to weighted voting games if we
allow negative weights (De Keijzer, Klos, and Zhang 2014),
have been of great significance. An important result of the
60s (Chow 1961), shows that linear threshold functions are
characterized by the degree-0 and degree-1 “Fourier coeffi-
cients”, known as Chow parameters. Given this structural
result, a natural question, known as “the Chow parame-
ters problem” arises: given the Chow parameters of a lin-
ear threshold function, reconstruct a weights-based repre-
sentation of the function. Interestingly, the Chow parame-
ters are exactly the non-normalized Banzhaf indices (Dubey
and Shapley 1979) and therefore, the inverse Banzhaf index
problem is closely related to the Chow parameters problem.

Gopalan, Nisan, and Roughgarden (2015) study the con-
vex polytope consisting of the Chow parameters of all
Boolean functions. They show that the linear optimization
problem over the Chow parameters polytope is #P-hard;
a result that indicates, but does not logically imply, that
the Chow parameters problem is intractable. Aziz (2008),
Elkind et al. (2009) and Elkind et al. (2008) study the com-
putational complexity of problems related to weighted vot-
ing games. Aziz (2008) studies the complexity of computing
various indices such as the Shapley values, the Banzhaf and
the Deegan-Packel indices for a given simple game when the
game is given in different forms. Finally, Faliszewski and
Hemaspaandra (2008) study the complexity of the power in-
dex comparison problem: given two weighted voting games
and a player, decide on which game the given player has
higher influence as it is computed by a specific power in-
dex. They show that this problem is intractable, namely
PP-complete, for both the Shapley values and Banzhaf in-
dex. Along this, they extend the #P-metric-completeness
of computing the Shapley values, proved by Deng and
Papadimitriou (1994). They prove that, whereas comput-
ing the Banzhaf indices of a weighted voting game is #P-
parsimonious-complete (Prasad and Kelly 1990), computing
the Shapley values is #P-many-one complete and it cannot
be strengthened to #P-parsimonious-complete.

Preliminaries
Notation We write wt(x) to denote the weight of a
Boolean vector x ∈ {−1, 1}n, i.e., the number of 1’s in x.
We denote by 1 (resp. -1) the vector in {−1, 1}n with all co-
ordinates equal to 1 (resp. −1). We will use sign : R → R
for the function that takes value 1 if z ≥ 0 and value −1 if
z < 0.

Our basic object of study is the family of linear threshold
functions over {−1, 1}n:

Definition 1 (Linear Threshold Function). A linear thresh-
old function (LTF) is any function fw,θ : {−1, 1}n →
{−1, 1} such that fw,θ(x) = sign(w ·x−θ) for some weight
vector w ∈ Rn and threshold θ ∈ R.

Note that weighted voting games are equivalent to LTFs
with non-negative weights. We leverage this equivalence
throughout this paper.

Semivalues We focus on power indices that belong to the
class of semivalues. Semivalues are a fundamental family of
power indices, introduced by Weber (1979) as generaliza-
tions of the Shapley value that do not satisfy the efficiency
axiom (Dubey, Neyman, and Weber 1981). Since their in-
troduction, semivalues have received considerable attention,
see, e.g., (Einy 1987; Carreras, Freixas, and Puente 2003;
Carreras and Freixas 2008).

We give the definition of semivalues (Shapley and Roth
1988) in terms of weighting coefficients, as they were char-
acterized by Dubey, Neyman, and Weber (1981):

Definition 2 (Semivalues). For a positive integer n, let pn =

(pn0 , . . . , p
n
n−1) be a vector such that

∑n−1
t=0

(
n−1
t

)
pnt = 1

and pnt ≥ 0, for t ∈ {0, . . . , n−1}. Then, the i-th semivalue
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corresponding to the probability vector pn of a Boolean
function f : {−1, 1}n → {−1, 1} is the value

f̃p
n

(i) =
∑

x∈{−1,1}n:xi=−1

pnwt(x)f(x)xi

+
∑

x∈{−1,1}n:xi=1

pnwt(x)−1f(x)xi ,

for i ∈ {1, . . . , n}.
Intuitively, if we interpret pn as the vector of probabilities

that a given player will join a coalition of size t (Carreras and
Freixas 2008), 0 ≤ t ≤ n − 1, the i-th semivalue computes
the probability of the event that player i is a pivot, i.e., the
probability that the output of the game would change from
1 to −1 if the i-th player (the i-th variable) were to change
her vote from 1 to −1.

We note that the Shapley values and Banzhaf indices are
the semivalues defined by pnt = (n−t−1)!t!

n! (Shapley and
Shubik 1954) and pnt = 1

2n−1 (Dubey and Shapley 1979),
respectively. Both indices are regular semivalues, i.e., semi-
values that are defined by strictly positive probability vectors
(Carreras and Freixas 2008).

Reformulation of Semivalues The following equivalent
way to express semivalues will be useful throughout this pa-
per. Setting pn−1 = pnn = 0, we observe that we can rewrite
the semivalues vector as follows: for i ∈ {1, . . . , n},

f̃p
n

(i) =
1

2

∑
x∈{−1,1}n

f(x)xi(p
n
wt(x) + pnwt(x)−1)

+
1

2

∑
x∈{−1,1}n

f(x)(pnwt(x)−1 − p
n
wt(x)) . (1)

From this representation, a probability distribution µpn over
{−1, 1}n emerges: for x ∈ {−1, 1}n,

µpn(x) :=
µ′pn(x)

Λ(pn)
,

where µ′pn(x) := pnwt(x) + pnwt(x)−1 and Λ(pn) =∑
x∈{−1,1}n µ

′
pn(x) is the normalizing factor.

For a function f : {−1, 1}n → {−1, 1}, we write

f̂p
n

(i) =
∑

x∈{−1,1}n
µ′pn(x)f(x)xi

for the first term of (1) and

Cp
n

f =
∑

x∈{−1,1}n
f(x)(pnwt(x)−1 − p

n
wt(x))

for the second term of (1). One can view the first term,
f̂p

n

(i), as the expectation Ex∼µpn [f(x)xi] (up to the nor-
malizing factor Λ(pn)).

We now define the notion of a reasonable probability vec-
tor to describe the family of semivalues for which our com-
putational hardness results apply:

Definition 3 (Reasonable Probability Vector). A probability
vector pn ∈ Rn is called reasonable if there exists a t with
t = Ω(n) and n− t = Ω(n) such that pnt > 0.

The intuition behind the above definition is that the distri-
bution µpn has support 2Ω(n). Note that this happens when
there exists a t with

(
n
t

)
= 2Ω(n) such that pnt > 0.

We note that all regular semivalues (including the Banzhaf
indices and Shapley values) satisfy the above property.

Remark 1. For computational purposes, throughout this
paper, we will assume that for any t ∈ {0, . . . , n − 1}, the
probability pnt can be described in poly(n) bits.

Inverse Semivalues Problem We are ready to define the
inverse semivalues problem. Given a vector of target semi-
values, we want to either find a weighted voting game with
these pre-specified semivalues or decide that there does not
exist any weighted voting game with the target semivalues.
Name: SVpn -Inverse Problem
Input: A vector (c1, . . . , cn) ∈ Qn and θ ∈ Q.
Question: Output w ∈ Qn+ with

∑n
i=1 wi = 1 such that

f̃p
n

w,θ(i) = ci, for i ∈ {1, . . . , n}, or “NO” if no such w
exists.

Main Result: Computational Intractability of
Inverse Power-Index Problem

The main result of this paper is the following:

Theorem 1 (Main). For semivalues defined by the proba-
bility vector pn, if pn is a reasonable probability vector, then
the SVpn -Inverse problem is not in the polynomial hierarchy,
unless the polynomial hierarchy collapses.

As an immediate corollary of Theorem 1, we obtain that
the inverse power index problem is intractable for the class
of regular semivalues, which includes the Shapley values
and the Banzhaf indices.

Proof Overview To prove hardness of the inverse prob-
lem, we examine the convex polytope Cpn+2 consisting of
the convex combinations of the semivalues of linear thresh-
old functions with 0-threshold and weight vectors of a spe-
cific form described below (Definition 4). We prove (Theo-
rem 2) that if the probability distribution defining the semi-
values is a reasonable distribution, then the linear optimiza-
tion over Cpn+2 is #P-hard (under Turing reductions). Then,
we show (Theorem 4) that the optimization problem can be
solved using an oracle for the semivalues verification prob-
lem, i.e., the problem of verifying that the given semival-
ues are the true semivalues of a given linear threshold func-
tion, or an oracle for the inverse problem for weight vectors
of the aforementioned specific form. We thus conclude that
the verification and the inverse semivalues problem for lin-
ear threshold functions with specific weight structure can-
not be in the polynomial hierarchy. Finally, using a lemma
that shows that semivalues characterize the space of lin-
ear threshold functions with the same threshold (Lemma 3),
we show hardness of the inverse and verification problems

1871



for linear threshold functions with positive weights, i.e., for
weighted voting games.

Our proof strategy bears some similarities to the approach
used by Gopalan, Nisan, and Roughgarden (2015) (also ex-
ploited by Dughmi and Xu (2016)). Gopalan, Nisan, and
Roughgarden (2015) show that the linear optimization prob-
lem over the polytope consisting of the Chow parameters
of all Boolean functions is #P-complete and therefore, there
cannot exist an efficient membership oracle for this poly-
tope. We note that our results include the results of (Gopalan,
Nisan, and Roughgarden 2015) regarding Chow parameters
as a very special case: as previously mentioned, the non-
normalized Banzhaf indices of a linear threshold function
are equal to its Chow parameters and they are semivalues.

Despite this similarity, our proof involves a number of
new ideas that seem necessary in order to handle a broad
range of probability distributions that could define a semi-
value. One of the difficulties comes from the fact that we
want to prove hardness for the class of weighted voting
games, i.e., LTFs with positive weights. While this require-
ment is easy to handle for the Banzhaf indices (Chow pa-
rameters), it poses non-trivial difficulties for more general
semivalues. In particular, we propose a generalization of the
definition of the Khintchine constant from the uniform dis-
tribution to any probability distribution and establish that it
is hard to compute under a restricted set of weights that is
crucial for our proof (Theorem 3). Another crucial ingredi-
ent of our proof is a new structural result (Lemma 3) es-
tablishing that the set of semivalues uniquely determines a
weighted voting game.

Proof of Main Result
In this subsection, we proceed with the detailed proof of
Theorem 1.

Semivalues Polytope Our analysis makes essential use of
the convex polytope defined as the convex hull of the set of
semivalues for all linear threshold functions whose weights-
based representation is of a specific form: Namely, their
threshold θ = 0 and their weight vectors consist of n posi-
tive coordinates and two coordinates each of whose weights
is equal to minus a half times the sum of the first n coordi-
nates. Formally, we introduce the following definition:
Definition 4. For a positive integer n, define Cpn+2 :=
Conv(Apn+2), where Apn+2 = {(c1, . . . , cn+2) ∈ Qn+2 :
∃w ∈ Qn+2, wi > 0, 1 ≤ i ≤ n, wn+1 = wn+2 =

−
∑n
i=1 wi/2, ci = f̃p

n+2

w,0 (i), 1 ≤ i ≤ n+ 2}.

Linear Optimization over Cpn+2 We firstly prove that
if the semivalues’ probability distribution defined by pn+2

has a sufficiently large support, then the linear optimization
problem over the polytope Cpn+2 is #P-hard. The linear opti-
mization problem for semivalues defined by any probability
vector pn+2 is captured by the following family of problems:
Name: SVpn+2 -Optimization Problem
Input: A vector a = (a1, . . . , an+2) ∈ Qn+2.
Question: Compute maxc∈Cpn+2 a · c.

The main result of this subsection is the following:

Theorem 2. If pn+2 is a reasonable probability vector, the
SVpn+2 -Optimization Problem is #P-hard.

We prove Theorem 2 by reducing from an intermediate
problem — that of computing the Khintchine constant of a
vector with respect to the probability distribution µpn :

Name: Khintchine µpn
Input: A vector a = (a1, . . . , an) ∈ Qn.
Question: Compute Kµpn (a) = Ex∼µpn [|a · x|].

Theorem 3. If pn+2 is a reasonable probability vector, the
Khintchine µpn+2 problem is #P-hard, even restricted to in-
puts (a1, . . . , an,−A/2,−A/2), where A =

∑n
i=1 ai and

ai > 0 for i ∈ {1, . . . , n}.

Proof. We start by showing that the #Partition problem for
the distribution µpn is hard and then reduce the latter prob-
lem to the former.

Name: #Partition µpn
Input: A vector w = (w1, . . . , wn) ∈ Zn.
Question: Compute Prx∼µpn [w · x = 0].

We start from the following proposition, whose proof is
omitted due to space limitations and is available in the full
version of this paper.

Proposition 1. If pn+2 is a reasonable probability vec-
tor, #Partition µpn+2 is #P-hard, even restricted to inputs
(w1, . . . , wn,−W/2,−W/2), where W =

∑n
i=1 wi and

wi > 0 for 1 ≤ i ≤ n.

Given an instance of #Partition µpn+2 , i.e., a =
(a1, . . . , an,−A/2,−A/2), where A =

∑n
i=1 ai and ai >

0 for 1 ≤ i ≤ n, we construct the following three Khint-
chine µpn+2 instances:

c = 2(a1, a2, . . . , an,−A/2,−A/2),

d = (a1 − y, a2, . . . , an,−A/2 + y/2,−A/2 + y/2),

e = (a1 + y, a2, . . . , an,−A/2− y/2,−A/2− y/2),

where 0 < y < 1/2.
For any x ∈ {−1, 1}n+2:

|d · x|=



|
∑n
i=1 aixi +A− 2y| x1 = 1,

xn+1 = xn+2 = −1

|
∑n
i=1 aixi +A| x1 = −1,

xn+1 = xn+2 = −1

|
∑n
i=1 aixi −A| x1 = 1,

xn+1 = xn+2 = 1

|
∑n
i=1 aixi −A+ 2y| x1 = −1

xn+1 = xn+2 = 1

|
∑n
i=1 aixi − y| x1 = 1,

xn+1 6= xn+2

|
∑n
i=1 aixi + y| x1 = −1,

xn+1 6= xn+2
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|e · x|=



|
∑n
i=1 aixi +A+ 2y| x1 = 1,

xn+1 = xn+2 = −1

|
∑n
i=1 aixi +A| x1 = −1,

xn+1 = xn+2 = −1

|
∑n
i=1 aixi −A| x1 = 1,

xn+1 = xn+2 = 1

|
∑n
i=1 aixi −A− 2y| x1 = −1,

xn+1 = xn+2 = 1

|
∑n
i=1 aixi + y| x1 = 1,

xn+1 6= xn+2

|
∑n
i=1 aixi − y| x1 = −1,

xn+1 6= xn+2

We observe that the following hold:
For x ∈ {−1, 1}n+2, wt(x) ∈ {0, n+ 2},

|c · x|= |e · x|= |d · x|= 0

For x ∈ {−1, 1}n+2, xn+1 = xn+2 = x1

|d · x|+|e · x|= |c · x|
For x ∈ {−1, 1}n+2, xn+1 6= xn+2, if c · x 6= 0,

|d · x|+|e · x|= |c · x|
as it holds that

|
n∑
i=1

aixi − y|+|
n∑
i=1

aixi + y|= 2 max(|
n∑
i=1

aixi|, |y|)

and |
∑n
i=1 aixi|≥ 1. When c · x = 0, |d · x|+|e · x|= 2y.

For x ∈ {−1, 1}n+2, xn+1 = xn+2, x1 6= xn+1

|d · x|+|e · x|= |c · x|
as similarly with the above case, we have that

|
n+2∑
i=1

aixi − 2y|+|
n+2∑
i=1

aixi + 2y|= 2 max(|
n+2∑
i=1

aixi|, |2y|)

and |
∑n+2
i=1 aixi|≥ 1.

Hence, we have:
Kµpn+2 (d) +Kµpn+2 (e)−Kµpn+2 (c)

= Ex∼µpn+2 [|d ·x|]+Ex∼µpn+2 [|e ·x|]−Ex∼µpn+2 [|c ·x|]

=
∑

x∈{−1,1}n+2

2yµpn+2(x)1c·x=0,x 6∈{−1,1} .

So, we get

Prx∼µpn+2 [a · x = 0]

=
Kµpn+2 (d) +Kµpn+2 (e)−Kµpn+2 (c)

2y

+ Prx∼µpn+2 [x = -1] + Prx∼µpn+2 [x = 1]

=
Kµpn+2 (d) +Kµpn+2 (e)−Kµpn+2 (c)

2y

+
p0 + pn+1

Λ(pn+2)
.

We are now ready to prove Theorem 2.

Proof of Theorem 2. We reduce from the Khintchine µpn+2

problem: given input a = (a1, . . . , an, an+1 = −A/2,
an+2 = −A/2) ∈ Qn+2, where A =

∑n
i=1 ai and ai > 0

for 0 ≤ i ≤ n, we compute maxc∈Cpn+2 a · c. For any c in
Cpn+2 we have:

a · c =
1

2

n+2∑
i=1

aif̂
pn+2

(i) +
1

2

n+2∑
i=1

aiC
pn+2

f

=
Λ(pn+2)

2

∑
x∈{−1,1}n+2

f(x)µpn+2(x)

n+2∑
i=1

aixi

≤ Λ(pn+2)

2

∑
x∈{−1,1}n+2

µpn+2(x)|
n+2∑
i=1

aixi| ,

where f is a linear threshold function.
Reducing from a vector that has sum 0 was essential for
this step: the term Cp

n+2

f vanishes and we end up with the
term

∑
x∈{−1,1}n+2 f(x)µpn+2(x)

∑n+2
i=1 aixi that is upper

bounded by
∑
x∈{−1,1}n+2 µpn+2(x)|

∑n+2
i=1 aixi|.

This upper bound is tight, as we show below, which is
crucial for our argument. If one were to reduce from a vector
with sum different than 0 or include in the polytope only
linear threshold functions with positive weights, it would not
have been possible to obtain a tight upper bound.

Observe that

a · c =
Λ(pn+2)

2

∑
x∈{−1,1}n+2

µpn+2(x)|
n+2∑
i=1

aixi| ,

for c = (f̃p
n+2

(1), . . . , f̃p
n+2

(n + 2)), where f(x) =

sign(
∑n+2
i=1 aixi). So,

Ex∼µpn+2 [|
n+2∑
i=1

aixi|] =
2 maxc∈Cpn+2 a · c

Λ(pn+2)
.

Linear Optimization Using a Verification Oracle We
now prove the intractability of the “restricted” verification
problem, where the input linear threshold functions are de-
fined by weight vectors of the specific form described in
Definition 4.
Name: SVRpn+2 -Verification Problem
Input: A vector (c1, . . . , cn+2) ∈ Qn+2 and a vector w =
(w1, . . . , wn+2) ∈ Qn+2 such that wn+1 = wn+2 =
−
∑n
i=1 wi/2 and wi > 0, i ∈ {1, . . . , n}.

Question: Does it hold that f̃p
n+2

w,0 (i) = ci for i ∈
{1, . . . , n+ 2}?

Theorem 4. If pn+2 is a reasonable probability vector, the
SVRpn+2 -Verification problem is not in the k-th level of the
polynomial hierarchy, unless #P is contained in the k+2-
level.
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The main idea behind the proof is that one can solve the
linear optimization problem using a membership oracle of
the polytope which can be obtained if we have an efficient
algorithm for the “restricted” verification problem. Since the
vertices of the polytope correspond to semivalues of linear
threshold functions, if we have an efficient algorithm for the
verification problem, then we can efficiently verify that a
vector is a vertex of the polytope, and using Caratheodory’s
theorem, we can get a membership oracle. In this way, we
obtain a contradiction, unless the polynomial hierarchy col-
lapses: if the verification problem is in the polynomial hier-
archy, then a #P-hard problem lies in the polynomial hierar-
chy.

The “restricted” membership problem for any probability
vector pn+2 is defined below:

Name: SVRpn+2 -Membership Problem
Input: A vector c = (c1, . . . , cn+2) ∈ Qn+2.
Question: Is c in Cpn+2 ?

Proof of Theorem 4. We firstly prove the following lemma
that shows how an efficient oracle for the “restricted” verifi-
cation problem can be used to obtain a membership oracle:

Lemma 1. If the SVRpn+2 -Verification problem is in the k-
th level of PH, then the SVRpn+2 -Membership problem is in
the (k + 1)-level.

Proof. Assume that the SVRpn+2 -Verification problem is in
the k-th level of PH. By Caratheodory’s theorem a point c
is in Cpn+2 iff it is a convex combination of at most n + 3

vertices of Cpn+2 , i.e., c =
∑m
i=1 λix

i, where xi is a vertex,
λi ≥ 0 for 1 ≤ i ≤ m ≤ n + 3 and

∑m
i=1 λi = 1. So, it

can be certified that a given point c is in Cpn+2 by finding the
m ≤ n+ 3 vertices xi and computing the m scaling factors
λi. Given the xi, one can verify that xi is a vertex of Cpn+2

by finding wi (of the form described in Definition 4) such
that xi is the f̃p

n+2

wi,0 vector, as the vertices of Cpn+2 corre-
spond to linear threshold functions with weights of this spe-
cific form. So, if we are given the xi and the corresponding
wi, we can verify in polynomial time with a k-th level oracle
that xi is the f̃p

n+2

wi,0 vector as we assumed that the SVRn+2
p -

Verification problem is in the k-th level of PH. Thus, there
is a polynomial-size certificate that can be checked in poly-
nomial time with a k-th level oracle when c is in Cpn+2 : the
m ≤ n + 3 vertices xi, where each xi can be represented
by poly(n) bits by Remark 1, and the m corresponding wi
vectors, where each wi can be represented by poly(n) bits
as every linear threshold function can be represented with
weight w = (w1, . . . , wn+2) such that each wi is an integer
that satisfies |wi|≤ 2(O(n logn)) (Muroga, Toda, and Takasu
1961). Given the xi and the wi, it can be verified in poly-
nomial time with a k-th level oracle that the xi are vertices
and then we can compute in polynomial time the λi coeffi-
cients by solving the linear system c =

∑m
i=1 λix

i. Thus, if
the SVR-Verification problem is in the k-th level of PH, the
SVRpn+2 -Membership problem is in the (k + 1)-level.

As Cpn+2 has non-empty interior, if the SVRpn+2 -
Membership problem is in the (k + 1)-level of PH, then us-
ing the ellipsoid algorithm, we could solve the optimization
problem using a polynomial number of membership-oracle
calls (page 189, (Schrijver 1998)). Hence, we would have
that the linear optimization problem, which is #P-hard, is in
the (k + 2)-level of PH.

Hardness of the Verification Problem for Weighted Vot-
ing Games One issue is that the computational problems
we have studied so far involve linear threshold functions
some of whose weights can be negative. This seemed neces-
sary to some extent, as it is crucially exploited in the proof
of Theorem 2.

We now show how to switch to weighted voting games,
which was our initial goal. Using a bijection between the
semivalues of a linear threshold function with weight vector
w of the form described in Definition 4 and a linear thresh-
old function with weight vector the absolute values of w,
we show the equivalence between the “restricted” verifica-
tion problem and the verification problem for linear thresh-
old functions defined by positive weights.
Name: SVpn -Verification Problem
Input: A vector (c1, . . . , cn) ∈ Qn, a vector w =
(w1, . . . , wn) ∈ Qn+ and θ ∈ Q.
Question: Does it hold that f̃p

n

w,θ(i) = ci for i ∈ {1, . . . , n}?

Theorem 5. If the SVpn+2 -Verification problem is in the k-th
level of PH, then the SVRpn+2 -Verification problem is in the
k-th level of PH.

Proof. We use the following lemma (due to space limita-
tions, the proof is omitted and is available in the full version
of this paper) that shows how one can compute the semival-
ues of a linear threshold function with weight vector w of
the form described in Definition 4 given the semivalues of
the linear threshold function with weight vector the absolute
values of w, and vice-versa.

Lemma 2. Let f(x) = sign(a1x1+· · ·+anxn−A/2xn+1−
A/2xn+2), g(x) = sign(a1x1 + · · ·+ anxn +A/2xn+1 +
A/2xn+2), ai > 0, 1 ≤ i ≤ n, A =

∑n
i=1 ai. Then, for 1 ≤

i ≤ n, g̃p
n+2

(i) = f̃p
n+2

(i)− 2(pn+2
n+1 − p

n+2
n−1) and for n+

1 ≤ i ≤ n+ 2, g̃p
n+2

(i) = f̃p
n+2

(i) + 2
∑n−1
t=0

(
n
t

)
(pn+2
t +

pn+2
t+1 ).

Given an instance (a1, . . . , an,−A/2,−A/2),
(c1, . . . , cn+2) of the SVRpn+2 -Verification problem,
we construct the following instance of SVpn+2 -Verification
problem: (a1, . . . , an,+A/2,+A/2), θ = 0,

(c1 − 2(pn+2
n+1 − p

n+2
n−1), . . . , cn − 2(pn+2

n+1 − p
n+2
n−1),

cn+1 + 2

n−1∑
t=0

(
n

t

)
(pn+2
t + pn+2

t+1 ),

cn+2 + 2

n−1∑
t=0

(
n

t

)
(pn+2
t + pn+2

t+1 )) .
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According to Lemma 2, we have that the SVRpn+2 -
Verification instance is a YES-instance iff the SVpn+2 -
Verification instance is a YES-instance.

Verification Using Inverse Oracle The final step of our
proof is to show that the inverse problem for semivalues is
at least as hard as the verification problem. While this is intu-
itively obvious, the proof requires the following non-trivial
structural result: The semivalues of a weighted voting game
characterize the game within the space of weighted voting
games.

Theorem 6. If the SVpn -Inverse problem is in the k-th level
of PH, then the SVpn -Verification problem is in the k+1-
level.

Proof. The proof makes essential use of the following
lemma that shows that if two LTFs with normalized weights
and the same threshold have the same semivalues, then they
define the same function, for all Boolean vectors that are
given positive probability by µ′pn . This lemma is qualita-
tively similar to (and inspired by) Chow’s Theorem (Chow
1961), that shows that a linear threshold function is uniquely
determined by its Chow parameters (Banzhaf indices).

Lemma 3. Let f(x) = sign(w · x − θ) and g(x) =

sign(v · x − θ) where
∑n
i=1 wi =

∑n
i=1 vi. If f̃p

n

(i) =

g̃p
n

(i) for i ∈ {1, . . . , n}, then f(x) = g(x) for all
x ∈ {−1, 1}n such that pnwt(x) + pnwt(x)−1 6= 0 and
|
∑n
i=1 wixi − θ|+|

∑n
i=1 vixi − θ|6= 0.

Proof. We can write:

2

n∑
i=1

wi(f̃
pn(i)− g̃p

n

(i)) + 2

n∑
i=1

vi(g̃
pn(i)− f̃p

n

(i))

− θ
∑

x∈{−1,1}n
(f(x)− g(x))µ′pn(x)

− θ
∑

x∈{−1,1}n
(g(x)− f(x))µ′pn(x) = 0

⇔
n∑
i=1

wi(f̂
pn(i)− ĝp

n

(i) + Cp
n

f − C
pn

g )

+

n∑
i=1

vi(ĝ
pn(i)− f̂p

n

(i) + Cp
n

g − C
pn

f )

− θ
∑

x∈{−1,1}n
(f(x)− g(x))µ′pn(x)

− θ
∑

x∈{−1,1}n
(g(x)− f(x))µ′pn(x) = 0

⇔
∑

x∈{−1,1}n
(f(x)− g(x))µ′pn(x)

n∑
i=1

wixi

+
∑

x∈{−1,1}n
(g(x)− f(x))µ′pn(x)

n∑
i=1

vixi

− θ
∑

x∈{−1,1}n
(f(x)− g(x))µ′pn(x)

− θ
∑

x∈{−1,1}n
(g(x)− f(x))µ′pn(x) = 0

⇔
∑

x∈{−1,1}n
(f(x)− g(x))µ′pn(x)(

n∑
i=1

wixi − θ)

+
∑

x∈{−1,1}n
(g(x)− f(x))µ′pn(x)(

n∑
i=1

vixi − θ) = 0

⇔
∑

x∈{−1,1}n
µ′pn(x)|f(x)− g(x)||

n∑
i=1

wixi − θ|

+
∑

x∈{−1,1}n
µ′pn(x)|g(x)− f(x)||

n∑
i=1

vixi − θ|= 0

⇔
∑

x∈{−1,1}n
µ′pn(x)|f(x)− g(x)|(|

n∑
i=1

wixi − θ|

+ |
n∑
i=1

vixi − θ|) = 0 .

Hence, for any x ∈ {−1, 1}n such that |
∑n
i=1 wixi −

θ|+|
∑n
i=1 vixi − θ|6= 0 and µ′pn(x) 6= 0, we have that

f(x) = g(x).

Given an SVpn -Verification instance a = (a1, . . . , an),
θ, (c1, . . . , cn), we create the following instance of the
SVpn -Inverse problem: θ/

∑n
i=1 ai, (c1, . . . , cn). Then, if

the SVpn -Inverse instance is a NO-instance, we have a NO-
instance of the SVpn -Verification problem. If the SVpn -
Inverse output is a weight vector w = (w1, . . . , wn), we
can check with a co-NP oracle if the functions fw,θ/∑n

i=1 ai

and fa,θ have the same semivalues: according to Lemma 3
they have the same semivalues iff there is no x ∈ {−1, 1}n
such that µ′pn(x) > 0 and fw,θ/∑n

i=1 ai
(x) 6= fa,θ(x) =

f a∑n
i=1

ai
, θ∑n

i=1
ai

(x).

Discussion
The inverse power index problem has received considerable
attention in game theory and social choice, and the inverse
Banzhaf index problem has been relevant in other fields as
well, such as circuit theory and computational learning. In
this paper, we proved that the inverse semivalue problem,
for reasonable probability distributions, is computationally
intractable. As special cases, we deduce that the inverse
Banzhaf index and inverse Shapley value problems are also
intractable. A number of interesting open questions remain:
Can we design efficient approximation algorithms for the in-
verse problem in the case of more general semivalues? Can
we characterize the computational complexity of the inverse
power index problem for power indices that do not belong
in the semivalues class?
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