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Abstract

We study social choice mechanisms in an implicit utilitar-
ian framework with a metric constraint, where the goal is to
minimize Distortion, the worst case social cost of an ordinal
mechanism relative to underlying cardinal utilities. We con-
sider two additional desiderata: Constant sample complexity
and Squared Distortion. Constant sample complexity means
that the mechanism (potentially randomized) only uses a con-
stant number of ordinal queries regardless of the number of
voters and alternatives. Squared Distortion is a measure of
variance of the Distortion of a randomized mechanism.
Our primary contribution is the first social choice mechanism
with constant sample complexity and constant Squared Dis-
tortion (which also implies constant Distortion). We call the
mechanism Random Referee, because it uses a random agent
to compare two alternatives that are the favorites of two other
random agents. We prove that the use of a comparison query
is necessary: no mechanism that only elicits the top-k pre-
ferred alternatives of voters (for constant k) can have Squared
Distortion that is sublinear in the number of alternatives. We
also prove that unlike any top-k only mechanism, the Dis-
tortion of Random Referee meaningfully improves on benign
metric spaces, using the Euclidean plane as a canonical ex-
ample. Finally, among top-1 only mechanisms, we introduce
Random Oligarchy. The mechanism asks just 3 queries and is
essentially optimal among the class of such mechanisms with
respect to Distortion.
In summary, we demonstrate the surprising power of constant
sample complexity mechanisms generally, and just three ran-
dom voters in particular, to provide some of the best known
results in the implicit utilitarian framework.

1 Introduction
Consider the social choice problem of deciding on an al-
location of public tax dollars to public projects. This is a
voting problem over budgets. Clearly, the number of voters
in such situations can be large. More interestingly, unlike in
traditional social choice theory, there is no reason to believe
that the number of alternatives (budgets) is small. It is there-
fore unreasonable to assume that we can elicit full ordinal
preferences over alternatives from every agent. For a voting
mechanism to be practical in such a setting, one would ide-
ally like it to require only an absolute constant number of

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

simple queries, regardless of the number of voters and alter-
natives. We call this property constant sample complexity,
and we explore mechanisms of this sort in this paper.

We define our model more formally in Section 4, but at
a high level, we have a set N of agents (or voters) and a
set of alternatives S, from which we must choose a single
outcome. We assume that N and S are both large, and that
eliciting the full ordinal rankings may be prohibitively dif-
ficult. Instead, we work with an ordinal query model, and a
constant sample complexity mechanism uses only a constant
number of these queries.

Top-k Query. “What are your k favorite alternatives, in or-
der?” (We call a top-1 query a favorite query); and

Comparison Query. “Which of two given alternatives do
you prefer?”

Query models are not just of theoretical interest. They can
be used to reduce cognitive overload in voting. For example,
in the context of Participatory Budgeting (Goel et al. 2015),
the space of possible budget allocations is large, and one
mechanism is to ask voters to compare two proposed bud-
gets. Similarly, in a context like transportation policy for a
city, a single alternative can be an entire transportation plan.
In such examples, not only are there many alternatives, but it
may be infeasible to expect voters to compare more than two
alternatives at the same time. We stress that constant sample
complexity is particularly important in settings where there
may be a large number of possibly complex alternatives.

To evaluate the quality of our mechanisms, we adopt
the implicit utilitarian perspective with metric con-
straints (Boutilier et al. 2015; Cheng, Dughmi, and Kempe
2017; Anshelevich and Postl 2017; Goel, Krishnaswamy,
and Munagala 2017; Anshelevich et al. 2018; Feldman, Fiat,
and Golomb 2016). That is, we assume that agents have car-
dinal costs over alternatives, and these costs are constrained
to be metric, but asking agents to work with or report cardi-
nal costs is impractical or impossible. We want to design so-
cial choice mechanisms to minimize the total social cost, but
our mechanism is constrained only to use ordinal queries,
that is, those that can be answered given a total order over
alternatives. We therefore measure the efficiency of a mech-
anism as its Distortion (see Section 4), the worst case ap-
proximation to the total social cost.
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2 Results
The starting point for our inquiry is the constant sam-
ple complexity Random Dictatorship mechanism. The al-
gorithm asks a single favorite query from an agent chosen
uniformly at random, and has a tight Distortion bound of
3 (Anshelevich and Postl 2017). In this paper, we provide
two new mechanisms (Random Referee and Random Oli-
garchy) that improve on this simple baseline in three differ-
ent ways, outlined in each of our three technical sections.
We hope that our work inspires future research on similarly
lightweight mechanisms for social choice in large decision
spaces. Any omitted proofs for our results can be found in
the full version of this paper (Fain et al. 2018).

Random Referee: Comparison Queries and Squared Dis-
tortion. In Section 5, we show that one disadvantage of
Random Dictatorship lies not in its Distortion, but in its vari-
ance. For randomized mechanisms, Distortion is measured
as the expected approximation to the first moment of social
cost. However, in many social choice problems, we might
want a bound on the risk associated with a given mechanism.
We capture this via Squared Distortion, as suggested in (Fain
et al. 2017). The Squared Distortion (see Definition 2 in Sec-
tion 4) is the expected approximation to the second moment
of social cost. A mechanism with constant Squared Distor-
tion has both constant Distortion and constant coefficient of
variation of the Distortion.

We show that mechanisms using only top-k queries
(including Random Dictatorship) have Squared Distortion
Ω(|S|). This motivates us to expand our query model to
incorporate information about the relative preferences of
agents between alternatives, i.e. use comparison queries. We
define a novel mechanism called Random Referee (RR) that
uses a random voter as a referee to compare the favorite al-
ternatives of two other random voters (see Definition 3 in
Section 5). Our main result in Section 5 is Theorem 2: The
Squared Distortion of RR is at most 21. This also immedi-
ately implies that the Distortion of RR is at most 4.583.

Random Referee: Euclidean Plane. In Section 6, we
show that top-k only mechanisms (including Random Dic-
tatorship) achieve their worst case Distortion even on be-
nign metrics like low dimensional Euclidean spaces. We an-
alyze a special case on the Euclidean plane and prove that
the Distortion of Random Referee beats that of any top-k
only mechanism. While the improvement is quantitatively
small, it is qualitatively interesting: we demonstrate that by
using a single comparison query, Random Referee can ex-
ploit the structure of the metric space to improve Distortion,
whereas Random Dictatorship or any other top-k only mech-
anism cannot. We conjecture this result extends to Euclidean
spaces in any dimension, and present some evidence to sup-
port this conjecture in Section 8.

Random Oligarchy: Favorite Only Mechanisms. In
Section 7, we consider mechanisms that are restricted to
favorite queries and show that constant complexity mech-
anisms are nearly optimal. We present a mechanism that

uses only three favorite queries that has Distortion at most
3 for arbitrary |S|; however, it also has Distortion for small
|S| that improves upon the best known favorite only mech-
anism from (Gross, Anshelevich, and Xia 2017) that uses
at most min(|N | + 1, |S| + 1) favorite queries. Comparing
with a lower bound for favorite only mechanisms, Random
Oligarchy has nearly optimal distortion and constant sample
complexity. Though this mechanism does not have constant
Squared Distortion like Random Referee, we present it to
demonstrate again the surprising power of constant sample
complexity randomized social choice mechanisms in gen-
eral, and of queries to just three voters in particular.

Techniques. We use different techniques to prove our dif-
ferent positive results. The proof of Squared Distortion
(Theorem 2 in Section 5) relies heavily on Lemma 1, in
which we prove (essentially) that Random Referee chooses
a low social cost alternative as long as at least two of the
three agents chosen at random are near the social optimum.

The proof of Distortion for Euclidean spaces (Theorem 5
in Section 6) is the most technical result. We upper bound the
Distortion of a mechanism by the worst case “pessimistic
distortion,” of just a constant size tuple of points, where
the “pessimistic distortion” considers all permutations of the
points as participating in Random Referee and allows OPT
to choose the optimal point on just this tuple. This allows
us to employ a computer assisted analysis by arguing that
if a high Distortion instance exists, we can detect it as an
instance with a small constant number of points on a suffi-
ciently fine (but finite) grid. This approach may be of inde-
pendent interest for providing tighter Distortion bounds for
mechanisms in specific structured metric spaces.

3 Related Work
Distortion of Randomized Social Choice Mechanisms
in Metrics. The Distortion of randomized social choice
mechanisms in metrics has been studied in (Boutilier et al.
2015; Anshelevich and Postl 2017; Goel, Krishnaswamy,
and Munagala 2017; Gross, Anshelevich, and Xia 2017). Of
particular interest to us are the Random Dictatorship mecha-
nism that uses a single favorite query and the 2-Agree mech-
anism (Gross, Anshelevich, and Xia 2017) that uses at most
most min(|N | + 1, |S| + 1) favorite queries. Random Dic-
tatorship has an upper bound on Distortion of 3 (Anshele-
vich and Postl 2017), and 2-Agree provides a strong guar-
antee on Distortion when |S| is small (better than Random
Dictatorship for |S| ≤ 6). There is ongoing work on an-
alyzing the Distortion of randomized ordinal mechanisms
for other classic optimization problems like graph optimiza-
tion (Abramowitz and Anshelevich 2018) and facility loca-
tion (Anshelevich and Zhu 2018).

Squared Distortion and Variance. We are aware of two
papers in mechanism design that consider the variance of
mechanisms for facility location on the real line (Procac-
cia, Wajc, and Zhang 2018) and kidney exchange (Esfan-
diari and Kortsarz 2016). Our work is more related to the
former, but is not restricted to the real line, and does not
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focus on characterizing the tradeoff between welfare and
variance. Using Squared Distortion as a proxy for risk
was introduced in (Fain et al. 2017) along with the se-
quential deliberation protocol. Unlike sequential delibera-
tion, Random Referee makes a constant number of ordinal
queries. The most important baseline for Squared Distor-
tion is the deterministic Copeland rule, which has Distortion
5 (Anshelevich et al. 2018) and therefore Squared Distor-
tion 25. However, Copeland requires the communication of
Ω(|N ||S| log(|S|)) bits (Conitzer and Sandholm 2005), es-
sentially the entire preference profile. Our Random Referee
mechanism has constant sample complexity, and has better
bounds on Squared Distortion (21) and Distortion (4.583).

Communication Complexity. For a survey on the com-
plexity of eliciting ordinal preferences to implement social
choice rules, we refer the interested reader to (Brandt et al.
2016). Of particular interest to us is (Conitzer and Sand-
holm 2005), in which the authors comprehensively charac-
terize the communication complexity (in terms of the num-
ber of bits communicated) of common deterministic voting
rules. A favorite query requires O(log(|S|)) bits of commu-
nication, so our mechanisms have constant sample complex-
ity, but logarithmic communication complexity. (Bouveret et
al. 2017) and (Caragiannis and Procaccia 2010) design so-
cial choice mechanisms with low communication complex-
ity when there are a small number of voters, but potentially
a large number of alternatives. All of our mechanisms have
guarantees that are independent of the number of voters.

Strategic Incentives. We do not consider truthfulness in
this paper, and we do not use the term mechanism to im-
ply any such property. While strategic incentives are not
the focus of this work, we note that any truthful mecha-
nism must have Distortion at least 3 (Feldman, Fiat, and
Golomb 2016). Random Dictatorship has a Distortion of
3, and is therefore in some sense optimal among exactly
truthful mechanisms. Other works suggest that truthfulness
is also incompatible with the weaker notion of Pareto ef-
ficiency in randomized social choice (Brandl et al. 2018;
Aziz, Brandl, and Brandt 2014). Still other authors have con-
sidered the problem of truthful welfare maximization un-
der range voting (Filos-Ratsikas and Miltersen 2014) and
threshold voting (Bhaskar, Dani, and Ghosh ).

4 Preliminaries
We have a set N of agents (or voters) and a set S of alter-
natives, from which we must choose a single outcome. For
each agent u ∈ N and alternative a ∈ S , there is some
dis-utility du(a). Let pu = argmina∈Sdu(a), i.e., pu is the
most preferred alternative for agent u. Ordinal preferences
are specified by a total order σu consistent with these dis-
utilities (i.e., an alternative is ranked above another only if
it has lower dis-utility). A preference profile σ(N) specifies
the ordinal preferences of all agents. A deterministic social
choice rule is a function f that maps a preference profile
σ(N) to an alternative a ∈ S. A randomized social choice
rule maps a preference profile σ(N) to a distribution over S.

We consider mechanisms that implement a randomized
social choice rule using a constant number of queries of two
types. A top-k query asks an agent u ∈ N for the first k
preferred alternatives according to the order σu (ties can be
broken arbitrarily). We refer to a top-1 query as a favorite
query, that asks an agent u ∈ N for her most preferred
alternative pu. A top-k only mechanism f uses only top-k
queries, for some constant k (constant with respect to |N |
and |S|). Most of our lower bounds or impossibilities will
be for any top-k only mechanism (for constant k), whereas
our positive results will only need favorite and comparison
queries. A comparison query with alternatives a ∈ S and
b ∈ S asks an agent u ∈ N for argminx∈{a,b}du(x).

We use the term mechanism to clarify that our algo-
rithms are in a query model. However, it is important to
note that mechanisms so defined are still randomized social
choice rules in the formal sense as long as they do not make
queries based on exogenous information (e.g., names of par-
ticipants). Our mechanisms will in fact be randomized so-
cial choice rules, and thus can be appropriately compared to
other such rules in the literature that do not explicitly use a
query model. By using the term mechanism, we do not mean
to imply any strategic properties.

Distortion and Sample Complexity. We measure the
quality of an alternative a ∈ S by its social cost, given by
SC(a) =

∑
u∈N du(a). Let a∗ ∈ S be the minimizer of

social cost. We define the commonly studied approximation
factor called Distortion (Procaccia and Rosenschein 2006),
which measures the worst case approximation to the opti-
mal social cost of a given mechanism. We use the expected
social cost if a is the outcome of a randomized mechanism,
and we seek to minimize Distortion.
Definition 1. The Distortion of an alternative a is
Distortion(a) = SC(a)

SC(a∗) . The Distortion of a social choice
mechanism f is

Distortion(f) = sup
{du(a)}

Ef(σ(N))Distortion(a)

where σ(N) is a preference profile consistent with {du(a)}.
We assume that S is a set of points in a metric space

such that dis-utility can be measured by the distance from
an agent. Specifically, we assume there is a distance func-
tion d : (N ∪ S) × (N ∪ S) → R≥0 satisfying the triangle
inequality such that du(a) = d(u, a). The metric assump-
tion is common in the implicit utilitarian literature (Anshele-
vich and Postl 2017; Goel, Krishnaswamy, and Munagala
2017; Fain et al. 2017; Gross, Anshelevich, and Xia 2017;
Cheng, Dughmi, and Kempe 2017; Anshelevich et al. 2018;
Feldman, Fiat, and Golomb 2016). It is also a natural as-
sumption for capturing social choice problems for which
there is a natural notion of distance between alternatives.
For example, in our original motivating example of public
budgets, there is are natural notions of distance between al-
ternatives in terms of dollars.

We do not assume access to σ(N) directly, which may be
prohibitively difficult to elicit when there are many alterna-
tives. Instead, we work with a query model. The queries are
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ordinal in the sense that they can be answered given only
the information in σ(N). A mechanism f has constant sam-
ple complexity if there is an absolute constant c such that
for all S, N , and σ(N), f can be implemented using at most
c queries. In this paper, we consider top-k (and the special
case of favorite) and comparison queries, and explore mech-
anisms with constant sample complexity.

Squared Distortion. It is easy to see that randomization
is necessary for constant sample complexity mechanisms to
achieve constant Distortion. As N grows large, any deter-
ministic mechanism with constant sample complexity deter-
ministically ignores (asks no queries of and receives no in-
formation from) an arbitrarily large fraction ofN . An adver-
sary can therefore place an alternative with 0 dis-utility for
arbitrarily many agents; this gives a lower bound for Distor-
tion approaching N as N becomes large.

This naturally leads us to ask: If we look at the distribution
of outcomes produced by the mechanism, is this distribution
well behaved? Following (Fain et al. 2017), we capture this
notion via Squared Distortion: essentially the approximation
to the optimal second moment of social cost.

Definition 2. The Squared Distortion of an alternative a ∈
S is Distortion2(a) =

(
SC(a)
SC(a∗)

)2
. The Distortion of a

social choice mechanism f is

Distortion2(f) = sup
{du(a)}

Ef(σ(N))Distortion
2(a)

where σ(N) is a preference profile consistent with {du(a)}.
Note that a mechanism with constant Squared Distortion

has both constant Distortion (by Jensen’s inequality), and
constant coefficient of variation. One way to interpret having
constant Squared Distortion is that the deviation of the social
cost around its mean falls off quadratically instead of lin-
early, which means that the social cost of such a mechanism
is well concentrated around its mean value. We note that this
interpretation gives randomized social choice mechanisms
with constant Squared Distortion an interesting application
in candidate selection. In particular, one can imagine run-
ning such a mechanism (like our Random Referee) to gen-
erate a candidate list on which one can use a deterministic
(but potentially complex) voting mechanism like Copeland.

A related approach to understanding the distributional
properties of a randomized mechanism is to characterize the
tradeoff between Distortion (approximation to the first mo-
ment) and the variance of randomized mechanisms (Procac-
cia, Wajc, and Zhang 2018). Our specific goal in this paper
is to develop a mechanism that achieves constant Distortion
and constant variance, and this combination is captured by
having constant Squared Distortion. We leave characterizing
the exact tradeoff between the quantities as an interesting
open direction.

5 Random Referee and Squared Distortion
Our first result is Theorem 1: Mechanisms that only elicit
top-k preferences, for constant k, must necessarily have

Squared Distortion that grows linearly in the size of the in-
stance. This holds even for mechanisms that elicit the top-k
preferences of all of the voters, mechanisms which would
not have constant sample complexity.

Theorem 1. Any top-k only social choice mechanism has
Squared Distortion Ω(|S|).

The problem with top-k only mechanisms, exploited in
the proof of Theorem 1, is that they treat agents as indifferent
between their (k+1)st favorite alternative and their least fa-
vorite alternative. This motivates the expansion of our query
model to include comparison queries. Recall that a compar-
ison query with alternatives a ∈ S and b ∈ S asks an agent
u ∈ N for argminx∈{a,b}du(x). We use a single comparison
query in our Random Referee mechanism.

Definition 3. The Random Referee (RR) mechanism sam-
ples three agents u, v, w ∈ N independently and uniformly
at random with replacement. u and v are asked for their fa-
vorite feasible alternatives pu and pv in S, and then w is
asked to compare pu and pv . Output whichever of the two
alternatives w prefers.

Upper Bound for Random Referee. Our main result in
this section is Theorem 2: The Squared Distortion of RR
is at most 21. This also implies that the Distortion of RR
is at most 4.583. As far as we are aware, no randomized
mechanism has lower Squared Distortion in general.

We will need the following technical lemma. Let a∗ ∈ S
be the social cost minimizer. The basic intuition behind
Random Referee is that it will choose a low social cost
alternative as long as any two out of the three agents se-
lected are near the optimal alternative a∗. Lemma 1 makes
this intuition formal. For convenience, let Zu = d(u, a∗)
for u ∈ N , i.e., the dis-utility of a∗ for agent u. Let
C({u, v}, w) = argminy∈{pu,pv}d(w, y), that is, the alter-
native Random Referee outputs when u and v are selected
to propose alternatives and w chooses between them.

Lemma 1. For all u, v, w, x ∈ N ,

d(C({u, v}, w), x) ≤ Zx + 2 min

{
max(Zu, Zv),

Zw + min(Zu, Zv)
.

Proof. One should think of u, v ∈ N as the agents drawn
to present their favorite alternative, w as the referee, and x
as the agent from whom we measure the dis-utility of the
resulting outcome. The triangle inequality implies that

d(C({u, v}, w), x) ≤ Zx + d(a∗, C({u, v}, w)).

We give two separate upper bounds on d(a∗, C({u, v}, w)),
thus yielding the min. We will frequently use the fact that
for all u ∈ N , d(u, a∗) ≤ d(pu, u) + d(u, a∗) ≤ 2Zu. This
follows from the the definition of pu: the favorite alternative
of u, and thus no greater in distance from u than a∗. The
first bound is straightforward: C({u, v}, w) ∈ {pu, pv} by
definition of Random Referee, so

d(a∗, C({u, v}, w)) ≤ max (d(a∗, pu), d(a∗, pv))

≤ 2 max (Zu, Zv)
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In a sense, this bound concerns the situation where both u
and v are near a∗, but w is far away from a∗. Now we ar-
gue for the second bound. Suppose without loss of general-
ity that Zu ≤ Zv . w chooses either pu or pv . If w chooses
pu, then d(a∗, C({u, v}, w)) = d(a∗, pu) ≤ 2d(a∗, u) =
2 min(Zu, Zv), and so the bound holds. If w chooses pv ,
then d(w, pv) ≤ d(w, pu), which implies

d(a∗, C({u, v}, w)) = d(a∗, pv)

≤ d(a∗, w) + d(w, pu)

≤ Zw + d(w, a∗) + d(a∗, pu)

≤ 2Zw + 2Zu

= 2 (Zw + min(Zu, Zv)) .

In either case, d(a∗, C({u, v}, w)) is at most
2 (Zw + min(Zu, Zv)). Intuitively, this bound concerns
the situation where w and u are close to a∗, but v is far
away from a∗. Taking the better of this bound with the
d(a∗, C({u, v}, w)) ≤ 2 max(Zu, Zv) bound through the
min and factoring out the 2 yields the lemma.

Using Lemma 1, we can upper bound the Squared Dis-
tortion of Random Referee by 21. This is in contrast to the
Ω(|S|) Squared Distortion of any favorite only mechanism
(see Theorem 1).
Theorem 2. The Squared Distortion of Random Referee is
at most 21.

Proof. Let OPT be the optimal squared social cost, that is,
the squared social cost of a∗, where a∗ ∈ S is the social cost
minimizer. Recall that Zu = d(u, a∗). Then

OPT =

(∑
u∈N

Zu

)2

=
∑
u∈N

∑
v∈N

ZuZv.

Let ALG be the expected squared social cost of Random
Referee. The expectation can be written out as

ALG =
1

|N |3
∑

u,v,w∈N

(∑
x∈N

d(C({u, v}, w), x)

)2

.

Let α = min (max(Zu, Zv), Zw + min(Zu, Zv)) . We ap-
ply Lemma 1 and simplify.

ALG ≤ 1

|N |3
∑

u,v,w∈N

(∑
x∈N

(Zx + 2α)

)2

Noting that α does not depend on x, we can expand the
square and simplify to find

ALG ≤ OPT+
4

|N |3
∑

u,v,w∈N

(
α2|N |2 + α|N |

∑
x∈N

Zx

)
.

Now we sum each term separately. Let

T1 =
4

|N |3
∑

u,v,w∈N
α2|N |2

T2 =
4

|N |3
∑

u,v,w∈N
α|N |

∑
x∈N

Zx

We will use the following basic facts: for any real numbers
a, b ≥ 0, (min(a, b))2 ≤ a · b, max(a, b) ≤ a + b, and
min(a, b) ·max(a, b) = a · b.

T1 ≤
4

|N |
∑

u,v,w∈N
(max(Zu, Zv) (Zw + min(Zu, Zv))

≤ 4

|N |
∑

u,v,w∈N
((Zu + Zv)Zw + ZuZv)

= 12OPT

Similarly, we analyze the second term using the fact that
α ≤ Zu + Zv .

T2 =
4

|N |3
∑

u,v,w∈N
α|N |

∑
x∈N

Zx

≤ 4

|N |2
∑

u,v,w∈N
(Zu + Zv)

∑
x∈N

Zx

= 8OPT

Adding together all of the terms, ALG ≤ 21OPT .

This immediately yields the root mean square Distortion
bound via Jensen’s inequality.

Corollary 1. The Distortion of Random Referee is at most√
21 ≈ 4.583.

6 Distortion of Random Referee on the
Euclidean Plane

Though the upper bound on the Distortion of Random Ref-
eree is slightly worse than that of Random Dictatorship,
we now show another advantage of using a comparison
query: Such mechanisms can exploit structure in specific
metric spaces that favorite-only mechanisms cannot. In other
words, we show that the Distortion of Random Referee im-
proves significantly for more structured metric spaces, while
top-k only mechanisms do not share this property.

We examine the Distortion of Random Referee on a spe-
cific canonical metric of interest: the Euclidean plane when
d(u, pu) = 0 for every u ∈ N . The second assumption,
functionally equivalent to assuming N ⊆ S, simplifies our
analysis considerably, and corresponds to the 0-decisive case
in (Anshelevich and Postl 2017; Gross, Anshelevich, and
Xia 2017). We note that in examples where |S| is very large,
the assumption becomes more innocuous. If we consider our
opening example of public budgets, the assumption is some-
thing like this: every agent is allowed to propose their abso-
lute favorite over all budgets, and we assume that this budget
pu has dis-utility of 0. We consider the Euclidean plane be-
cause the problem of minimizing distortion on the real line
can be solved exactly (Anshelevich and Postl 2017), whereas
we are unaware of any results for the Euclidean plane that
are stronger than those for general metric spaces.

Lower Bounds for Distortion in the Restricted Model.
We begin by giving lower bounds to demonstrate that our
simplifying assumptions still result in a nontrivial problem
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in two senses: (1) the Distortion of randomized social choice
mechanisms are still bounded away from 1 and (2) any top-k
only mechanism (one that elicits the top k preferred alterna-
tives of agents) for constant k has Distortion at least 2 as |N |
and |S| become large.

Theorem 3. The Distortion of a randomized social choice
mechanism is at least 1.2 generally, and at least 1.118 for the
Euclidean plane, even when d(u, pu) = 0 for every u ∈ N .

Theorem 4. The Distortion of any top-k only mechanism
goes to 2 as |S| and |N | become large, even on the Euclidean
plane when d(u, pu) = 0 for every u ∈ N .

Upper Bound for Distortion of Random Referee in
the Restricted Model. Our positive result in this section
demonstrates that a single comparison query is sufficient
to construct a mechanism (Random Referee) with Distor-
tion bounded below 1.97 for arbitrary |S| and |N |. We note
that the bound in the theorem seems very slack; our goal is
simply to show that using a comparison query provably de-
creases Distortion. We conjecture the actual bound is below
1.75 based on computer assisted search, but leave proving
this stronger bound as an interesting open question.

Theorem 5. The worst case distortion of Random Referee is
less than 1.97 when d(u, pu) = 0 for every u ∈ N , S ⊆ R2,
and for x, y ∈ R2 d(x, y) = ‖x− y‖2.

In the remainder of this section, we sketch the proof of
Theorem 5. Suppose for a contradiction that there is a set N
of agents in R2 such that the Distortion of Random Referee
is at least 1.97 under the Euclidean metric. We will succes-
sively refine this hypothesis for a contradiction, finally argu-
ing that it implies that some “bad” instance would appear on
an exhaustive computer assisted search over a finite grid.

The crucial lemmas bound the pessimistic distortion of
any set of five points in R2 and relate this to the ac-
tual distortion. The quantity is pessimistic because it al-
lows “OPT” to choose a separate point for every 5-tuple;
the numerator of each 5-tuple is just a rewriting of the ex-
pected social cost of Random Referee. In this section, since
we assume d(u, pu) = 0, it will not be necessary to re-
fer to u and pu separately, and it will be convenient to let
C({pu, pv}, pw) = argmina∈{pu,pv}d(pw, a).

Definition 4. The pessimistic distortion1 of P =
{x1, x2, x3, x4, x5} ⊂ R2 is defined as

PD(P) :=
SCRRavg(P)

OPTavg(P)

where SCRRavg(P) is the average social cost of Random
Referee, which we can write as

1

30

5∑
i=1

5∑
j>i

∑
k 6=i,j

∑
l 6=i,j,k

d(xl, C({xi, xj}, xk)),

1Note that pessimistic distortion is technically a function of the
mechanism used; we will use it exclusively in reference to Random
Referee.

and the average cost of the optimal solution is

OPTavg(P) := min
y∈R2

1

5

5∑
r=1

d(xr, y).

Finally, PD(P) = 1 if x1 = x2 = x3 = x4 = x5.

The first lemma relates this pessimistic distortion to the
actual Distortion of Random Referee. The worst case (over
5-tuples) pessimistic distortion upper bounds the Distortion
of Random Referee. Interestingly, this statement is not spe-
cific to the Euclidean plane, suggesting that our approach
may be broadly applicable for proving stronger Distortion
bounds on other specific metrics of interest.

Lemma 2. If PD(P ) ≤ β for all P = {x1, . . . , x5} ⊂ R2

then the Distortion of Random Referee is at most β on R2.

Proof. Observe that we can rewrite the Distortion of Ran-
dom Referee as a summation over all possible 5-tuples of
points. Let P be a multiset of points (i.e., possibly with re-
peats). Let ρ(P) be an ordering of P . Let

C(ρ(P)) = C({ρ1(P), ρ2(P)}, ρ3(P)).

We can rewrite the Distortion of Random Referee over per-
mutations of 5-tuples as

1
|N |4

∑
i,j,k,l∈N d(pl, C({pi, pj}, pk)

1
|N |
∑
i∈N d(pi, a∗)

=

∑
P⊂PN

Pr(P) 1
5!

∑
ρ(P)

∑
l∈{4,5} d(ρl(P), C(ρ(P)))

1
|N |
∑
i∈N d(pi, a∗)

.

In words, we are considering all 5-tuples (with replacement)
of agent points, and for each we consider the average dis-
tance over all orderings of the five agent points of the dis-
tance between the last two points and the outcome of Ran-
dom Referee when the first three agents participate. This is
in turn upper bounded by allowing OPT to choose a different
a∗ for every 5-tuple, so that the Distortion is at most

∑
P⊂PN

Pr(P)

1
5!

∑
ρ(P)

∑
l∈{4,5} d(ρl(P), C(ρ(P)))

OPTavg(P)

≤ max
P⊂PN

Pr(P)

1
5!

∑
ρ(P)

∑
l∈{4,5} d(ρl(P), C(ρ(P)))

OPTavg(P)
.

To complete the proof, note that SCRRavg(P) is equal
to the numerator. We start with all 120 orderings of the 5
points and avoid double counting the symmetric cases that
arise from swapping the two points from which we take the
argmin and swapping the two points from which we measure
distance.

Now we can refine our original hypothesis: without loss of
generality, assume for a contradiction that there is a multiset
P = {x1, . . . , x5} ⊆ R2 with PD(P) ≥ 1.97.

Lemma 3. PD(P) < 1.97.
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Lemma 3 provides the contradiction to our hypothesis and
establishes Theorem 5. We outline the main ideas of the
proof. First, we consider a grid on the Euclidean plane, and
argue that we can assume a certain canonical structure of P
in relation to that grid by scaling, translating, and rotating.
Next, we carefully argue for how much the pessimistic dis-
tortion would change if every point in P were snapped to a
grid point. We show that if there is some P with pessimistic
distortion at least 1.97, there must be a 5-tuple of points on a
sufficiently fine (but finite) grid with a sufficiently large pes-
simistic distortion. However, we employ computer assisted
analysis to brute force search over such a grid, and find no
such bad example.

Discussion. Our analysis is slack in two ways: (1) we
have to interpolate between grid points, and (2) we consider
pessimistic distortion over 5-tuples. Both are computational
constraints: (1) because we cannot simulate an arbitrarily
fine grid, and (2) because there is a combinatorial blow up
in the search space when considering larger tuples (note that
by considering 5-tuples, we implicitly allow OPT to choose
a separate optimal solution for each 5-tuple). For Random
Referee, the worst case example found by computer simu-
lations for grid points is fairly simple: The 5 points lie on a
straight line with pessimistic distortion 1.75. We conjecture
the same example is the worst case even in the continuous
plane, which suggests a distortion bound of at most 1.75. We
leave finding the exact bound as an open question, as our re-
sult is sufficient to demonstrate that comparison queries can
take advantage of structure that top-k queries cannot.

7 Favorite Only Mechanisms: Random
Oligarchy

Recall that a favorite query asks an agent u ∈ N for her
most preferred feasible point pu. In this section, we return
to the general model (arbitrary metrics and not assuming
that d(u, pu) = 0) and study mechanisms that are restricted
to only use favorite queries. We show that essentially opti-
mal Distortion as a function of |S| is achieved by a simple
mechanism that uses just 3 queries. We call this mechanism
Random Oligarchy.

Definition 5. The Random Oligarchy (RO) mechanism
samples three agents u, v, w ∈ N independently and uni-
formly at random with replacement. All three are asked for
their favorite alternatives pu, pv , and pw in S. If the same
alternative is reported at least twice, output that, else output
one of the three alternatives uniformly at random.

We prove that Random Oligarchy has the best of both
worlds with respect to the other favorite only mechanisms
of Random Dictatorship and 2-Agree. Unlike 2-Agree, Ran-
dom Oligarchy has constant sample complexity and the
same Distortion bound of 3 for large |S| as Random Dicta-
torship. However, like 2-Agree, it outperforms Random Dic-
tatorship for small |S|.
Theorem 6. The Distortion of Random Oligarchy is upper
bounded by 3 for arbitrary |S|, and by the following expres-

Figure 1: Distortion of Favorite Only Mechanisms. Upper
bounds for Random Oligarchy are from Theorem 6. Lower
bounds and 2-Agree upper bounds are from (Gross, An-
shelevich, and Xia 2017). Random Dictatorship is analyzed
in (Anshelevich and Postl 2017).

sion for particular |S|.

1 + 2 max
p∈[0,1]

(
1 + p2(p− 2) +

(p− 1)3

|S| − 1

)
Figure 1 shows the Distortion bounds of favorite only

mechanisms. Comparing against the lower bound for any fa-
vorite only mechanism from (Gross, Anshelevich, and Xia
2017) allows us to see that Random Oligarchy is essen-
tially optimal among all favorite only mechanisms. In com-
parison to existing mechanisms, Random Oligarchy out-
performs Random Dictatorship for small |S|, and outper-
forms 2-Agree for large |S|, while only using three favorite
queries.

8 Open Directions
In this paper, we have considered constant sample complex-
ity mechanisms. At a high level, we hope that our work in-
spires future research on lightweight mechanisms for social
choice in large decision spaces. We also mention some nat-
ural technical questions raised by our work.

Compared to Distortion, there is much less understanding
of the Squared Distortion of mechanisms. The only univer-
sal lower bound for Squared Distortion we are aware of is 4,
a consequence of the lower bound of 2 for Distortion (An-
shelevich and Postl 2017). Our Random Referee mechanism
achieves Squared Distortion of at most 21 using just three or-
dinal queries. Closing this gap remains an interesting ques-
tion even for mechanisms that elicit full ordinal information.

The analysis in Section 6 of Random Referee generalizes
to higher dimensional Euclidean space, still only reasoning
about 5-tuples of points. Computer search over a coarse grid
in four dimensions again shows that the pessimistic distor-
tion bound is better than 2. However, we have not been able
to run the search on a fine enough grid to prove a Distor-
tion bound formally. We leave proving this for higher di-
mensional Euclidean spaces as an interesting open question.
Additionally, we hope that related methods may be of gen-
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eral interest for proving tighter Distortion bounds of mecha-
nisms on restricted metric spaces.

It remains unclear whether using a constant number of
queries greater than 3 would meaningfully improve our re-
sults. E.g., consider the natural extension of Random Ref-
eree: sample the favorite points of k agents and ask a random
referee to choose their favorite from among these. Using
k > 2 does not straightforwardly decrease the Squared Dis-
tortion bound of 21 for k = 2. Also, as k becomes large, this
mechanism devolves to Random Dictatorship. Another nat-
ural question is whetherO(k) comparison queries are neces-
sary/sufficient to bound the k’th moment of Distortion. We
leave these as additional open questions.
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