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Abstract

In the SHIFT-BRIBERY problem we are given an election, a
preferred candidate, and the costs of shifting this preferred
candidate up the voters’ preference orders. The goal is to find
such a set of shifts that ensures that the preferred candidate
wins the election. We give the first polynomial-time approxi-
mation scheme for the case of positional scoring rules, and for
the Copeland rule we show strong inapproximability results.

1 Introduction
We provide approximation algorithms and inapproximabil-
ity results for the SHIFT-BRIBERY problem, introduced by
Elkind et al. (2009) to capture the idea of campaigning in
elections. Briefly put, we are given an election where each
voter ranks the candidates from the most to the least appeal-
ing one, and our goal is to ensure that a given preferred can-
didate becomes the winner. To this end, we can shift this
candidate up within the voters’ preference orders, but each
such shift comes with a price (which, for example, measures
the difficulty of convincing the voter that our candidate is
more appealing than the voter originally thought). Naturally,
we are interested in finding as cheap a solution as possible.

In fact, bribery problems also have a number of ap-
plications beyond campaign management and voting (see,
e.g., the works on the margin of victory problem (Ma-
grino, Rivest, and Shen 2011; Cary 2011; Xia 2012) and
on measuring candidate success (Faliszewski, Skowron,
and Talmon 2017); see also the survey of Faliszewski and
Rothe (2016)). For example, a Formula 1 season consists
of about 20 races, where each race can be seen as a voter
ranking the candidates (the drivers) in the order in which
they finished the race. For each finishing position, there is
an associated number of points and the driver who collects
most points becomes the world champion (i.e., this “elec-
tion” uses a positional scoring rule as a voting rule). We
can use the SHIFT-BRIBERY problem to measure how close
each driver was to winning the world championship. For
example, we can set the price for shifting a driver up by
some t positions in a given race to be the difference between
the finishing times of the driver and whoever ranked t po-
sitions higher. Then, the cheapest shift bribery corresponds
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to the smallest speed-up that the driver needed to become
the world champion. As argued by Faliszewski et al. (2017),
such values can be far more informative than the score dif-
ferences between the drivers. Bribery problems also appear
in the contexts of lobbying (Binkele-Raible et al. 2007;
2014), rating systems (Grandi, Stewart, and Turrini 2018),
or in combinatorial domains (Baumeister et al. 2015).

With the exception of a few simple voting rules, such as
the k-Approval family of rules and the Bucklin rule, SHIFT-
BRIBERY tends to be NP-hard (see the works of Elkind
et al. (2009) and Schlotter et al. (2017)). Indeed, this is
the case, e.g., for Borda, Copeland, Maximin (Elkind, Fal-
iszewski, and Slinko 2009) and various elimination-based
rules (Maushagen et al. 2018). Yet, in many cases it can
be solved quite effectively. For example, for the case of
Borda there is a polynomial-time 2-approximation algorithm
of Elkind et al. (2009; 2010) and several FPT algorithms
of Bredereck et al. (2016a). On the other hand, for the
case of Copeland, SHIFT-BRIBERY is W[1]-hard for many
natural parameters (Bredereck et al. 2016a)1 and the best
known polynomial-time approximation algorithm has linear
approximation ratio (Elkind and Faliszewski 2010).

In fact, the difference between the Borda rule (and, in gen-
eral, the positional scoring rules) and the Copeland rule is
even more striking. We show that the former can be solved
nearly perfectly in polynomial time, whereas for the latter
we give strong inapproximability results:

1. Our main contribution is the first polynomial-time ap-
proximation scheme (PTAS) for SHIFT-BRIBERY for po-
sitional scoring rules (in fact, our algorithm works even
for the case where the scoring vectors are different for
different voters). Our algorithm uses linear programming
and, in particular, basic solutions of linear programs. For
the case of unit prices (i.e., for the case where each unit
shift has the same cost) we even obtain an EPTAS, i.e.,
a PTAS for which the non-polynomial factors in the run-
ning time depend on the approximation ratio only. We also
show a simple combinatorial PTAS for this case.

2. For the case of the Copeland rule, we give a reduction
that preserves approximation ratios up to some polyno-
mial from the DENSEST k-SUBGRAPH (DkS) problem to

1One notable exception is the parametrization by the number of
candidates (Knop, Koutecký, and Mnich 2017).
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SHIFT-BRIBERY. Since it is generally believed that Dens-
est k-Subgraph is hard to approximate up to a polynomial
factor (Bhaskara et al. 2012; Manurangsi 2017), the same
beliefs transfer to the case of Copeland-SHIFT-BRIBERY.
In particular, this gives an almost-polynomial ratio hard-
ness of approximating Copeland-SHIFT-BRIBERY under
the ETH and Gap-ETH assumptions. We also show that
under Gap-ETH, Copeland-SHIFT-BRIBERY does not ad-
mit an FPT approximation scheme for the parametriza-
tion by the number of unit shifts, even for the case of unit
prices, whereas for parameterizations by the number of
voters and by the number of candidates such approxima-
tion schemes are known to exist (Bredereck et al. 2016a).

Together with the results of Elkind et al. (2009; 2010)
and Bredereck et al. (2016a), our work gives a nearly com-
plete view of the complexity and approximability of SHIFT-
BRIBERY for positional scoring rules and the Copeland rule.
We omit some of the proofs due to space restrictions, but all
of them are available upon request.

2 Preliminaries
For each positive integer r ∈ N, we write [r] to denote the set
{1, . . . , r}, and by [0] we mean the empty set. For an event
X , we write 1[X] to denote the indicator function such that
1[X] = 1 if X occurs and 1[X] = 0 otherwise.

Elections. An election E = (C, V, {�v}v∈V ) consists of
a set C of m candidates, a set V of n voters, and the col-
lection {�v}v∈V of the voters’ preference orders. For each
voter v, preference order �v gives v’s ranking of the can-
didates from the most to the least desirable one. For a pref-
erence order �v , we write πv : [m] → C to denote a func-
tion such that πv(1) �v πv(2) �v · · · �v πv(m) (in other
words, πv(i) is the candidate that v ranks on the i-th posi-
tion). Depending on the context, we either specify voters’
preference orders directly or via the π functions.

Given two candidates c, c′ ∈ C, we write Vc�c′ to denote
the set of all voters v ∈ V that prefer c over c′.

Voting Rules. A voting rule R is a function that for each
election E = (C, V, {�v}v∈V ) outputs the set R(E) ⊆ C
of this election’s tied winners. We focus on the class of po-
sitional scoring rules and on the Copeland rule.

Consider a setting with m candidates. Under a positional
scoring rule Rw, we have a vector w = (w1, . . . , wm) ∈
Rm of point values associated with the candidate positions
in the preference orders. Each voter gives each candidate the
number of points associated with this candidate’s position,
and the candidates with the highest total score are the win-
ners. For example, the Plurality rule uses vectors of the form
(1, 0, . . . , 0), the k-Approval rule uses vectors with k ones
followed by m− k zeros, and the Borda rule uses vectors of
the form (m− 1, . . . , 1, 0).

Given an election E = (C, V, {�v}v∈V ), we sometimes
speak of a positional scoring rule R(wv)v∈V , where each
voter has a separate scoring vector wv = (wv1 , . . . , w

v
m).

This is particularly useful, for example, to model weighted
elections, where each voter v has a positive integer weight
ωv and is treated as ωv copies of a unit-weight voter; then,

instead of using some ruleRw and incorporating weights di-
rectly into our algorithms, we can use rule R(ωv·w)v∈V . As
an added benefit, our algorithms become more general. We
will sometimes use ∆wv` as a shorthand for wv` − wv`+1.

The Copeland rule is based on the idea of pairwise elec-
tions among the candidates. Let E be an election and let
c, c′ be two candidates. By NE(c, c′) we mean the number
of voters who prefer c over c′. We say that a candidate c wins
pairwise election against c′ if NE(c, c′) > NE(c′, c). Simi-
larly, we say that c ties (resp. loses) pairwise election against
c′ if NE(c, c′) = NE(c′, c) (resp. NE(c, c′) < NE(c′, c)).

For α ∈ [0, 1], the Copelandα rule assigns to each candi-
date c one point for each candidate with whom c wins a pair-
wise election, and α points for each candidate with whom c
ties. Formally, each candidate c receives |{c′ ∈ C \ {c} :
NE(c, c′) > NE(c′, c)}| + α|{c′ ∈ C \ {c} : NE(c, c′) =
NE(c′, c)}| points. The winners are all the candidates with
the maximum score.

For a voting ruleR, we write scE,R(c) to denote the score
that candidate c receives in election E. We sometimes drop
the subscriptR when it is clear from the context.

Shift-Bribery. A SHIFT-BRIBERY instance I = (E, p, ψ)
consists of an election E = (C, V, {�v}v∈V ), a preferred
candidate p ∈ C, and a collection ψ = {ψv}v∈V of the
voters’ price functions. Each voter v has the price function
ψv : {0} ∪ [π−1v (p) − 1] → R+

0 ∪ {∞} and ψv(t) specifies
the cost of shifting the preferred candidate forward by t posi-
tions in v’s preference order. We require that ψv(0) = 0 and
that the function is nondecreasing (ψv(0) 6 ψv(1) 6 · · · 6
ψv(π

−1
v (p)− 1)). If ψv(t) =∞ for some voter v and value

t, then it is impossible to shift the preferred candidate by t or
more positions in the preference order of v. For an instance
I , by ψmax(I) we denote the highest non-infinity price that
occurs within I . We write ∆ψv(`) and |I| as shorthands for
ψv(`)− ψv(`− 1) and mn, respectively.

A shift action s = (sv)v∈V for an instance I = (E, p, ψ)
of R-SHIFT-BRIBERY is a vector of non-negative integers
such that for each voter v we have sv < π−1v (p). Intuitively,
this vector specifies for each voter by how many positions
we should shift the preferred candidate. We say that shift
action s consists of

∑
v∈V sv unit shifts and we define its

cost to be costI(s) =
∑
v∈V ψv(sv). We denote the election

that results from applying s to E by shift(E, s).
Let R be a voting rule and let I be a SHIFT-BRIBERY

instance with election E and preferred candidate p. Shift ac-
tion s is successful for I under R if p is an R-winner in
shift(E, s), i.e., if p ∈ R(shift(E, s)). R-SHIFT-BRIBERY
is an optimization problem where, given a SHIFT-BRIBERY
instance I , we ask for a successful shift action with the low-
est cost. We write OPT(I) to denote this lowest cost.

Special Price Functions. There are two particularly inter-
esting families of price functions. A unit price function de-
fines the cost of each unit shift to be one, i.e., if ψv is a
unit price function then ψv(`) = ` for each legal shift value
`. An all-or-nothing price function is such that the cost of
shifting the preferred candidate is the same, irrespective by
how many positions we shift him or her. Formally, if ψv
is an all-or-nothing price function then there is a value cv
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such that ψv(`) = cv for all positive integers ` that repre-
sent legal shifts (and, of course, ψv(0) = 0). An instance
I = (E, p, ψ) has (1,∞)-all-or-nothing prices if it has all-
or-nothing price functions and for each voter v the value cv
is in {1,∞}. Given such an instance I , we define its width
to be the maximum of π−1v (p) − 1 over all v ∈ V such that
cv = 1. In other words, it is the maximum number of unit
shifts possible to perform within a single vote by paying a
unit of price.

Linear Programming. problem we are given an m ×
n matrix A, an m-dimensional column vector b, an n-
dimensional column vector c, and we ask for an n dimen-
sional column vector x that minimizes the value cTx sub-
ject to the condition that Ax > b. A basic solution to such
a problem is a solution x ∈ Rn such that there are n lin-
early independent rows ai of A with aix = bi. It is known
that when {x ∈ Rn : Ax > b} is bounded, there always
is a basic solution that achieves the optimum, and it can be
computed up to an arbitrary error in polynomial time (see,
e.g., (Lau, Ravi, and Singh 2011) for the use of basic solu-
tions in approximation algorithms).

3 Borda Rule
We now move on to our results. We first show approxima-
tion schemes for the case of the Borda rule, mostly focusing
on the case of unit prices. We start with Borda because it
is one of the simplest rules, for which we can present our
ideas most clearly, and because it is a very practical rule (in
particular, relevant to various competitions).

Initial Observations. We first define two values that will
guide our algorithms, and we explain their usefulness.
Definition 1. For an instance I = (E, p, ψ) of Borda-
SHIFT-BRIBERY and a non-negative integer k, we define:

max -diff (I) = max
c∈C

(scE(c)− scE(p)), and

sum-diff (I, k) =
∑
c∈C

max{0, scE(c)− scE(p)− k}.

The former value gives the score difference between
the preferred candidate and his or her strongest opponent,
whereas the latter measures the total number of points that
the non-preferred candidates need to lose, provided that the
preferred one gains k points.

Elkind et al. (2009) note that given an instance I of
Borda-SHIFT-BRIBERY, if K is the smallest number of
unit shifts in an optimal solution, then max -diff (I)/2 6
K 6 max -diff (I). Indeed, if the preferred candidate gains
max -diff (I) points then he or she certainly matches his or
her strongest opponent. On the other hand, the preferred can-
didate needs at least max -diff (I)/2 unit shifts because each
of them decreases the score difference between him or her
and the strongest opponent by at most two. However, it turns
out that sum-diff (I, k) provides an even more useful bound.
Lemma 2. Let I = (E, p, ψ) be an instance of Borda-
SHIFT-BRIBERY, let s be a successful shift action for I ,
and let ks be the number of unit shifts within s. Then,
sum-diff (I, ks) 6 ks.

Proof. After applying s, the score of p is exactly scE(p) +
ks. Thus each candidate c ∈ C must have lost at least
max{0, scE(c) − scE(p) − ks} points. This indeed means
that ks >

∑
c∈C max{0, scE(c) − scE(p) − ks} =

sum-diff (I, ks), as desired.

We will also make use of the following subroutine, which
is based on a simple dynamic program.
Lemma 3. There exists an algorithm that given an in-
stance I = (E, p, ψ) of Borda-SHIFT-BRIBERY, a subset
C ′ = {c1, . . . , ct} of t candidates from E, and a vector
(s1, . . . , st) of non-negative integers, computes a minimum
cost shift action that ensures that each candidate ci loses at
least si points. The algorithm runs in polynomial time with
respect to |I|+

∏t
i=1(si + 1).

A Combinatorial PTAS for Unit Prices. We now give
a simple combinatorial PTAS for Borda-SHIFT-BRIBERY
with unit prices. The main idea of our algorithm is as fol-
lows. If the optimal number of unit shifts needed is OPT,
then, in total, the scores of other candidates decrease by at
most OPT. This means that, once we guess OPT correctly,
for each ε > 0 there can be at most 1/ε “bad” candidates,
whose scores exceed that of the preferred candidate by more
than (1 + ε) OPT. Since there are only 1/ε such candidates,
we can use the algorithm from Lemma 3 to compute the
cheapest set of (at most) OPT unit shifts that ensure that
the preferred candidate defeats these candidates. Then, we
shift the preferred candidate up further εOPT times, which
ensures that p also defeats all the other candidates. In total,
we use only (1 + ε) OPT shifts and hence we arrive at our
PTAS for the unit prices case. This idea is formalized below.
Theorem 4. For each ε > 0, there exists an algorithm
that given an instance I of Borda-SHIFT-BRIBERY with unit
prices runs in time OPT(I)O(1/ε)poly(|I|) and outputs a
successful shift action of cost at most (1 + ε) OPT(I).

Proof. Let I = (E, p, ψ) be an instance of Borda-SHIFT-
BRIBERY and let ε > 0 be the desired approximation ratio.
For every k between max -diff (I)/2 and max -diff (I), such
that sum-diff (I, k) 6 k, we execute the following steps:

1. Let CkBAD = {c1, . . . , ct(k)} be the set of candidates
whose scores are greater than scE(p) + (1 + ε)k. We use
the algorithm from Lemma 3 to find the least-cost shift
action that decreases the score of each ci ∈ CkBAD by at
least scE(ci)− scE(p)− k points.

2. If the cost of this shift action is at most k, then we perform
additional arbitrary unit shifts so that the total number of
unit shifts is b(1 + ε)kc or, if not enough unit shifts are
possible, we shift p to the top of every vote. We output all
the performed unit shifts and terminate.

We first note that the algorithm indeed outputs a success-
ful shift action. If p ends up being on top of all the votes then
he or she clearly wins. On the other hand, if the total num-
ber of unit shifts performed is b(1 + ε)kc, then the score of
p is at least scE(p) + b(1 + ε)kc; this means that, for all the
candidates c /∈ CkBAD, the new score of p is at least scE(c),
which is at least as large as the score of c after the shifts.
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Moreover, the algorithm from Lemma 3 ensures that after
the shifts the score of p is at least as high as the scores of all
the candidates from CkBAD. Thus, p is a winner.

Next, let us argue that the algorithm computes a (1 + ε)-
approximate solution. Recall that due to the results of Elkind
et al. (2009), the number of unit shifts in the optimal so-
lution is between max -diff (I)/2 and max -diff (I). There-
fore the algorithm must terminate at latest when considering
k = OPT(I). Given this many shifts, it is—by definition—
possible for p to obtain score higher than all the candidates
from CkBAD and, so, the algorithm from Lemma 3 returns a
shift action with at most OPT(I) unit shifts. Thus the algo-
rithm terminates with at most b(1 + ε) OPT(I)c unit shifts.

The running time of the algorithm follows from
Lemma 3 and is bounded by a polynomial in |I| and
Πci∈Ck

BAD
(scE(ci) − scE(p) − k + 1) 6 (max -diff (I) +

1)t(k). However, we only invoke Lemma 3 when k >
sum-diff (I, k). This means that:

k > sum-diff (I, k) =
∑
c∈C

max{0, scE(c)− scE(p)− k}

>
∑

ci∈Ck
BAD

(scE(ci)− scE(p)− k) > t(k)εk,

and we conclude that t(k) < 1/ε. Thus the running time is
polynomial with respect to |I|+ (1 + max -diff (I))1/ε.

EPTAS for Unit Prices. The main result of this subsec-
tion is an EPTAS (efficient polynomial-time approximation
scheme) for Borda-SHIFT-BRIBERY with unit prices, that is,
a PTAS for which the non-polynomial factors in the run-
ning time depend only on the required approximation ratio.
Note that in the algorithm from Theorem 4 this factor was
OPT(I)O(1/ε) and, thus, did not depend on ε alone.

On the technical level, we first develop an algorithm that
for an instance I of Borda-SHIFT-BRIBERY with unit prices
outputs a solution with cost at most OPT(I) +

√
OPT(I).

Lemma 5. There is a polynomial-time algorithm that, given
an instance I of Borda-SHIFT-BRIBERY with unit prices,
outputs a successful shift action with cost at most OPT(I)+√

OPT(I).
Using this algorithm and the combinatorial PTAS

from Theorem 4, we obtain our EPTAS (in short, if
max -diff (I) < 2/ε2 then we run the algorithm from Theo-
rem 4 and we run the algorithm from Lemma 5 otherwise).
Theorem 6. There is an algorithm that, given an instance
I of Borda-SHIFT-BRIBERY with unit prices and a positive
number ε > 0, runs in time 2O(log(1/ε)/ε)poly(|I|) and out-
puts a successful shift action of cost at most (1+ε) OPT(I).

Theorem 6 gives formal evidence that approximating
Borda-SHIFT-BRIBERY is computationally easier for the
case of unit prices than for the general case or, even, for
the all-or-nothing prices case. The latter cases are W[1]-
hard when parameterized by the budget (Bredereck et al.
2016a) and this means that no EPTAS exists for them unless
W[1] = FPT. If there were an EPTAS for Borda-SHIFT-
BRIBERY for the case of general prices, or for the all-or-
nothing prices, which ran in time f(ε)nO(1), then we could

minimize
∑
v∈V

∑
j∈[π−1

v (p)−1]

x(v,j) s.t.:

0 6 x(v,1) 6 · · · 6 x
(v,π−1

v (p)−1)
6 1 , ∀v ∈ V, (1)∑

v∈Vc�p

x
(v,π−1

v (c))
> scE(c)− scE(p)− k, ∀c ∈ CkBAD. (2)

Figure 1: Program LP-U(I, k) from the proof of
Lemma 5. For each voter v, we have variables x(v,1),
. . . , x(v,π−1

v (p)−1). Constraints (1) ensure that an integral so-
lution describes a valid shift action and Constraints (2) en-
sure that after applying such an action, each candidate in
CkBAD has score no higher than p; recall that Vc�p means the
set of voters that prefer c to p. The optimization goal is to
minimize the number of unit shifts in the shift action.

plug in ε = 1/(2B), whereB would be the budget limit, and
solve the problem exactly in time f( 1

2B )nO(1), implying that
W[1] = FPT. Such connections between FPT algorithms
and EPTASes are well-known in theoretical computer sci-
ence (Cesati and Trevisan 1997), but, so far, have not found
many applications in computational social choice.

Let us now move on to the proof of Lemma 5. The general
structure of our algorithm is similar to that of the algorithm
from Theorem 4, but instead of invoking Lemma 3, we solve
a linear program. We form this program in such a way that its
basic solution has to consist almost entirely of integral val-
ues. Then, rounding and complementing the obtained shift
action with arbitrary unit shifts gives the desired solution.

To state our linear program, we will model shift actions as
boolean matrices (x(v,j))v∈V,j∈[m] such that x(v,j) is 1 if af-
ter applying the shift action the preferred candidate is ranked
on position j or better in vote v, and it is 0 otherwise (so we
will always have 0 6 x(v,1) 6 x(v,2) 6 · · · 6 x(v,m) 6 1).
Formally, a shift action s = (sv)v∈V corresponds to the
boolean matrix x(v,j) = 1[π−1v (p)− sv 6 j].

Proof of Lemma 5. Let I = (E, p, ψ) be an instance
of Borda-SHIFT-BRIBERY with unit prices, where
E = (C, V, {�v}v∈V (E)). We try all integers k
between max -diff (I)/2 and max -diff (I), such that
sum-diff (I, k) 6 k, and for each of them we perform the
following steps:

1. We form the set CkBAD ⊆ C of those candidates c whose
scores exceed value scE(p) + k +

√
k.

2. We form the linear program LP-U(I, k) from Figure 1
and solve it for a basic solution (note that the ob-
jective function gives the number of unit shifts used).
If LP-U(I, k) is infeasible or the cost of the solu-
tion exceeds k, then we skip this value of k. Let
(xOPT

(v,j))v∈V,j∈[π−1
v (p)−1] be the basic optimal solution

found.
3. Let sLP be the shift action corresponding to

(bxOPT
(v,j)c)v∈V,j∈[π−1

v (p)−1]. (Note that the rounded

1904



solution indeed correctly describes a shift action and that
its cost, i.e., the number of unit shifts it contains, is at
most k.) Form a shift action s by extending sLP so that it
contains k+ b

√
kc unit shift or, if this is impossible, then

so that p is on the top of every preference order. Output s
and terminate.

Since finding basic solutions for linear programs can be
done in polynomial time, the whole algorithm runs in poly-
nomial time. Further, the cost of the computed shift action
s is at most OPT(I) +

√
OPT(I) unit shifts. To see this,

consider the step when the algorithm tries k = OPT(I); if
it terminates earlier then our claim certainly is satisfied. For
this value of k, LP-U(I, k) certainly has a solution of cost
at most k because an optimal successful shift action for I is
one of its feasible solutions. Thus the algorithm terminates
for this value of k and (in Step 3) outputs a shift action with
at most OPT(I) +

√
OPT(I) unit shifts.

It remains to show that the computed shift action s is suc-
cessful. If p ends up at the top of every preference order, then
surely s is a successful shift action. Let us consider the case
where s consists of exactly k + b

√
kc unit shifts, i.e., where

after applying s, p has score scE(p) + k + b
√
kc, for the

value of k for which the algorithm terminates. Since prior
to applying s each candidate c /∈ CkBAD had score at most
scE(p) + k + b

√
kc, after applying s candidate p certainly

has score at least as high as theirs. Thus we only need to
show that each candidate in CkBAD also ends up with score at
most scE(p) + k + b

√
kc.

Let us say that a voter v ∈ V is integral if xOPT
(v,j) ∈ {0, 1}

for all j ∈ [π−1v (p) − 1] and let Vint be the set of all inte-
gral voters. Since (xOPT

(v,j))v∈V,j∈[π−1
v (p)−1] is a basic solu-

tion of LP-U(I, k), at least
∑
v∈V (π−1v (p)− 1) inequalities

must be tight. For each integral voter v, exactly π−1v (p)− 1
inequalities of the form (1) are tight. On the other hand,
for each non-integral voter v, at most π−1v (p) − 2 inequali-
ties in (1) are tight. Further, there are |CkBAD| inequalities of
the form (2) and |CkBAD| 6 b

√
kc, because each candidate

c ∈ CkBAD contributes at least
√
k points to sum-diff (I, k)

and sum-diff (I, k) 6 k. Altogether, this means that there
are at most b

√
kc non-integral voters, i.e., |V \Vint| 6 b

√
kc.

Intuitively, each tight inequality of the form (2) can lead to
at most a single non-integral voter.

For each c ∈ CkBAD, the score of c after applying sLP is as
follows (for a number x, 0 6 x 6 1, by frac(x) we mean its
fractional part, so that if 0 6 x < 1 then frac(x) = x and if
x = 1 then frac(x) = 0):

scE(c)−
∑

v∈Vc�p

⌊
xOPT
(v,π−1

v (c))

⌋
= scE(c)−

∑
v∈Vc�p

xOPT
(v,π−1

v (c))
+

∑
v∈Vc�p

frac
(
xOPT
(v,π−1

v (c))

)
(2)
6 scE(p) + k +

∑
v∈Vc�p

frac
(
xOPT
(v,π−1

v (c))

)
= scE(p) + k +

∑
v∈Vc�p\Vint

frac
(
xOPT
(v,π−1

v (c))

)

6 scE(p) + k + |V \ Vint| 6 scE(p) + k + b
√
kc.

This means that p is indeed a winner of the election.

Uniform All-or-Nothing Prices. In addition to the above
PTASes, we devise a simple greedy algorithm for the special
case. The main idea is to simply shift the preferred candidate
p to the top in the votes where p is ranked lowest.

Theorem 7. Borda-SHIFT-BRIBERY with uniform all-or-
nothing prices is NP-hard and there is a greedy algorithm
that gives 1.5-approximate solution in polynomial time.

4 Positional Scoring Rules
In this section we give our main result: A PTAS for the case
of SHIFT-BRIBERY with an arbitrary positional scoring rule,
whose scoring vectors are, possibly, different for different
voters, and for arbitrary prices.

Theorem 8. There is an algorithm that given ε > 0 and an
instance I of R-SHIFT-BRIBERY, where R is a given posi-
tional scoring rule with a possibly different scoring vector
for each voter, outputs a successful shift action for I of cost
at most (1 + ε) OPT(I) and runs in time |I|O(1/ε2).

We remark that a corollary of Theorem 8 is a PTAS for
Borda-SHIFT-BRIBERY (for arbitrary prices).

An Algorithm with Additive Error. The crucial part of
our algorithm is an approximation algorithm that yields a
good solution in the case where ψmax(I), the highest non-
infinite price in the instance, is small.

Lemma 9. There is an algorithm that given ε > 0 and an
instance I of R-SHIFT-BRIBERY, where R is a given posi-
tional scoring rule with a possibly different scoring vector
for each voter, outputs a successful shift action for I of cost
at most (1 + ε) OPT(I) + (1 + 1/ε)ψmax(I) and runs in
time |I|O(1).

The main complication in the general prices case, as op-
posed to the unit prices case, is that the cost of obtaining
some k + 1 points for the preferred candidate can be far
larger than the cost of obtaining k points. Thus the main
trick used in the proofs from the previous section—deciding
up front how many more points than in an optimal solution
the preferred candidate would get—cannot be directly ap-
plied. We work around this problem by first solving a linear
program which, roughly speaking, for a given value ε > 0
tells us how many extra points the preferred candidate needs
to ensure so that he or she has score higher than all but at
most 1/ε candidates. Then, using a technique similar to the
one we used for Lemma 5—in particular, solving a second
linear program, for which a basic solution contains a large
number of integral variables—we find our approximate so-
lution.

Proof of Lemma 9. We first describe the somewhat non-
intuitive algorithm, then we explain its workings and ar-
gue why it produces the desired approximate solution. Let
I = (E, p, ψ) be an instance of R-SHIFT-BRIBERY, where
E = (C, V ) is an election, p is the preferred candidate, and
ψ = {ψv}v∈V (E) is a collection of price functions. Further,
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minimize
∑
v∈V

∑
j∈[π−1

v (p)−1]

∆ψv(π−1
v (p)− j) · x(v,j) s.t.:

0 6 x(v,1) 6 · · · 6 x
(v,π−1

v (p)−1)

= x
(v,π−1

v (p))
= · · · = x(v,m) = 1 ,∀v ∈ V (3)

scE(c)−
∑

v∈Vc�p

∆wv
π−1
v (c)

· x
(v,π−1

v (c))

6 scE(p) +
∑
v∈V

∑
j∈[π−1

v (p)−1]

∆wvj · x(v,j) ,∀c ∈ C (4)

Figure 2: LP1 for the proof of Lemma 9. For each voter v,
we have variables x(v,1), . . . , x(v,m). For an integral solu-
tion, Constraints (3) ensure that the variables specify a shift
action, Constraints (4) ensure that this shift action is suc-
cessful, and the optimization goal specifies its cost.

minimize
∑
v∈V

∑
j∈[π−1

v (p)−1]

∆ψv(π−1
v (p)− j) · y(v,j) s.t.:

0 6 y(v,1) 6 · · · 6 y(v,jv−1) 6 y(v,jv)

= · · · = y(v,m) = 1 , ∀v ∈ V (5)

scE(c)−
∑
v∈Vc�p

∆wv
π−1
v (c)

· y
(v,π−1

v (c))

6 scE(p) +
∑
v∈V

∑
j∈[π−1

v (p)−1]
∆wvj · y(v,j),∀c ∈ CBAD

(6)∑
v∈V

∑
j∈[π−1

v (p)−1]
∆wvj · y(v,j)

>
∑
v∈V

∑
j∈[π−1

v (p)−1]
∆wvj · y∗(v,j) (7)

Figure 3: LP2 for the proof of Lemma 9. For each voter v,
we have variables y(v,1), . . . , y(v,m). For an integral solu-
tion, Constraints (5) ensure that the variables specify a shift
action that pushes p at least as far as shift action s∗ does,
Constraints (6) ensure that p’s score at least matches the
scores of candidates inCBAD, and Constraint (7) ensures that
p’s score is higher than the scores of candidates not in CBAD.

let R be a positional scoring rule specified via scoring vec-
tors (wv)v∈V (with one vector for each voter in V ). Our
algorithm proceeds as follows:

1. We solve linear program LP1 from Figure 2. Let
(xOPT

(v,j))v∈V,j∈[m] be the computed optimal solution found
for this program. Note that the value of the optimization
goal for LP1 is at most OPT(I), because this would be
the cost of an optimal integral solution.

2. For every v ∈ V, j ∈ [m], we let y∗(v,j) = min{1, (1 +

ε)xOPT
(v,j)}, and we let jv ∈ [m] be the smallest index such

that y∗(v,jv) = 1. Intuitively, the shift action s∗ that for
each voter v shifts p to position jv is our “first order ap-
proximation” of the shift action that we will eventually

produce; its cost is at most (1 + ε) OPT(I) but after ap-
plying it, p’s score might still be lower than that of some
of the candidates. Formally, we define setCBAD to contain
all the candidates c such that:

scE(c)−
∑

v∈Vc�p

∆wv
π−1
v (c)

· 1[π−1v (c) > jv]

> scE(p) +

(∑
v∈V

∑
j∈[π−1

v (p)−1]

∆wvj · y∗(v,j)
)
. (8)

On the left-hand side of the above equation, candidate c
loses as many points as indicated by shift action s∗, but
the score of p, on the right-hand side, is computed with
respect to the possibly fractional values y∗(v,j).

3. We solve linear program LP2 from Figure 3 for an opti-
mal, basic solution (yOPT

(v,j) )v∈V,j∈[m]. We output shift ac-
tion s that corresponds to (dyOPT

(v,j) e)v∈V,j∈[m].

The algorithm certainly runs in polynomial time. Let us
now explain why the shift action that it outputs indeed en-
sures that p is a winner. Foremost, due to Constraints (5),
shift action s (weakly) dominates s∗ (i.e., for each voter it
shifts p at least as far as s∗ does). Thus, after applying s, each
opponent of pwho is not inCBAD has score at most as high as
in the left-hand side of Equation (8). Constraint (7) ensures
that p obtains at least as high a score as on the right-hand
side of Equation (8) and, thus, p does not lose against any
candidate not in CBAD. On the other hand, Constraints (6)
ensure that p does not lose against anyone in CBAD.

It remains to argue that costI(s) is at most as required in
the lemma. To this end, we first claim that |CBAD| < 1/ε
(we omit the technical proof due to space restriction).

We now proceed to bound costI(s). First, observe that
an optimal integral solution for LP1 has cost OPT(I) and,
thus, for our optimal, but perhaps non-integral, solution
(x(v,j))v∈V,j∈[m] we have:∑

v∈V
∑
j∈[π−1

v (p)−1] ∆ψv(π
−1
v (p)− j)xOPT

(v,j) 6 OPT(I).

(9)

For each voter v ∈ V , we say that v is integral if yOPT
(v,j) ∈

{0, 1} for all j ∈ [m]. Let Vint denote the set of all inte-
gral voters. Recall that (yOPT

(v,j) )v∈V,j∈[m] is a basic solution
for LP2, meaning that at least mn linearly independent in-
equalities must be tight (because we have mn variables).2
For each non-integral voter v /∈ Vint, only at most m − 1
linearly independent inequalities in (5) are tight. However,
there are only 1 + |CBAD| < 1 + 1/ε inequalities of the
form (6) and (7). From this, we can conclude that less than
1 + 1/ε voters are not integral, i.e.:

|V \ Vint| < 1 + 1/ε. (10)

As a result, we have that costI(s) equals:∑
v∈V

∑
j∈[π−1

v (p)−1] ∆ψv(π
−1
v (p)− j) · dyOPT

(v,j) e

2We stress here that the inequalities must be linearly indepen-
dent because in Constraint (5) we have equalities, each defined
by two linearly dependent inequalities; satisfying such an equality
“counts” as only one tight inequality for a basic solution.
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=
∑
v∈Vint

∑
j∈[π−1

v (p)−1] ∆ψv(π
−1
v (p)− j) · yOPT

(v,j)

+
∑
v∈V \Vint

∑
j∈[π−1

v (p)−1] ∆ψv(π
−1
v (p)− j) · dyOPT

(v,j) e.

Now, observe that the first summation on the right hand
side is upper bounded by the optimum of LP2. Note that
(y∗(v,j))v∈V,j∈[m] is a solution to LP2. Hence, we have:

costI(s) 6
∑
v∈V

∑
j∈[π−1

v (p)−1] ∆ψv(π
−1
v (p)− j)y∗(v,j)

+
∑
v∈V \Vint

∑
j∈[π−1

v (p)−1] ∆ψv(π
−1
v (p)− j) · dyOPT

(v,j) e

6 (1 + ε)
∑
v∈V

∑
j∈[π−1

v (p)−1] ∆ψv(π
−1
v (p)− j) · xOPT

(v,j)

+
∑
v∈V \Vint

∑
j∈[π−1

v (p)−1] ∆ψv(π
−1
v (p)− j) · dyOPT

(v,j) e
(9)
6 (1 + ε) OPT(I)

+
∑
v∈V \Vint

∑
j∈[π−1

v (p)−1] ∆ψv(π
−1
v (p)− j) · dyOPT

(v,j) e.

Now, observe that for each v ∈ V , if∑
j∈[π−1

v (p)−1] ∆ψv(π
−1
v (p) − j) · dyOPT

(v,j) e is ∞, then
OPT(I) must also be ∞ and the inequality we try
to prove is trivially true. Hence, we may assume that∑
j∈[π−1

v (p)−1] ∆ψv(π
−1
v (p) − j) · dyOPT

(v,j) e is finite; in this
case, this quantity is bounded by ψmax(I). As a result, we
can further bound costI(s) by

costI(s) 6 (1 + ε) OPT(I) + |V \ Vint| · ψmax(I)

(10)
6 (1 + ε) OPT(I) + (1 + 1/ε)ψmax(I),

which concludes our proof.

The Final PTAS. Now we use the approximation algo-
rithm with additive error to derive an approximation al-
gorithm with a purely multiplicative ratio. Since the algo-
rithm from Lemma 9 works well when ψmax(I) is small, we
will first “preprocess” our instance so that ψmax(I) is much
smaller than OPT(I). To do so, note that if we consider an
optimal shift action sOPT, then there are only a few voters
v such that ψv(sOPT

v ) is large; specifically, for every δ > 0,
only at most 1/δ voters have ψv(sOPT

v ) > δOPT(I). This
means that if we guess such voters and the numbers of unit
shifts that we apply to them, then we can reduce the in-
stance I to another instance I ′, where ψmax(I ′) is bounded
by δOPT(I). We then run the algorithm from Lemma 9
on I ′. By selecting δ = O(ε2), the additive error becomes
O((δ/ε) OPT(I)) = O(εOPT(I)) as intended.

5 Copeland
For the case of Copelandα family of rules, we show that
the SHIFT-BRIBERY problem is hard to approximate even
for the unit prices and for the all-or-nothing prices. Specif-
ically, we show that an approximation algorithm for the
Copelandα-SHIFT-BRIBERY implies an approximation al-
gorithm for the DENSEST-k-SUBGRAPH problem, which is
believed to be hard to approximate (Bhaskara et al. 2012).
Definition 10. In the DENSEST-k-SUBGRAPH (DkS) prob-
lem, we are given an undirected graph G = (VG, EG) and a
positive integer k, and the goal is to output a k-vertex sub-
graph of G with as many edges as possible.

Theorem 11. Let τ be an arbitrary non-decreasing func-
tion. If there is a polynomial time τ(|I|)-approximation
algorithm for Copelandα-SHIFT-BRIBERY for some α ∈
[0, 1], for the case of unit prices or all-or-nothing
prices, then there is a polynomial time O(τ(|VG|O(1))2)-
approximation algorithm for the DkS.

Although hardness of approximation of DkS within up
to polynomial factor is not known, inapproximability up to
almost polynomial factor is known assuming the exponen-
tial time hypothesis (ETH) and its gap version (Gap-ETH).3
Specifically, Manurangsi (2017) has shown that under the
ETH assumption (the Gap-ETH assumption, respectively),
DENSEST-k-SUBGRAPH is hard to approximate to within a
factor of n1/poly(log logn) (no(1), respectively). Together with
Theorem 11, this implies the following corollary.

Corollary 12. Assuming ETH, for some constant c > 0
there is no polynomial-time |I|1/(log log |I|)c -approximation
algorithm for Copelandα-SHIFT-BRIBERY for any α > 0,
even for unit prices or all-or-nothing prices. Moreover, as-
suming Gap-ETH, the inapproximability ratio can be im-
proved to |I|f(|I|) for any function f = o(1).

For the parametrization by the number of unit shifts, as-
suming Gap-ETH implies that there is no FPT approxima-
tion scheme for the problem even for the case of unit prices.

Theorem 13. Assuming Gap-ETH, for every α ∈ [0, 1], ev-
ery ε > 0, and every computable function T , there is no al-
gorithm that given a Copelandα-SHIFT-BRIBERY instance
I with unit prices, runs in time T (OPT(I)) · poly(|I|) and
outputs a successful shift action with at most (2−ε) OPT(I)
unit shifts.

We are not aware of a constant factor FPT approximation
algorithms for the problem and it is possible that the factor
2 above can be improved to larger constants, or even beyond
a constant. This remains an interesting open question.

6 Conclusions
We have given the first PTAS for SHIFT-BRIBERY for the
case of positional scoring rules, and we have shown se-
vere limitations regarding approximability of Copelandα-
SHIFT-BRIBERY. We have also shown more efficient ver-
sions of our algorithms for the case of the Borda rule with
unit prices. Our PTAS improves upon the 2-approximation
algorithm of Elkind and Faliszewski (2010), but their algo-
rithm is quite robust and was used, e.g., for combinatorial
shift bribery (Bredereck et al. 2016b) and bribery in approval
elections (Faliszewski, Skowron, and Talmon 2017). It may
be possible to apply our technique in these settings as well.

Another interesting direction is to see whether our ideas
can be applied to the BRIBERY problem, where the goal is
to minimize the number of bribed voters but we are allowed

3ETH (Impagliazzo and Paturi 2001; Impagliazzo, Paturi, and
Zane 2001) states that there is no subexponential time algo-
rithm that solves 3SAT. Gap-ETH (Dinur 2016; Manurangsi and
Raghavendra 2017) states that no subexponential time algorithm
can distinguish between a satisfiable 3CNF formula and one which
is only (1− δ)-satisfiable for some absolute constant δ > 0.

1907



to change each bribed voter’s preference arbitrarily. On this
front, Keller et al. (2018) give a PTAS for the problem for
Borda, t-approval, and, more generally, any scoring rules
that satisfy a certain technical condition. It remains open
whether a PTAS exists for all scoring rules.
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