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Abstract

We introduce the ELECTION ISOMORPHISM problem and a
family of its approximate variants, which we refer to as d-
ISOMORPHISM DISTANCE (d-ID) problems (where d is a
metric between preference orders). We show that ELECTION
ISOMORPHISM is polynomial-time solvable, and that the d-
ISOMORPHISM DISTANCE problems generalize various clas-
sic rank-aggregation methods (e.g., those of Kemeny and Lit-
vak). We establish the complexity of our problems (including
their inapproximability) and provide initial experiments re-
garding the ability to solve them in practice.

1 Introduction
We introduce the ELECTION ISOMORPHISM problem and a
family of its approximate variants, which measure the degree
of similarity between two elections by using distances over
preference orders. We study the complexity of problems that
emerge from this idea and seek efficient algorithms for them.

We consider the ordinal model of elections, where each
voter submits a preference order that ranks all the candi-
dates from the most to the least desirable one. In the ELEC-
TION ISOMORPHISM problem we are given two elections,
E and E′, both with the same numbers of candidates and
the same numbers of voters, and we ask if it is possible to
transform one into the other by renaming candidates and re-
ordering voters. While this problem is similar in spirit to the
famous GRAPH ISOMORPHISM problem (whose complexity
status remains elusive; see the report of Babai et al. (2015)
and further discussion on Babai’s home page (2017) for
recent progress on the problem), the structure of elections
with ordinal ballots is such that it is very easy to provide a
polynomial-time algorithm for ELECTION ISOMORPHISM.
On the other hand, for approval-based elections ELECTION
ISOMORPHISM is at least as hard as GRAPH ISOMORPHISM
(a graph can be encoded as an approval election in a simple
way; we consider ordinal elections only).

We are also interested in approximate variants of the
ELECTION ISOMORPHISM problem, which turn out to de-
fine distances over elections. In the distance rationalizability
framework, the distances between elections are obtained by
extending distances over preference orders to elections in a
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votewise manner (Elkind, Faliszewski, and Slinko 2012), as-
suming that both elections include the same candidates and
the same voters (even if the voters have changed their pref-
erence orders in one of the elections). In contrast to that line
of work, we extend the distance between preference orders
to whole elections in a way that respects both anonymity
and neutrality. Namely, we ask if, via appropriate renaming
of candidates and reordering voters, it is possible to bring
a given election within some small votewise distance of an-
other given one. We will refer to these problems as the d-
ISOMORPHISM DISTANCE problems, where d is the dis-
tance (over preference orders) that we use.

As a consequence, when d is the swap distance, d-
ISOMORPHISM DISTANCE generalizes the problem of find-
ing a Kemeny ranking (roughly speaking, finding a Ke-
meny ranking is equivalent to finding the smallest swap-
based isomorphism distance between the given election
and a “constant” one, where all the votes are identical).
We note that approximate GRAPH ISOMORPHISM prob-
lems are also studied in the literature (Arvind et al. 2012;
Grohe, Rattan, and Woeginger 2018); in spirit, they are very
similar to our problems, but they differ on the technical level.

Motivation. Formalizing the concept of an isomorphism
between elections allows us to classify domains of prefer-
ence orders. In particular, for a given number of candidates,
all maximal single-peaked domains are isomorphic, whereas
this is not always the case for maximal single-crossing do-
mains (see Section 3). Furthermore, the d-ISOMORPHISM
DISTANCE problems allow for a principled way of perform-
ing classification, clustering, and other common tasks re-
lated to distances, over the space of elections. We give three
more specific domains of application:

Choosing Elections to Evaluate Algorithms On. There is
a growing body of work in computational social choice
that provides experimental analyses of elections (see,
e.g., the works of Narodytska and Walsh (2014), Aziz
et al. (2015), Caragiannis et al. (2017), and Bredereck et
al. (2017)), often using the PrefLib database (Mattei and
Walsh 2013). Designing convincing experiments, how-
ever, requires care. For example, we should not simply use
all the elections available in PrefLib, because the results
would be biased toward the type of elections that hap-
pens to be most popular there. Currently researchers often
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rely on the annotations available in PrefLib, which clus-
ter elections regarding their origin. Thus, we may wish to
verify if elections with the same origin are, indeed, simi-
lar to each other or not. Alternatively, instead of choosing
elections based on their origins, we may choose a set of
elections that are sufficiently different from each other. In
either case, our distances may be helpful.

Analyzing Real-Life Elections. Given an election (e.g.,
from PrefLib), it is interesting to ask if it is similar to
those that come from some distribution (such as, e.g., the
impartial culture model, where each preference order is
equally likely; or one of the Euclidean models, where can-
didates and voters are mapped to points in some Euclidean
space, and the voters rank the candidates with respect to
the distance from their points (Enelow and Hinich 1984;
1990)). To this end, we may generate a number of elec-
tions according to a given distribution and compute their
isomorphism distances from the given one.

Comparing Election Distributions. Given several sam-
ples from two distributions over elections, we may ask
how similar these distributions are to each other. For ex-
ample, we may wonder how different are two models of
elections with Euclidean preferences where in one model
voters and candidates are distributed uniformly on a disc
and in another they are distributed according to a Gaus-
sian distribution.1 While comparing real-valued distribu-
tions is a classic topic within statistics, doing the same
for elections seems much harder, and we are not aware of
any good solution. Yet, intuitively, the ability to measure
the isomorphism distance between samples of elections
would be helpful in designing an appropriate method (in-
deed, e.g., the classic χ2 test relies on comparing frequen-
cies of similar items in both distributions).

We stress that we do not address the above problems di-
rectly, but, rather, we claim that the d-ISOMORPHISM DIS-
TANCE problem is an important tool for tackling them. Thus,
our focus is on establishing the complexity of this problem
and on designing practically relevant heuristics.

Our Contribution. Our main contributions are as follows:

1. We show that the ELECTION ISOMORPHISM problem is
in P, and, using similar ideas, we show that the same is
true for the ISOMORPHISM DISTANCE problem for the
case of the discrete distance (but we do not expect this
variant of the problem to be very relevant in practice).

2. We show that the ISOMORPHISM DISTANCE problem
is NP-complete both for the swap distance and for the
Spearman distance. In the former case, we inherit hard-
ness from the Kemeny rule, but in the latter we use a new
proof. We also provide parametrized complexity results
for both problems.

3. We describe an ILP formulation of the dSpear-
ISOMORPHISM DISTANCE problem. We evaluate exper-
imentally on what sizes of elections the state-of-the-art
1Such a comparison would be useful, e.g., in the work of Elkind

et al. (2017), where the authors evaluated multiwinner voting rules
on four Euclidean models of elections.

ILP solvers are capable of solving our ILP. We also pro-
pose a heuristic algorithm and evaluate its performance.

We plan to use our tools to address some of the issues de-
scribed above, such as analyzing elections within PrefLib.

2 Preliminaries
For an integer n, we write [n] to denote the set {1, . . . , n}.
By Sn, we mean the set of all permutations over [n].

Preference Orders. Let C be a set of candidates. We refer
to a linear order over C as a preference order (ranking the
candidates from the most to the least appealing one); we also
sometimes call it a vote. For a vote v, we write v : a � b to
indicate that candidate a is preferred to b under v; we write
posv(c) to denote the position of candidate c in v (the top
ranked candidate has position 1, the next one 2, and so on).

Domains of Preference Orders. We writeL(C) to denote
the set of all preference orders over C. Every subset D of
L(C) is called a domain (of preference orders over C) and,
in particular,L(C) itself is the general domain. Later we will
consider the single-peaked and single-crossing domains.

Elections. An election E = (C, V ) consists of a set of
candidates C = {c1, . . . , cm} and a collection of voters
V = (v1, . . . , vn), where each voter vi has a preference or-
der, also denoted as vi (the exact meaning will always be
clear from the context and this convention will simplify our
discussions). The preference orders always come from some
domain D (the general domain unless stated otherwise).

Distances. Formally, for a set X a function d : X ×X →
R is a metric if for each x, y, z ∈ X it holds that (i)
d(x, y) ≥ 0, (ii) d(x, y) = 0 if and only if x = y, (iii)
d(x, y) = d(y, x), and (iv) d(x, z) ≤ d(x, y) + d(y, z).
A pseudometric relaxes condition (ii) to the requirement that
d(x, x) = 0 for each x ∈ X (in particular, for a pseudomet-
ric d it is possible that d(x, y) = 0 when x 6= y).

We focus on the following three distances between pref-
erence orders (below, let C be a set of candidates and let u
and v be two preference orders from L(C)):

Discrete Distance. The discrete distance between u and v,
ddisc(u, v), is 0 when u and v coincide and is 1 otherwise.

Swap Distance. The swap distance between u and v (also
known as Kendall’s Tau distance in statistics), denoted
dswap(u, v), is the smallest number of swaps of consec-
utive candidates that need to be performed within u to
transform it into v.

Spearman Distance. The Spearman’s distance (known
also as the Spearman’s footrule or the displacement dis-
tance) measures the total displacement of candidates in u
relative to their positions in v. Formally, it is defined as:

dSpear(u, v) =
∑
c∈C
|posv(c)− posu(c)|.

We only consider distances over preference orders that are
defined for all sets of candidates (as is the case for ddisc,
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dswap, and dSpear). For an in-depth discussion regarding dis-
tances between elections, we point to the literature on dis-
tance rationalizability of voting rules (Nitzan 1981; Meska-
nen and Nurmi 2008; Elkind, Faliszewski, and Slinko 2015)
and, in particular, to the survey of Elkind and Slinko (2016).

Bijections Between Candidate Sets. Consider two sets of
candidates, C and D, of the same cardinality. Let σ be a
bijection from C to D. We extend σ to act on preference
orders v in L(C) in the natural way: σ(v) ∈ L(D) is the
preference order such that for each c, c′ ∈ C it holds that
v : c � c′ ⇐⇒ σ(v) : σ(c) � σ(c′). For an election E =
(C, V ), where V = (v1, . . . , vn), a candidate set D, and a
bijection σ from C to D, by σ(E) we mean election with
candidate set D and voter collection (σ(v1), . . . , σ(vn)).

3 Election Isomorphism
In this section we define the notion of election isomorphism,
illustrate its usefulness, and show that testing if two elections
are isomorphic is a polynomial-time computable task. We
start with a formal definition of election isomorphism.
Definition 1. We say that elections E = (C, V ) and E′ =
(C ′, V ′), where |C| = |C ′|, V = (v1, . . . , vn), and V ′ =
(v′1, . . . , v

′
n), are isomorphic if there is a bijection σ : C →

C ′ and a permutation ν ∈ Sn such that σ(vi) = v′ν(i) for all
i ∈ [n].

Example 1. Consider elections E = (C, V ) and E′ =
(C ′, V ′), such that C = {a, b, c}, C ′ = {x, y, z}, V =
(v1, v2, v3), V ′ = (v′1, v

′
2, v
′
3), with preference orders:

v1 : a � b � c, v2 : b � a � c, v3 : c � a � b,
v′1 : y � x � z, v′2 : x � y � z, v′3 : z � x � y.

E and E′ are isomorphic, by mapping candidates a to x, b
to y, and c to z, and voters v1 to v′2, v2 to v′1, and v3 to v′3.

The idea of election isomorphism has already appeared in
the literature, though without using this name and usually as
a tool to achieve some specific goal. For example, Eğecioğlu
and Giritligil (2013) refer to two isomorphic elections as
members of the same anonymous and neutral equivalence
class (ANEC) and study the problem of sampling represen-
tatives of ANECs uniformly at random. Hashemi and En-
driss (2014) use the election isomorphism idea in their anal-
ysis of preference diversity indices.

In the ELECTION ISOMORPHISM problem we are given
two elections and we ask if they are isomorphic. Surpris-
ingly, the problem has an easy polynomial-time algorithm.
Proposition 1. ELECTION ISOMORPHISM is in P.

Proof. Let E = (C, V ) and E′ = (C ′, V ′) be two input
elections where C = {c1, . . . , cm}, C ′ = {c′1, . . . , c′m},
V = (v1, . . . , vn) and V = (v′1, . . . , v

′
n). Without loss

of generality, let us assume that v1’s preference order is
v1 : c1 � c2 � · · · � cm. For each v′j there is a bijec-
tion σj from C to C ′ such that for the preference order of
v′j we have posv′j (σj(ci)) = i. For each σj , we build a bi-
partite graph where v1, . . . , vn are the vertices on the left,
v′1, . . . , v

′
n are the vertices on the right, and there is an edge

between vi and v` if σj(vi) = v`; we accept if this graph has
a perfect matching for some σj and we reject otherwise.

The algorithm runs in polynomial time because there
are n σj’s to try, and computing perfect matchings is a
polynomial-time computable task. Correctness follows from
the fact that we need to map v1 to some vote in E′ and we
try all possibilities.

As an extended example of usefulness of the isomor-
phism idea, we consider the single-peaked (Black 1958)
and single-crossing (Mirrlees 1971; Roberts 1977) domains.
They received extensive attention within (computational) so-
cial choice; we point the readers to the survey of Elkind et
al. (2016) for more details.
Definition 2. Let D ⊆ L(C) be a domain.

1. D is single-crossing if its preference orders can be or-
dered as v1, . . . , vn so that, for each pair of candidates
a, b ∈ C, as we consider v1, . . . , vn in this order, the rel-
ative ranking of a and b changes at most once.

2. D is single-peaked if there exists a linear order > over
C (referred to as the societal axis) such that for each v
and each j ∈ [|C|], the top j candidates from v form an
interval according to the order >.
A single-peaked (single-crossing) domain is maximal if it

is not contained in any other single-peaked (single-crossing)
domain. Each maximal single-peaked domain D ⊆ L(C)
contains 2|C|−1 preference orders (Monjardet (2009) at-
tributes this fact to a 1962 work of Kreweras).

Since we can view a domain as an election that includes
a single copy of every preference order from the domain,
our notion of isomorphism directly translates to the case of
domains, and we can formalize a fundamental difference be-
tween single-peakedness and single-crossingness.
Proposition 2. Each two maximal single-peaked domains
over candidate sets of the same size are isomorphic. There
are two maximal single-crossing domains over the same set
of candidates that are not isomorphic.

Sketch of the proof. For the first part of the proposition, it
suffices to note that if D and D′ are two maximal single-
peaked domains (over candidate sets {x1, . . . , xm} and
{y1, . . . , ym}, respectively), with axes>1 and>2, such that:

x1 >1 · · · >1 xm and y1 >2 · · · >2 ym,

then a bijection that maps each xi to yi witnesses that the
two domains are isomorphic.

For the second part of the proposition, consider the fol-
lowing two single-crossing domains of four candidates (each
preference order is shown as a column, with the first candi-
date on top and the last one on the bottom):

a b b b b d d
b a c c d b c
c c a d c c b
d d d a a a a

d d d a a a a
c c a d c c b
b a c c d b c
a b b b b d d

Both are maximal single-crossing domains and both are
maximal Condorcet domains (Puppe and Slinko 2017). They
are not isomorphic as the first one has three different candi-
dates on top, and the second one has two.
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Given this result, it is very natural to ask, e.g., how many
non-isomorphic maximal single-crossing domains exist for
a particular number of alternatives m. We recommend this
issue for future research.

4 Isomorphism Distance
In this section we use the isomorphism idea to build dis-
tances between elections that respect both voter anonymity
(so the order of the voters in an election is irrelevant) and
candidate neutrality (so the names of the candidates are
nothing more than temporary identifiers). Below we give our
main definition (for two sets A, B of the same cardinality,
by Π(A,B) we mean the set of bijections from A to B).

Definition 3. Let d be a distance between preference orders.
Let E = (C, V ) and E′ = (C ′, V ′) be two elections, where
|C| = |C ′|, V = (v1, . . . , vn) and V ′ = (v′1, . . . , v

′
n). We

define the d-isomorphism distance between E and E′ to be:

d-ID(E,E′) = min
ν∈Sn

min
σ∈Π(C,C′)

n∑
i=1

d(σ(vi), v
′
ν(i))

We sometimes refer to the bijection σ as the candidate
matching and to the permutation ν as the voter match-
ing, and sometimes instead of ν, we use bijection τ ∈
Π(V, V ′) (depending on what is more convenient). The
name, d-isomorphism distance, is justified by the fact that if
d-ID(E,E′) = 0 for some two elections (and d is a metric
over preference orders), then these elections are isomorphic.

Remark 1. Note that in the above definition we view elec-
tions as both anonymous and neutral. This is why we apply
the minimum operator over all permutations of the voters
and over all bijections between the candidates.

Remark 2. Some of the scenarios from the introduction re-
quire the ability of computing distances between elections
with different numbers of candidates and voters, but our def-
inition does not allow this directly. There are many ways of
computing such distances, using our isomorphism distances
as tools, but we leave the study of this issue for the future.

Basic Properties
Formally, the d-isomorphism distances are pseudometrics
over the space of elections with given numbers of candi-
dates and voters. Indeed, it is immediate to see that for every
election E = (C, V ) we have that d-ID(E,E) = 0, and
for each two elections E and E′ we have d-ID(E,E′) =
d-ID(E′, E). The triangle inequality requires some care.

We say that a distance d over preference orders is
permutation-invariant if for each two candidate sets C and
D of the same cardinality, each two preference orders u, v ∈
L(C), and each bijection σ from C to D, it holds that
d(u, v) = d(σ(u), σ(v)).

Proposition 3. For each permutation-invarant distance d
over preference orders, d-ID satisfies the triangle inequality.

The d-isomorphism distances inherit some properties
from the underlying distances. For example, the Diaconis–
Graham inequality says that for two preference orders u and

v we have dswap(u, v) ≤ dSpear(u, v) ≤ 2 · dswap(u, v) (Di-
aconis and Graham 1977), and one can verify that the
same holds for the isomorphism distances. Specifically,
for each two elections E and E′ (with the same num-
bers of candidates and voters) we have dswap-ID(E,E′) ≤
dSpear-ID(E,E′) ≤ 2 · dswap-ID(E,E′).

Complexity of Computing Isomorphism Distances
We now turn to the complexity of computing ismorphism
distances. Formally, our problem is defined as follows.
Definition 4. Let d be a distance over preference orders. In
the d-ISOMORPHISM DISTANCE problem (the d-ID prob-
lem) we are given two elections, E = (C, V ) and E′ =
(C ′, V ′) such that |C| = |C ′| and |V | = |V ′|, and an inte-
ger k. We ask if d-ID(E,E′) ≤ k.

We are also interested in two variants of this problem, the
d-ID WITH CANDIDATE MATCHING problem, where the
bijection σ between the candidate sets is given (and fixed),
and the d-ID WITH VOTER MATCHING problem, where the
voter permutation ν is given (and fixed). The former prob-
lem is in P for polynomial-time computable distances, but,
as we will see later, this is not always true for the latter.
Proposition 4. For a polynomial-time computable d, the
problem d-ID WITH CANDIDATE MATCHING is in P.

Proof sketch. Let E and E′ be our input elections and let σ
be the input matching between candidates from E and E′.
It suffices to compute a distance between every pair of votes
(one from σ(E) and another fromE′), build a corresponding
bipartite graph (where vertices on the left are the voters from
σ(E), the vertices on the right are the voters fromE′, and all
possible edges exist, weighted by the distances between the
votes they connect), and find the smallest-weight matching
(the weight of the matching gives the value of the distance,
and the matching itself gives the permutation ν).

Using an argument very similar to that in the proof of
Proposition 1, we show that ddisc-ID is in P.
Proposition 5. The ddisc-ID problem is in P.

The elections for which the ddisc-ID distance is small
are, in fact, nearly identical (up to renaming of the candi-
dates and reordering the voters). In consequence, we do not
expect such elections to frequently appear in the applica-
tions that we mentioned in the introduction (for example,
for two elections with n voters and a relatively large number
of candidates, generated according to the impartial culture
model, we would expect their ddisc-ID distance to typically
be n − 1). Thus, we need more fine-grained distances, such
as dswap-ID and dSpear-ID. Unfortunately, they are NP-hard
to compute and, indeed, for dswap-ID we inherit this result
from the Kemeny rule.
Proposition 6. The dswap-ID problem is NP-complete, even
for elections with four voters.

Proof. Membership in NP- is easy to see. We give a reduc-
tion from the KEMENY SCORE problem. In the KEMENY
SCORE problem we are given an election E = (C, V ) and
an integer k, and we ask if there exists a preference order
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p over C such that
∑
v∈V dswap(v, p) ≤ k. The problem

is NP-complete (Bartholdi, Tovey, and Trick 1989) and re-
mains NP-complete even for the case of four voters (Dwork
et al. 2001). We reduce it to the dswap-ID problem in a
straightforward way: Given election E = (C, V ) and k, our
reduction outputs election E, a newly constructed election
E′ = (C ′, V ′), and an integer k, where C ′ = {c′1, . . . , c′|C|}
and every voter in V ′ has identical preference order v′ : c′1 �
· · · � c′|C|.

The reduction runs in polynomial time. The correctness
follows directly from the definitions of the problems.

Since the above reduction works even for elections with
four voters, having a matching between the voters cannot
make the problem simpler (this also follows from the fact
that in our reduction one election consists of identical votes).
Corollary 1. dswap-ID WITH VOTER MATCHING is NP-
complete.

The situation for dSpear-ID is somewhat different. In this
case Litvak’s rule (Litvak 1983), defined analogously to the
Kemeny rule, but for the Spearman distance, is polynomial-
time computable (Dwork et al. 2001) and we can lift this
result to the case of dswap-ID WITH VOTER MATCHING.
Without the voter matching, dSpear-ID is NP-complete.
Proposition 7. dSpear-ID W/ VOTER MATCHING is in P.

Theorem 8. The dSpear-ID problem is NP-complete.

Hardness of Approximation
Unfortunately, we cannot hope for good polynomial-time
approximation algorithms for our problems, unless GRAPH
ISOMORPHISM is in P, which seems unlikely. (In the dis-
cussion below, when we speak of dswap-ID and dSpear-ID
we mean the optimization variants of these problems where
instead of deciding if the distance between two given elec-
tions is at most a given value, we ask to compute the distance
between these elections.)
Theorem 9. For each α < 1, there is no polynomial-time
|C|α-approximation algorithm neither for dSpear-ID nor for
dswap-ID, unless the GRAPH ISOMORPHISM problem is in
P.

Proof. Let us focus on the Spearman distance—the same
construction works for the swap distance. Towards a contra-
diction, let us assume that there exists a |C|α-approximation
algorithmA for dSpear-ID. We will show thatA can be used
to solve GRAPH ISOMORPHISM.

Let I be an instance of the GRAPH ISOMORPHISM prob-
lem; I consists of two undirected graphs G = (Vtx ,Edg)
and G′ = (Vtx ′,Edg ′). We use a non-standard definition of
GRAPH ISOMORPHISM and assume that in I we ask whether
there exist two bijections,2 σ : Vtx → Vtx ′ and τ : Edg →
Edg ′, such that for each edg = {vtx 1, vtx 2} ∈ Edg it
holds that τ(edg) = {σ(vtx 1), σ(vtx 2)}. Without loss of

2Typically, one asks for a bijection between the vertices only,
and it is assumed that the other bijection (between the edges) is
induced by the first one. In our case it will be easier to work with
two separate bijections.

generality, let us assume that |Vtx | = |Vtx ′| = n and
|Edg | = |Edg ′| = m, and that there are no isolated vertices
in any of the two graphs.

From I we construct an instance IID of dSpear-ID that
consists of two elections, E = (C, V ) and E′ = (C ′, V ′),
as follows. The voters in V and V ′ correspond to the edges
from Edg and Edg ′, respectively. Further, for each vertex
vtx ∈ Vtx we add one candidate to C (denoted by the
same symbol), and for each vtx ′ ∈ Vtx ′ we add a candi-
date to C ′. Additionally, we add L = d(2nm2)

1
1−α e dummy

candidates D = {d1, . . . , dL} to C and L dummy candi-
dates D′ = {d′1, . . . , d′L} to C ′. In consequence, our elec-
tions have n + L candidates and m voters each. Finally,
we describe the preferences of the voters. Consider an edge
edg = {vtx 1, vtx 2}; the voter corresponding to edg ranks
vtx 1 and vtx 2 on top in some arbitrary order, next all the
dummy candidates from D in the increasing order of their
indices (d1 � d2 � · · · � dL) and then all other candidates
from Vtx \ {vtx 1, vtx 2} in some fixed arbitrary order. We
construct the rankings of the voters from V ′ analogously.

Now, observe that if there exists an isomorphism (σ, τ)
between the two graphs in the original instance, then the
isomorphism distance between E and E′ is at most nm2.
Indeed, it is apparent that this distance is witnessed by the
bijection between voters σ and by the function renaming
the candidates τ combined with the mapping τD such that
τD(di) = d′i for each di ∈ D. Consequently, our approxi-
mation algorithmA would find a distance that is lower than:

nm2(L+m)α ≤ nm2
(

1 +
m

L

)α
Lα < 2nm2Lα−1L

≤ 2nm2(2nm2)
1

1−α ·(α−1)L = L.
Next, we assess the isomorphism distance in case when

the answer to the original instance I is “no”. Let σ and τ
be two bijections between the sets of candidates and vot-
ers, respectively. First, let us analyze what happens when
σ(di) /∈ D′ for some di ∈ D. Since di is always ranked on
the same position, and each vertex candidate appears at least
once in the first two positions, and at least once in the last
m− 2 positions, we infer that the isomorphism distance be-
tween E and E′ is at least equal to L. Next, we move to the
case when σ(di) ∈ D′ for each di ∈ D. Since σ and τ trun-
cated to the vertex-candidates do not witness an isomorhism,
it must be the case that there exists a voter v and a candidate
c such that c is ranked in the top two positions by v, yet σ(v)
ranks τ(c) in the last m − 2 position, which witnesses that
the isomorphism distance is at least equal to L.

Thus, A finds that the isomorphism distance between E
and E′ is lower or equal to L if and only if the answer to the
original nstance I is “yes”. This completes the proof.

The next results follows by a similar reduction.
Theorem 10. For each α < 1 there is no polynomial-time
|V |α-approximation algorithm neither for dSpear-ID nor for
dswap-ID, unless GRAPH ISOMORPHISM is in P.

While anm2-approximation algorithm (which boils down
to using an arbitrary matching between the candidates) ex-
ists, the existence of an O(m)-approximation or an O(n)-
approximation for either of our distances remains open.
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WITH VOTER WITH CANDIDATE parameter
d d-ID MATCHING MATCHING m n k

ddisc P P P – – –
dSpear NP-complete P P FPT FPT FPT
dswap NP-complete NP-complete P FPT para-NP-hard FPT

Table 1: The complexity of computing isomorphism distances, also parametrized by the number of candidates m, the number
of voters n, and the distance k.

Fixed Parameter Tractability
As dswap-ID and dSpear-ID are both NP-complete and
hard to approximate, one further hope for their theoreti-
cal tractability lays within parametrized complexity theory.
Next we show that such hope is, at least partially, not in vain.

For the parameterization by the number of candidates, it
suffices to use simple brute-force algorithms (we guess the
matching between the candidates and invoke Proposition 4).

Observation 1. Both dswap-ID and dSpear-ID are in FPT
for parametrization by the number m of candidates.

For the parametrization by the number of voters,
dswap-ID is para-NP-hard (i.e., is NP-hard even for some
constant number of voters) due to Proposition 6. For
dSpear-ID, Proposition 7 implies an FPT algorithm.

Observation 2. dSpear-ID is in FPT for the parametriza-
tion by the number of voters.

Next, we consider the distance value k as the parameter,
which in the FPT jargon would be referred to as the natural
parameter. It turns out that both for the swap distance and
the Spearman distance, we have FPT algorithms.

Proposition 11. dSpear-ID is in FPT for the parametriza-
tion by the distance value k.

Proof. Let E = (C, V ) and E′ = (C ′, V ′) be two elections
with |C| = |C ′| and |V1| = |V2| = n. If k ≥ n then the
result follows from Observation 2, so we assume that k < n.

If σ : C1 → C2 and τ : V1 → V2 witness the fact that
dSpear-ID(E1, E2) ≤ k, then there is at least one voter v
from V1 such that dSpear(σ(v), τ(v)) = 0. Thus we guess
a voter v from V1 and a voter v′ from V2 and compute the
permutation σ which makes votes σ(v) and v′ the same. We
then invoke Proposition 4 to test if this σ indeed leads to
distance at most k between the elections.

Theorem 12. dswap-ID is in FPT for the parametrization
by the distance value k.

Proof. Let E = (C, V ) and E′ = (C ′, V ′) be our input
elections, where |C| = |C ′|, V = (v1, . . . , vn), and V ′ =
(v′1, . . . , v

′
n). Our goal is to check if dswap-ID(E,E′) is at

most k. We treat the case where k < n as in Proposition 11
and, thus, we assume that k ≥ n.

We proceed by guessing a matching ν ∈ Sn between the
voters that witnesses that dswap-ID(E,E′) ≤ k. With re-
spect to this matching, we say that a candidate c ∈ C is
happy if there is a candidate c′ ∈ C ′ such that for every vote
vi ∈ V , we have that c is ranked on the same position in vi

as c′ is in vν(i) (i.e., posvi(c) = posvν(i)(c
′)). If a candidate

is not happy, then we say that he or she is sad. Note that if
the distance between E and E′ is at most k, then there are
no more than 2k sad candidates (indeed, each swap of two
neighbouring candidates, in any of the votes from V , can
make at most two sad candidates happy, and all the candi-
dates must be happy after at most k swaps).

Given ν, our algorithm performs at most k iterations,
where in each iteration we execute the following steps:

1. We compute the set of candidates that are currently sad.
We accept if there are no sad candidates and we reject if
there is more than 2k of them.

2. We guess a voter vi from V , a sad candidate d, a candidate
c such that |posvi(c) − posvi(d)| ≤ k, and whether we
swap c with the candidate right before or right after him
or her. Then we perform this swap of c within vi.

We accept if there is a sequence of guesses such that af-
ter at most k iterations there are no sad candidates, and
we reject otherwise. Correctness follows from the fact that
there is always a solution that starts by swapping a candi-
date that is within distance k swaps of a sad one (we omit
the somewhat involved argument as to why this holds due to
space restriction). Fixed-parameter tractability follows be-
cause we perform k iterations and in each we have at most
n · 2k · (2k + 1) · 2 possible guesses (corresponding to a
voter, a sad candidate, distance from this sad candidate, and
the direction of the swap), which is at most 8k3 + 4k2. Al-
together, the superpolynomial factor of the running time is
O∗(k!(8k3 + 4k2)k) = O∗(k5k), where the k! factor comes
from guessing the matching between the voters.

5 Computing d-ID Distances in Practice
In spite of the intractability results of the previous section, it
is important to be able to compute isomorphism distances in
practice. Due to restricted space, we focus on the Spearman
distance (on the one hand, it is simpler to deal with and, on
the other hand, we know that its values are 2-approximations
of the swap distance ones, so the nature of these two dis-
tances is similar). First, we provide an integer linear program
(ILP) for dSpear-ID.
Proposition 13. There is an ILP for dSpear-ID.

Proof. Let E = (C, V ) and E′ = (C ′, V ′) be the elec-
tions we wish to compute the distance for, with C =
{c1, . . . , cm}, C ′ = {c′1, . . . , c′m}, V = {v1, . . . , vn}, and
V ′ = {v′1, . . . , v′n}. For each k, ` ∈ [n], we define a bi-
nary variable Nk,` with the intention that value 1 indicates
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that voter vk is matched to voter v′`. Similarly, for each
i, j ∈ [m], we define a binary variable Mi,j with the in-
tention that value 1 means that candidate ci is matched to
candidate c′j . For each k, ` ∈ [n] and each i, j ∈ [m],
we define a binary variable Pk,`,i,j with the intention that
Pk,`,i,j = Nk,` · Mi,j . We introduce the following con-
straints:∑n

`=1Nk,` = 1,∀k ∈ [n];
∑n
k=1Nk,` = 1,∀` ∈ [n] (1)∑m

j=1Mi,j = 1,∀i ∈ [m];
∑m
i=1Mi,j = 1,∀j ∈ [m] (2)∑

`∈[n],j∈[m] Pk,`,i,j = 1, ∀i ∈ [m], k ∈ [n] (3)∑
k∈[n],i∈[m] Pk,`,i,j = 1, ∀j ∈ [m], ` ∈ [n] (4)

Pk,`,i,j ≤ Nk,`, ∀i, j ∈ [m], k, ` ∈ [n] (5)
Pk,`,i,j ≤Mi,j , ∀i, j ∈ [m], k, ` ∈ [n] (6)

Constraints (1) and (2) ensure that variables Nk,` and Mi,j

describe matchings between voters and candidates, respec-
tively. Constraints (3)–(6) implement the semantics of the
Pk,`,i,j variables (the former two ensure that for a given
vote/candidate pair, there is exactly one vote/candidate pair
in the other election to which they are matched; the latter
two ensure connection between the Pk,`,i,j variables and
the Nk,` and Mi,j variables). The optimization goal is to
minimize

∑
k,`∈[n], i,j∈[m] Pk,`,i,j · |posvk(ci)− posv′`(c

′
j)|

(which, for values Pk,`,i,j that satisfy the constraints of the
program, defines the Spearman distance for the given match-
ings). Values |posvk(ci)− posv′`(c

′
j)| are precomputed.

While the ILPs described above find optimal solutions,
they can be quite slow to solve for large instances (see ex-
perimental results below). Thus we also provide a heuristic
algorithm. The main observation is that, for a given candi-
date matching, finding an optimal voter maching and the cor-
responding distance can be done efficiently, as described in
Proposition 4. The heuristic is a local search on the candi-
date matching σ̂, which we try to improve in each step:

1. Let E = (C, V ) and E′ = (C ′, V ′) be input elections.
We initialize σ̂ by ordering the candidates in each elec-
tion according to their Borda scores, so that the Borda
winner of one election is matched to the Borda winner of
the other one, and so on (Borda score of a candidate c is∑
v∈V |C| − posv(c)).

2. We perform S iterations as follows (S is a parameter
of the algorithm). We compute the distance d between
the elections for the candidate matching σ̂ (using Propo-
sition 4). We find a candidate c ∈ C that contributes
most to the distance (i.e., the sum of values |posv(c) −
posv′(σ̂(c))| for all the pairs of matched voters v, v′ is
highest for this c). We choose d ∈ C uniformly at random
and create matching σ̂′ by swapping the candidates as-
signed to c and d. We compute the distance d′ correspond-
ing to σ̂′ and set σ̂ := σ̂′ if d′ < d. (If in five consecutive
iterations the matching remains unchanged then instead of
considering the candidate that individually generates the
highest distance, we simply swap the assignment of two
candidates chosen uniformly at random.)
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(a) approximation ratio
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0.9
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(b) running time ratio
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IC vs IC
1D Interval vs IC

Figure 1: Results of the local search heuristic: (a) average
approximation ratio and (b) the ratio between its running
time and that of CPLEX for our ILP, as functions of the
number of voters (x-axis) and how the two elections are gen-
erated.

Note that we can halt the heuristic after each step, returning
the best matching σ̂ seen so far.

Experimental Evaluation. We report on experiments re-
garding the ILPs and the heuristic described above. Specifi-
cally, for a number of elections, generated according to sev-
eral election distributions described below, we run both the
ILP and the heuristic (we use S = 50 iterations) and com-
pare them based on the Spearman isomorphism distances
they find and their running time.

We consider the following distributions over elections. In
the Impartial Culture model (IC), we choose the preference
order of each voter uniformly at random among all possible
ones. In the Euclidean models, each candidate and voter is a
point in some Euclidean space and each voter v forms his or
her preference order by sorting the candidates with respect
to the increasing distance of their points from v’s point. We
use the 1D Interval model, where we choose candidates’ and
voters’ points uniformly at random from the [0, 1] interval,
and the 2D Disc model, where we choose the points uni-
formly at random from a 2D disc (centered at point (0, 0)
and with radius 1). We consider elections with 6 candidates
and between 6 and 16 voters (larger elections are infeasible
to solve using our ILP formulation; as anecdotal evidence,
for elections with 9 voters and 9 candidates it takes about 8
seconds to solve a single instance on our machine, but with
10 candidates and 10 voters it already takes 40 seconds).

We give the results of our experiments in Figure 1. In each
case we consider values computed for elections generated
according to given distributions. In the first plot, we report
on the average ratio ρ between the distance computed by
our heuristic and the optimal distance computed using ILP
(we disregard cases of isomorphic elections, for which the
optimal distance is 0). In the second plot, we give the ratio
between the running times of the heuristic and the CPLEX
solver used for the ILP. Each point in Figure 1 is averaged
over 100 elections. We see that the average approximation
ratio of the heuristic tends to decrease as the number of vot-
ers increases, and in our experiments it is at most 1.5. The
running time of the heuristic is increasing much more slowly
than that of CPLEX.
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6 Conclusions
We have introduced the ELECTION ISOMORPHISM problem
and the notion of isomorphism distances. We have shown
that the former is computationally feasible, whereas for the
latter there are strong intractability results. We present our
complexity results in Table 1. Yet, we have found several
FPT algorithms and a heuristic algorithm that gives some
hope to be practical. Directions for future work include more
involved tests of the heuristic and applying our tools to real-
life problems (as suggested in the introduction). The latter
requires introducing methodology for dealing with elections
with different number of voters and candidates.
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