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Abstract

Regret minimization is a powerful tool for solving large-scale
extensive-form games. State-of-the-art methods rely on mini-
mizing regret locally at each decision point. In this work we
derive a new framework for regret minimization on sequen-
tial decision problems and extensive-form games with general
compact convex sets at each decision point and general convex
losses, as opposed to prior work which has been for simplex
decision points and linear losses. We call our framework lam-
inar regret decomposition. It generalizes the CFR algorithm
to this more general setting. Furthermore, our framework en-
ables a new proof of CFR even in the known setting, which
is derived from a perspective of decomposing polytope regret,
thereby leading to an arguably simpler interpretation of the
algorithm. Our generalization to convex compact sets and con-
vex losses allows us to develop new algorithms for several
problems: regularized sequential decision making, regular-
ized Nash equilibria in zero-sum extensive-form games, and
computing approximate extensive-form perfect equilibria. Our
generalization also leads to the first regret-minimization algo-
rithm for computing reduced-normal-form quantal response
equilibria based on minimizing local regrets. Experiments
show that our framework leads to algorithms that scale at a
rate comparable to the fastest variants of counterfactual regret
minimization for computing Nash equilibrium, and therefore
our approach leads to the first algorithm for computing quantal
response equilibria in extremely large games. Our algorithms
for (quadratically) regularized equilibrium finding are orders
of magnitude faster than the fastest algorithms for Nash equi-
librium finding; this suggests regret-minimization algorithms
based on decreasing regularization for Nash equilibrium find-
ing as future work. Finally we show that our framework en-
ables a new kind of scalable opponent exploitation approach.

Introduction
Counterfactual regret minimization (CFR) (Zinkevich et al.
2007), and the newest variant CFR+ (Tammelin et al. 2015),
have been a central component in several recent milestones in
solving imperfect-information extensive-form games (EFGs).
Bowling et al. (2015) used CFR+ to near-optimally solve
heads-up limit Texas hold’em. Brown and Sandholm (2017b)
and Moravčı́k et al. (2017) used CFR variants, along with
other techniques (Brown and Sandholm 2017a), to create AIs
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that beat professional poker players at the larger game of
heads-up no-limit Texas hold’em.

We can view the CFR approach more generally as a
methodology for setting up regret minimization for sequential
decision problems (whether single- or multi-agent), where
each decision point requires selecting either an action or a
point from the probability distribution over actions. The crux
of CFR is counterfactual regret, which leads to a definition of
regret local to each decision point. CFR can then be viewed
as the observation, and proof, that bounds on counterfactual
regret, which can be minimized locally, lead to bounds on the
overall regret. To minimize local regret, the framework relies
on regret minimizers that operate on a simplex (typically of
probabilities over the available actions), such as regret match-
ing (RM) (Hart and Mas-Colell 2000) or the newer variant
regret matching+ (RM+) (Tammelin et al. 2015).

In this paper we consider the more general problem of
how to minimize regret over a sequential decision-making
(SDM) polytope, where we allow arbitrary compact convex
subsets of simplexes at each decision point (as opposed to
only simplexes in CFR), and general convex loss functions
(as opposed to only linear losses in CFR). This allows us
to model a form of online convex optimization over SDM
polytopes. We derive a decomposition of the polytope regret
into local regret at each decision point. This allows us to
minimize regret locally as with CFR, but for general com-
pact convex decision points and convex losses. We call our
decomposition laminar regret decomposition (LRD). We call
our overall framework for convex losses and compact convex
decision points laminar regret minimization (LRM). As a spe-
cial case, our framework provides an alternate view of why
CFR works—one that may be more intuitive for those with a
background in online convex optimization.

Our generalization to compact convex sets allows us to
model entities such as ε-perturbed simplexes (Farina and
Gatti 2017; Farina, Kroer, and Sandholm 2017; Kroer, Farina,
and Sandholm 2017), and thus yields new algorithms for
computing approximate equilibrium refinements for EFGs.
General convex losses in SDM and EFG contexts have, to our
knowledge, not been considered before. This generalization
enables fast algorithms for many new settings.

One is to compute regularized zero-sum equilibria. If we
apply a convex regularization function at each simplex, we
can apply our framework to solve the resulting game. For
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the negative entropy regularizer this is equivalent to the di-
lated entropy distance function used for solving EFGs with
first-order methods (Hoda et al. 2010; Kroer et al. 2015;
2018). Ling, Fang, and Kolter (2018) show that dilated-
entropy-regularized EFGs are equivalent to quantal response
equilibria (QRE) in the corresponding reduced normal-form
game. Thus our result yields the first regret-minimization
algorithm for computing reduced-normal-form quantal re-
sponse equilibria in EFGs. Our experiments show that this
enables QREs to be computed at a rate that is competitive
with that of CFR+ for computing Nash equilibria. These are
the first algorithms for finding a QRE in large games.

Our experiments show that `2-regularized equilibria can
be computed at a rate that is orders of magnitude faster than
the fastest algorithms for Nash equilibrium. This shows that
our approach can be used to compute regularized equilibria
in extremely large games such as real poker games.

Finally, we show that our framework enables a new kind of
opponent-exploitation approach for large games, by adding a
convex regularizer that penalizes the exploiter for being far
away from a pre-computed Nash equilibrium. This allows
the exploiter to control the tradeoff between exploitation and
exploitability.

Paper Structure. We start with a brief review of regret
minimization. Then, we introduce the domain on which we
operate, sequential decision making. In the section “Regret in
Sequential Decision Making” we introduce a notion of regret
suitable for the SDM domain. Our central result is the laminar
regret decomposition (LRD) in Theorem 1, which shows that
the regret over the whole SDM polytope can be decomposed
into regret at each decision point, and Theorem 2 which
shows that overall regret can be minimized by minimizing
these local regrets. Thus we combine LRD with a set of local
regret minimizers, one for each decision point. The local
regret minimizers are each given the modified losses shown
in (4). This gives a regret-minimization algorithm for SDM.
Finally, we discuss how our results can be applied to zero-
sum games and more general convex-concave saddle point
problems, and show experimental results.

Regret Minimization
We work inside of the online learning framework called on-
line convex optimization (Zinkevich 2003). In this setting, a
decision maker repeatedly plays against an unknown envi-
ronment by making a sequence of decisions x1, x2, . . . . As
customary, we assume that the set X ⊆ Rn of all possible
decisions for the decision maker is convex and compact. The
outcome of each decision xt is evaluated as `t(xt), where `t
is a convex function unknown to the decision maker until the
decision is made. Abstractly, a regret minimizer is a device
that supports two operations:
• it gives a recommendation for the next decision xt+1 ∈ X;
• it receives/observes the convex loss function `t used to

“evaluate” decision xt.
The learning is online in the sense that the decision
maker/regret minimizer’s next decision, xt+1, is based only
on the previous decisions x1, . . . , xt and corresponding loss
observations `1, . . . , `t.

In this paper, we adopt (external) regret as a way to evalu-
ate the quality of the regret minimizer. Formally, the cumula-
tive regret at time T is defined as

RT :=

T∑
t=1

`t(xt)−min
x̂∈X

T∑
t=1

`t(x̂),

It measures the difference between the loss cumulated by
the sequence of decisions x1, . . . , xT and the loss that would
have been cumulated by playing the best time-independent
decision x̂ in hindsight. A desirable property of a regret mini-
mizer is Hannan consistency: the average regret approaches
zero, that is, RT grows at a sublinear rate in T .

Our framework relies on having a regret minimizer for the
convex sets at each decision point. Each regret minimizer can
be chosen independently and any regret minimizer can be
used provided it has the Hannan consistency property for the
local convex sets to which it is applied. Several regret mini-
mizers are known. Perhaps the most general is online mirror
descent (OMD). OMD generalizes several other regret mini-
mizers, such as online gradient descent (OGD), exponential
weights, and regularized follow-the-leader (Zinkevich 2003;
Hazan and Kale 2010; Hazan 2016). The regret generally
grows as O(T−1/2) for these algorithms.

An alternative to our framework is to run an off-the-shelf
regret minimizer (such as OMD) over the entire SDM poly-
tope. For example, we could do that by applying the distance
generating function of Kroer et al. (2018). However, decom-
position into local regret minimization at each decision point
has been dramatically more effective in practice, possibly
because it allows to better leverage the problem structure.

Linear Losses and Games. Regret minimization methods
for normal-form and extensive-form games usually involve
minimizing the regret induced by linear loss functions. When
the domain at each decision point Xj is the nj-dimensional
simplex ∆nj , the two most successful regret-minimizers in
practice have been regret matching (Blackwell 1956) and
regret matching+ (Tammelin et al. 2015). These regret min-
imizers also have regret that grows at a rate T−1/2 as with
OMD, but they have a worse dependence on the dimension
nj . Nonetheless, they seem to perform better in practice when
coupled with CFR (Brown, Kroer, and Sandholm 2017).

Sequential Decision Making
It turns out that the results of this paper can be proven in a
general setting which we call a sequential decision making.
At each stage, the agent chooses a point in a simplex (or a
subset of it). The chosen point incurs a convex loss and de-
fines a probability distribution over the actions of the simplex.
An action is sampled according to the chosen distribution,
and the agent then arrives at a next decision point, potentially
randomly selected out of several candidates. The reason the
agent chooses points in the convex hull of actions, rather than
simply an action, is that this gives us greater flexibility in
representing decision points where agents wish to randomize
over actions. This is the case for example in game-theoretic
equilibria or when solving the decision-making problem with
an iterative optimization algorithm.

Formally, we assume that we have a set of decision points
J . Each decision point j ∈ J has a set of actions Aj of size
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nj . The decision space at each decision point j is represented
by a convex set Xj ⊆ ∆nj . A point xj ∈ Xj represents a
probability distribution over Aj . When a point xj is chosen,
an action is sampled randomly according to xj . Given a
specific action at j, the set of possible decision points that the
agent may next face is denoted by Cj,a. It can be an empty
set if no more actions are taken after j, a. We assume that the
decision points form a tree, that is, Cj,a ∩ Cj′,a′ = ∅ for all
other convex sets and action choices j′, a′. This condition is
equivalent to the perfect-recall assumption in extensive-form
games, and to conditioning on the full sequence of actions and
observations in a finite-horizon partially-observable decision
process. In our definition, the decision space starts with a
root decision point, whereas in practice multiple root decision
points may be needed, for example in order to model different
starting hands in card games. Multiple root decision points
can be modeled in our framework by having a dummy root
decision point with only a single action.

The set of possible next decision points after choosing
action a ∈ Aj at Xj , denoted Cj,a, can be thought of as
representing the different decision points that an agent may
face after taking action a and then making an observation on
which she can condition her next action choice. For example,
in a card game an action may be to raise (that is, put money
into the pot), and an observation could be the set of actions
taken by the other players, as well as any cards dealt out, until
the agent acts again. Each specific observation of actions and
cards then corresponds to a specific decision point in Cj,a.

We will relate the regret over the whole decision space to
regret at subtrees in the decision space and individual convex
sets. In order to do that we need ways to refer to each of these
structures. Given a strategy x, xj is the (sub)vector belonging
to the decision space Xj at decision point j. Similarly, xj,a
is the scalar associated with action a ∈ Aj at decision point
j, and in typical applications it is the probability of choosing
action a at decision point j. Subscript4j denotes the portion
of x containing the decision variables for decision point j
and all its descendants. Finally, x refers to the vector for the
whole SDM, which corresponds to subscript4r where r is
the root of the tree.

As an illustration, consider the game of Kuhn poker (Kuhn
1950). Kuhn poker consists of a three-card deck: king, queen,
and jack. Each player is dealt one of the three cards and a
single round of betting occurs. The action space for the first
player is shown in Figure 1. For instance, we have: J =
{0, 1, 2, 3, 4, 5, 6}; n0 = 1, X0 = ∆1 = {1}; nj = 2, Xj =
∆2 for all j ∈ J \ {0}; A0 = {start}, A1 = A2 = A3 =
{check, raise}, A4 = A5 = A6 = {fold, call}; C0,start =
{1, 2, 3}, C1,raise = ∅, C3,check = {6}; X41

= X1 × X4,
X44

= X4; x1 = [x1,check, x1,raise]; x41
= [x1;x4], etc.

In addition to games, our model captures, for example,
POMDPs and MDPs where we condition on the entire history
of observations and actions.

Sequence Form for Sequential Decision Processes
So far we have described the decision space as a product of
convex sets where the choice of each action is taken from
a subset of a simplex Xj ⊆ ∆nj

. This formulation has a
drawback: the expected-value function for a given strategy

X0

X3

X6

X2

X5

X1

X4

start

fold call fold call fold call

check raise check raise check raise

jack queen king

check raise check raise check raise

Figure 1: Sequential action space for the first player in the
game of Kuhn poker. denotes an observation point;
represents the end of the decision process.

is not linear. Consider taking action a at decision point j. In
order to compute the expected overall contribution of that
decision, its local payoff gj,a has to be weighted by the prod-
uct of probabilities of all actions on the path to j and by xj,a.
So, the overall expected utility is nonlinear and non-convex.
We now present a well-known alternative representation of
this decision space which preserves linearity. While we will
mainly be working in the product space X , it will occasion-
ally be useful to move to this equivalent representation to
preserve linearity.

The alternative formulation is called the sequence form.
In that representation, every convex set j ∈ J is scaled by
the parent variable leading to j. In other words, the sum of
values at j now sum to the value of the parent variable. In
this formulation, the value of a particular action represents
the probability of playing the whole sequence of actions
from the root to that action. This allows each term in the
expected loss to be weighted only by the sequence ending in
the corresponding action. The sequence form has been used to
instantiate linear programming (von Stengel 1996) and first-
order methods (Hoda et al. 2010; Kroer et al. 2015; 2018)
for computing Nash equilibria of zero-sum EFGs. There
is a straightforward mapping between any x ∈ X to its
corresponding sequence form: simply assign each sequence
the product of probabilities in the sequence. Likewise, going
from sequence form to X can be done by dividing each xj,a
by the value xpj

where pj is the entry in x corresponding to
the parent of j. We let µ be a function that maps each x ∈ X
to its corresponding sequence-form vector. For the reverse
direction µ−1, there is ambiguity because µ is not injective.
Nonetheless, an inverse can be computed in linear time.

Regret in Sequential Decision Making
We assume that we are playing a sequence of T iterations of
a sequential decision process. At each iteration t we choose a
strategy x ∈ X and are then given a loss function of the form

`t(x) :=
∑
j∈J

πj(x)`tj(xj), (1)

where `tj : Xj → R is a convex function for each j ∈ J and
πj is the probability of the process reaching j, computed as
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the product of the probability of each action in the path from
the root of the tree to decision point j. We coin loss functions
of this form separable, and they will play an important role
in our results. Our goal is to compute a new strategy vector
xt such that the regret across all T iterations is as low as
possible against any sequence of loss functions.

We now summarize definitions for the value and regret
associated with convex sets and strategies. First we have the
value of convex set j at iteration t when following strategy x̂:

V̂ t4j
(x̂4j ) := `tj(x̂

t
j) +

∑
a∈Aj

∑
j′∈Cj,a

x̂j,aV̂
t
4j′

(x̂4j′ ). (2)

This definition denotes the utility associated with starting
at convex set Xj rather than at the root. We will be par-
ticularly interested in the value of xt, which we denote
V t
4j

:= V̂ t
4j

(xt4j
).

Now we can define the cumulative regret at convex set j
across all T iterations as

RT4j
:=

T∑
t=1

V t4j
−min
x̂4j

T∑
t=1

V̂ t4j
(x̂4j ),

This can equivalently be stated as

min
x̂4j

T∑
t=1

V̂ t4j
(x̂4j ) =

T∑
t=1

V t4j
−RT4j

. (3)

Finally, average regret is R̄T
4j

:= 1
TR

T
4j

.

Laminar Regret Decomposition
We now define a new parameterized class of loss functions for
each subtreeXj which we will show can be used to minimize
regret overX by minimizing that loss function independently
at each convex set Xj . The loss function is

ˆ̀t
j : xj 7→ `tj(xj) +

∑
a∈Aj

∑
j′∈Cj,a

xj,aV
t
4j′

. (4)

It is convex since `tj is convex by hypothesis and we are
only adding a linear term to it. Strict convexity is also pre-
served, and for strongly convex losses, the strong convexity
parameter remains unchanged.

We now prove that the regret at information set j decom-
poses into regret terms depending on ˆ̀t

j and a sum over the
regret at child convex sets:
Theorem 1. The cumulative regret at a decision point j can
be decomposed as

RT4j
=

T∑
t=1

ˆ̀t
j(x

t)− min
x̂j∈Xj

{ T∑
t=1

ˆ̀t
j(x̂j)−

∑
a∈Aj

∑
j′∈Cj,a

x̂j,aR
T
4j′

}
Proof. By definition, the cumulative regret RT

4j
at time T

for decision point j is:
T∑
t=1

V t4j
−min
x̂4j

{ T∑
t=1

`tj(x̂j)+

T∑
t=1

∑
a∈Aj

∑
j′∈Cj,a

x̂j,aV̂
t
4j′

(x̂4j′ )

}
=

T∑
t=1

V t4j
− min
x̂j∈Xj

{ T∑
t=1

`tj(x̂j)

+
∑
a∈Aj

∑
j′∈Cj,a

x̂j,a min
x̂4

j′

T∑
t=1

V̂ t4j′
(x̂4j′ )

}
, (5)

where the equalities follow first from expanding the defini-
tions of RT

4j
and V̂ t

4j
(x̂4j ), and then using the fact that we

can sequentially minimize first over choices at j and then
over choices for child information sets.

Now we can use (3) to get that (5) is equal to

=

T∑
t=1

V t4j
− min
x̂j∈Xj

( T∑
t=1

ˆ̀t
j(x̂j)−

∑
a∈Aj

x̂j,a
∑

j′∈Cj,a

Rt4j′

)
. (6)

Since V t
4j

already depends on V t
4j′

for each child decision

point j′ we have V t
4j

= ˆ̀t
j(x

t
j), where the equality follows

by the definition of ˆ̀t
j . Substituting this equality in (6) yields

the statement.

Theorem 1 justifies the introduction of the concept of lam-
inar regret at each decision point j ∈ J :

R̂Tj :=

T∑
t=1

ˆ̀t
j(x

t
j)− min

x̂j∈Xj

T∑
t=1

ˆ̀t
j(x̂j).

With this, we can write the cumulative subtree regret at
decision point j as a sum of laminar regret at j plus a re-
currence term for each child decision point. Applying this
inductively gives the following theorem which tells us how
one can apply regret minimization locally on laminar regrets
in order to minimize regret in SDMs:
Theorem 2. The cumulative regret on X satisfies

RT ≤ max
x̂∈X

∑
j∈J

πj(x̂)R̂Tj .

Corollary 1. If each individual laminar regret R̂T
j on each

of the convex domains Xj grows sublinearly, overall regret
on X grows sublinearly.

Theorem 2 shows that overall regret can be minimized by
minimizing each laminar regret separately. In particular, this
means that if we have a regret minimizer for each decision
point j that can handle the structure of the convex set Xj and
the convex loss from (4), then we can apply those regret min-
imizers individually at each information set, and Theorem 2
guarantees that overall regret will be bounded by a weighted
sum over those local regrets. For example, if each local regret
minimizer has regret that grows at a particular sublinear rate,
then the overall regret is also guaranteed to grow only at that
sublinear rate.

Algorithm 1 gives pseudocode for a sample implemen-
tation of a regret minimizer based on LRD. The algorithm
assumes that a regret minimizerRj has been chosen for each
decision point j ∈ J and has been initialized via a call to
Rj .INITIALIZE() before the algorithm starts. A concrete ex-
ample of regret local regret minimizer Rj based on online
gradient descent (OGD) is given later, together with its imple-
mentation, in Algorithm 2. The algorithm first iterates over all
actions and associated child information sets. For each child
information set j′ the subtree strategy xt4j′

is requested, then
the subtree value V t

4j
is computed, and finally it recurses by

observing loss at j′. By observing loss at j′ after requesting
xt4j′

we ensure that V t
4j

is computed based on the strategy
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Algorithm 1 Regret minimizer based on LRD
1: function SDMOBSERVELOSS(j, {`tk}k∈J )
2: for a ∈ Aj do
3: for j′ ∈ Cj,a do
4: xt4j′

← SDMRECOMMEND(j′)

5: V t4j
← Value of strategy xt4j′

as defined in (2)
6: SDMOBSERVELOSS(j′, {`tk}k∈J )

7: Construct ˆ̀
j as defined in (4) using `j , the strategies xtj′

and the values V t4j
computed at lines 4 and 5 above.

8: Rj .OBSERVELOSS(ˆ̀
j)

1: function SDMRECOMMEND(j)
2: xj ← Rj .RECOMMEND()
3: for a ∈ Aj do
4: for j′ ∈ Cj,a do
5: x4j′ ← SDMRECOMMEND(j′)

6: return strategy x4j defined by xj at j and x4j′ for each
subtree4j′ .

prior to observing the loss at round t. Finally the local regret
minimizerRj observes the loss.

Our result gives an alternative proof of CFR. This is ar-
guably simpler than existing proofs, because we show directly
why regret over a sequential decision-making space decom-
poses into individual regret terms, as opposed to bounding
terms in order to fit the CFR framework. Finally, our result
also generalizes CFR to new settings: we show how CFR can
be implemented on arbitrary convex subsets of simplexes and
with convex losses rather than linear.

Application Domains
Because we only need a finite sequential tree structure of the
decision space, our framework captures a very broad class of
SDM problems. In this section we describe how our frame-
work can be applied to a number of prominent applications,
such as POMDPs and EFGs. In general, our framework can
be applied to any SDM problem where one or more agents
are faced with a finite sequence of decisions that form a tree,
such that agents always remember all past actions. The spe-
cific decision problem at each stage may depend on the past
decisions as well as stochasticity. The fact that we require the
decision space to be tree structured might seem limiting from
the perspective of compactly representing the decision space.
However, this has successfully been dealt with in applications
by using state- or value-estimation techniques, rather than
fully representing the original problem (Moravčı́k et al. 2017;
Jin, Levine, and Keutzer 2018).

One example class of a single-agent decision problems
that we can model is finite-horizon POMDPs where the his-
tory of states and actions is remembered. In that case, each
decision point corresponds to a specific sequence of actions
and observations made by the agent. This setting is reminis-
cent of the POMDP setting considered by Jin, Levine, and
Keutzer (2018). This type of model can be used to model
sequential medical treatment planning when combined with
results on imperfect-recall abstraction (Lanctot et al. 2012;
Chen and Bowling 2012; Kroer and Sandholm 2016a), and

has potential applications in steering evolutionary adapta-
tion (Sandholm 2015; Kroer and Sandholm 2016b). Our
framework allows more general models for such problems
via our generalization to convex decision points and convex
losses; for example our framework could be used for regular-
ized models. For instance in a medical settings, we may want
to regularize the complexity of the treatment plan.

Extensive-Form Games with Convex-Concave
Saddle-Point Structure
In extensive-form game with perfect recall each player faces a
sequential decision-making problem, of the type described in
the previous section and in Figure 1. The set of next potential
decision points Cj,a is based on observations of stochastic
outcomes and actions taken by the other players.

Here, we will focus on two-player zero-sum EFGs with
perfect recall, but with slightly more general utility structure
than is usually considered. In particular, we assume that we
are solving a convex-concave saddle-point problem of the
following form:

min
x∈X

max
y∈Y

{
µ(x)>Aµ(y) + d1(µ(x))− d2(µ(y))

}
, (7)

where X is the SDM polytope for Player 1 and Y is the
SDM polytope of Player 2. Each di is assumed to be a dilated
convex function of the form

di(µ(x)) =
∑
j∈J

µ(x)pjdj

(
µ(x)j
µ(x)pj

)
=
∑
j∈J

πj(x)`j(xj),

that is, in the form given in (1).
In standard zero-sum EFGs, the loss function for each

player at each iteration t is defined to be the negative payoff
vector associated with the sequence-form strategy of the other
player at that iteration; since we additionally allow a regu-
larization term we also get a nonlinear convex term. More
formally, at each iteration t, the loss functions `tX : X → R
and `tY : Y → R for player 1 and 2 respectively are defined
as

`tX : x 7→ −µ(x)>Aµ(yt) + d1(x),

`tY : y 7→ µ(xt)>Aµ(y) + d2(y),

whereA is the sequence-form payoff matrix of the game (von
Stengel 1996). Some simple algebra shows that `tX and `tY
are indeed separable (that is, they can be written in the form
of Equation 1), where each decision-point-level loss `tj,X and
`tj,Y is a convex function.

This choice of loss function is justified by the fact that
the induced regret-minimizing dynamics for the two players
lead to a convex-concave saddle-point problem. Specifically,
assume the two players play the game T times, accumulating
regret after each iteration as in Figure 2.
A folk theorem explains the tight connection between low-
regret strategies and approximate Nash equilibria. We will
need a more general variant of that theorem generalized to
(7). The convergence criterion we are interested in is the
saddle-point residual (or gap) ξ of (x̄, ȳ), defined as

ξ=max
ŷ
{d1(x̄)−d2(ŷ)+x̄>Aŷ} −min

x̂
{d1(x̂)−d2(ȳ)+x̂>Aȳ}.

We show that playing the average of a sequence of regret-
minimizing strategies leads to a bounded saddle-point resid-
ual. This result is probably known, but it is unclear whether
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X

Y

`t−1X

`t−1Y

xt

yt `tY

`tX
X

Y

xt+1

yt+1· · ·· · ·

Figure 2: The flow of strategies and losses in regret min-
imization for games. The symbol denotes computa-
tion/construction of the loss function.

it has been stated in the form here. A closely related form is
used for averaged strategy iterates in a first-order method by
Nemirovski (2004).
Theorem 3. If the average regret accumulated on X and
Y by the two sets of strategies {xt}Tt=1 and {yt}Tt=1 is ε1
and ε2, respectively, then any strategy profile (x̄, ȳ) such
that µ(x̄) = 1

T

∑T
t=1 µ(xt), µ(ȳ) = 1

T

∑T
t=1 µ(yt) has a

saddle-point residual bounded by ε1 + ε2.
The above averaging is performed in the sequence-form

space, which works because that space is also convex. After
averaging we can easily compute x̄ in linear time. Hence, by
applying LRD to the decision spaces X and Y , we converge
to a small saddle-point residual. The fact that the averaging of
the strategies is performed in sequence form explains why the
traditional CFR presentation requires averaging with weights
based on the player’s reaches πj at each decision point j.

Theorem 3 shows that a Nash equilibrium can be com-
puted by taking the uniform distribution over sequence-form
strategy iterates. However, in the practical EFG-solving lit-
erature another approach called linear averaging has been
popular Tammelin et al. (2015), especially for the CFR+ al-
gorithm. In linear averaging a weighted average strategy is
constructed, where each strategy µ(xt) is weighted by t. Tam-
melin et al. (2015) show that this is guaranteed to converge
specifically when using the RM+ regret minimizer. It would
be interesting to prove when this works more generally. Here
we make the simple observation that we can compute both
averages, and simply use the one with better practical perfor-
mance, even in settings where only the uniform average is
guaranteed to converge.

Quantal Response Equilibrium (QRE) Ling, Fang, and
Kolter (2018) show that a reduced-normal-form logit QRE
can be expressed as the convex-concave saddle-point prob-
lem (7) where d1 and d2 are the (convex) dilated en-
tropy functions usually used in first-order methods (FOMs)
for solving EFGs (Hoda et al. 2010; Kroer et al. 2015;
2018). This saddle-point problem can be solved using FOMs,
which would lead to fast convergence rate due to the strongly
convex nature of the dilated entropy distance (Kroer et al.
2018). However, until now, no algorithms based on local re-
gret minimization at each decision point have been known
for this problem. Because the dilated entropy function sep-
arates into a sum over negative entropy terms at each deci-
sion point it can be incorporated as a convex loss in LRD.
Combined with any regret-minimization algorithm that al-
lows convex functions over the simplex, this leads to the
first regret-minimization algorithm for computing (reduced-
normal-form) logit QREs.

Perturbed EFGs and Equilibrium Refinement Equilib-
rium refinements are Nash equilibria with additional impor-
tant rationality properties. Such equilibria have rarely been
used in practice due to scalability issues. Recently, fast al-
gorithms for computing approximate refinements were intro-
duced (Kroer, Farina, and Sandholm 2017; Farina, Kroer, and
Sandholm 2017). Theorem 1 gives a new tool for construct-
ing such methods: it immediately implies correctness of the
method of Farina, Kroer, and Sandholm (2017), while also
allowing new types of refinements and regret minimizers.

Erratum about Alternation in CFR+

Several tweaks to speed up the convergence of CFR have
been proposed. The state of the art is CFR+ (Tammelin et
al. 2015). CFR+ consists of three tweaks: the RM+ regret
minimizer, linear averaging, and alternation. RM+ can be
applied in our setting as well; it is simply an alternative regret
minimizer for linear losses over a simplex. We described
linear averaging earlier in this paper. Finally, alternation is
the idea that at iteration t, we provide Player 2 with the utility
vector associated with the current iterate of Player 1, rather
than that of the previous iteration, as is normally done in
regret minimization. Figure 3 illustrates how this works, in
contrast with Figure 2 which shows the usual flow. Tammelin
et al. (2015) state that they prove convergence of CFR+;
however their proof relies on the folk theorem that links Nash
equilibrium and regret. That folk theorem is only proven for
the case where no alternation is applied. We show below that
the theorem does not hold with alternation!

X

Y

`t−1X xt

yt`t−1Y

`tX
X

Y

xt+1

`tY yt+1

· · ·· · ·

Figure 3: The alternation method for CFR in games. The
loss at iteration t for y is computed with xt. The symbol
denotes computation/construction of the loss function.

Observation 1. Let the action spaces for the players be
X = Y = [0, 1], and let `tX : x 7→ x ·yt, `tY : y 7→ −y ·xt+1

be bilinear loss functions (the superscript t+ 1 comes from
the use of alternation—see Figure 3). Consider the sequence
of strategies xt = t mod 2, yt = (t+ 1) mod 2. A simple
check reveals that after 2T iterations, the average regrets
of the two players are both 0. Yet, the average strategies
x̄2T = ȳ2T = 0.5 do not converge to a saddle point of xy.

This observation should be seen as more of a theoretical
issue than practical; alternation has been used extensively
in practice, and the problem that we show does not seem to
come up for nondegenerate iterates (at least for CFR+; it
may explain some erratic behavior that we have anecdotally
observed with other regret minimization algorithms when
using alternation). However, because of this issue, it is now
unknown whether the CFR+ algorithm is sound or merely
a heuristic that might converge slower or not even converge
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to an equilibrium at all. By our counterexample, if CFR+ is
sound, the proof will need to go through a different theorem
than the folk theorem, and may need to leverage specific struc-
ture of the regret minimizer, or may even need constraints on
the initialization (for example, starting from the interior of
the strategy space).

Experiments
We conducted experiments on two EFG settings. The first
game is Leduc 5 poker (Southey et al. 2005), a standard
benchmark in imperfect-information game solving. There is
a deck consisting of 5 unique cards with 2 copies of each.
There are two rounds. In the first round, each player places an
ante of 1 in the pot and receives a single private card. A round
of betting then takes place with a two-bet maximum, with
Player 1 going first. A public shared card is then dealt face up
and another round of betting takes place. Again, Player 1 goes
first, and there is a two-bet maximum. If one of the players
has a pair with the public card, that player wins. Otherwise,
the player with the higher card wins. All bets in the first
round are 1, while all bets in the second round are 2.

The second game is a variant of Goofspiel (Ross 1971), a
bidding game where each player has a hand of cards num-
bered 1 to N . A third stack of N cards is shuffled and used
as prizes: each turn a prize card is revealed, and the players
each choose a private card to bid on the prize, with the high
card winning, the value of the prize card is split evenly on
a tie. After N turns all prizes have been dealt out and the
payoff to each player is the sum of prize cards that they win.
We used N = 4 in our experiments.

We conducted three types of experiment, as described in
the following subsections, respectively. Our code is parallel
and the experiments were conducted on a machine with 8
cores, but the results are not about timing, so they would be
identical even on a single core. We used alternation (Figure 3)
only in the implementation of CFR+; all other algorithms
use the flow of Figure 2.

Entropic Regularization Applied to Finding a
Quantal Response Equilibrium
First we investigated a setting where no previous regret-
minimization algorithms based on minimizing regret locally
existed: the computation of logit QREs via LRM and our
more general convex losses. Ling, Fang, and Kolter (2018)
used Newton’s method for this setting, but, as with Nash
equilibrium, second-order algorithms do not scale to large
games (this is why CFR+ has been so successful for cre-
ating human-level poker AIs). We compared how quickly
we could compute a logit QRE1 compared to how quickly
a Nash equilibrium could be computed, in order to under-
stand the size of games for which we can find a QRE with
our approach. To do this, we ran LRM with online gradient
descent (OGD) at each decision point. Because OGD is not
guaranteed to stay within the simplex at each iteration, we
needed to project onto the simplex. There are multiple fast

1For simplicity, we computed a logit QRE with parameter λ = 1.
However, our construction can easily be extended to handle any
positive value of λ.

ways of doing so, for example, a binary search (Duchi et al.
2008). The results are in Figure 4. LRM performs extremely
well. In Goofspiel it converges vastly faster than CFR+, and
in Leduc 5 it converges at a rate comparable to CFR+ and
eventually becomes faster. This shows that logit QRE compu-
tation via LRM likely scales to extremely large EFGs, such
as real-world-sized poker games (since CFR+ is known to
scale to such games).
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Figure 4: The QRE saddle-point gap as a function of the
number of iterations for each game. The convergence rates
of CFR+ for Nash equilibrium is shown for reference.

Quadratic Regularization: Using Strong Convexity
to Converge Faster
In the second set of experiments we investigated the speed of
convergence for solving `2-regularized EFGs. In other words,
at each decision point, we added to the loss a term α‖z‖2,
where z is the strategy at that decision point. Again we in-
cluded the convergence rate of standard CFR and CFR+ for
Nash equilibrium computation as a benchmark. The results
for Leduc 5 are in Figure 5. Solving the regularized game is
significantly faster than computing a Nash equilibrium via
CFR+, except for extremely small amounts of regularization.
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Figure 5: The saddle-point gap as a function of the number
of iterations for `2-regularized Leduc 5 for varying amounts
of regularization α. The convergence rates of CFR+ for Nash
equilibrium are shown for reference (dashed curves).
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The best speed is associated with an interior value of α.
This is because there is a tradeoff between stronger convex-
ity (achieved by larger α) and smaller loss function values
(achieved by smaller α). Algorithm 2 complements Algo-
rithm 1 by providing pseudocode for the local regret mini-
mizers Rj that implement the quadratic regularization we
just discussed.

Algorithm 2 Local regret minimizers used in the quadratic
regularization experiments
1: functionRj .INITIALIZE( )
2: self.x← any strategy in Xj = ∆nj (we used 1/nj)

1: functionRj .OBSERVELOSS(`)
2: x̃← self.x− 1

2α
√
t
∇`(xt)

3: self.x← project x̃ onto Xj = ∆nj

1: functionRj .RECOMMEND( )
2: return self.x

Opponent Exploitation While Staying Close to a
Safe Strategy
In the third set of experiments we investigated the perfor-
mance of LRM in a single-agent-learning setting: learning
how to exploit a static opponent where we observe repeated
samples from their strategy. We considered a setting where
the exploiter wishes to maximally exploit subject to stay-
ing near a pre-computed Nash equilibrium in order to avoid
opening herself up to exploitability (Ganzfried and Sandholm
2011). We modeled this in a new way: as a regularized online
SDM problem, where the loss for the exploiter is

`t : x 7→ −µ(x)>Aµ(yt) + αD(x‖xNE) (8)

where yt is the t’th observation from the opponent’s strategy
and D(x‖xNE) is the dilated `2-based Bregman divergence
between the NE strategy xNE and x. The opponent’s subop-
timal strategy was computed by running CFR+ until a gap
of 0.1 was reached. We stopped the training of the exploiter
after 5000 iterations or when an average regret of 0.0005 was
reached, whichever happened first. Figure 6 shows the results.
The “utility increase” line shows how much the agent gains
by moving away from the Nash equilibrium and towards
an exploitative strategy, while the “exploitability” shows to
what extent the agent thereby opens herself up to being ex-
ploited by her nemesis, that is, a best-response strategy of
the opponent. We see that this model can indeed be used as a
scalable proxy for trading off exploitation and exploitability
by varying α.

Conclusions and Future Research
We presented laminar regret decomposition (LRD), a new de-
composition of the regret associated with a sequential action
space into regrets associated with individual decision points.
We developed our technique for general compact convex sets
and convex losses at each decision point, thus providing a gen-
eralization of CFR beyond simplex decision points and linear
loss. We then showed that our results lead to a new class of
regret-minimization algorithms that solve sequential decision
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Figure 6: The utility increase from exploitation, and the re-
sulting increase in the agent’s exploitability, as a function of
decreasing penalization on distance from Nash equilibrium
in (8). The horizontal line shows the value of best responding
to (that is, maximally exploiting) the opponent strategy.

making problems by minimizing regret locally at each deci-
sion point. Although more general, our proof also provides a
new perspective on the CFR algorithm in terms of our regret
decomposition, and we explained the need for weighting by
reach as a consequence of averaging in sequence form. We
then showed that our approach can be used to compute reg-
ularized equilibria as well as Nash equilibrium refinements,
and gave the first regret-minimization algorithm for com-
puting (reduced-normal-form) quantal response equilibrium
(QRE) (based on local regrets). We showed experimentally
that our framework, laminar regret minimization (LRM), can
be used to compute QREs in extensive-form games (EFGs)
at a rate that is comparable to Nash equilibrium finding using
CFR+, thus yielding the first algorithm for computing QREs
in large EFGs. We also showed that `2-regularized equilib-
rium can be computed very quickly with out method. Finally,
we showed how our approach can be used as a new approach
to opponent exploitation, and to control the tradeoff between
exploitation and exploitability.

Our algorithms that use (quadratic) regularization con-
verge orders of magnitude faster than the fastest equilibrium-
finding algorithm, CFR+. This is despite the fact that we
simply used an unoptimized off-the-shelf implementation
of online gradient descent. The reason is that the approach
capitalizes on the strong convexity introduced by the regu-
larization. The algorithms do not converge to a Nash equi-
librium, but to a regularized equilibrium. Their speed sug-
gests a promising new family of equilibrium-finding algo-
rithms. One could start with more regularization, and grad-
ually decrease the regularization to achieve convergence to
Nash equilibrium. One would need to set the rate of un-
smoothing appropriately in order to achieve convergence
and to also get the speed benefit from the more smoothed
earlier iterations. Equilibrium-finding algorithms based on
unsmoothing already exist (Nesterov 2005; Hoda et al. 2010;
Kroer et al. 2018), but ours would be quite different. First,
ours are based on a regret-minimization framework instead
of first-order methods. Second, ours leverage our regret de-
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composition so they can operate at the decision-point level,
thereby having a better understanding of the problem struc-
ture and allowing different algorithmic strategies to be used
in different parts of the search space, etc.

Another opportunity presented by the strong convexity
of the laminar losses is to use accelerated methods. This
could lead to a faster theoretical convergence rate than that of
CFR+ for Nash equilibrium, and could likely be exploited in
practice also. Furthermore, we used online gradient descent
for convenience, but one could likely employ a projection-
free algorithm and thus have the computational cost at each
decision point be the same as for CFR+ while having a faster
convergence rate.

Another future direction is to extend the very recent im-
provements to CFR and CFR+ (Brown and Sandholm 2019),
which were developed in parallel with this paper, to our set-
ting. This may involve two directions: 1) generalizing those
results to our more general settings, and 2) using those tech-
niques to enhance the local regret minimizers at each decision
point in our framework.

It would also be interesting to find further applications
where our new types of decision spaces and loss functions
can be used.
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