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Abstract

We focus on the problem of computing approximate Nash
equilibria in bimatrix games. In particular, we consider the
notion of approximate well-supported equilibria, which is
one of the standard approaches for approximating equilibria.
It is already known that one can compute an ε-well-supported
Nash equilibrium in time nO(logn/ε2), for any ε > 0, in
games with n pure strategies per player. Such a running
time is referred to as quasi-polynomial. Regarding faster al-
gorithms, it has remained an open problem for many years
if we can have better running times for small values of the
approximation parameter, and it is only known that we can
compute in polynomial-time a 0.6528-well-supported Nash
equilibrium. In this paper, we investigate further this question
and propose a much better quasi-polynomial time algorithm
that computes a (1/2 + ε)-well-supported Nash equilibrium

in time nO(log logn
1
ε /ε2), for any ε > 0. Our algorithm is

based on appropriately combining sampling arguments, sup-
port enumeration, and solutions to systems of linear inequal-
ities.

Keywords
Algorithmic game theory, bimatrix games, Nash equilibria,
approximate Nash equilibria.

1 Introduction
We revisit a fundamental by now problem in algorithmic
game theory: computing approximate Nash equilibria in bi-
matrix games. Right from the outset of the interplay between
economics and computation, a couple of decades ago, one
of the driving research questions has been to determine the
complexity of computing Nash equilibria in non-cooperative
games, see Chapter 2 of (Nisan et al. 2007). A Nash equi-
librium is a strategy profile where no player has any incen-
tive to deviate, and finding equilibria is important, among
others, for predicting strategic behavior, and also for under-
standing the difficulty of reaching stable points in such com-
petitive situations. Eventually, the problem turned out to be
much challenging, even for two players, and ever since the
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first negative results for finding exact equilibria were estab-
lished in (Daskalakis, Goldberg, and Papadimitriou 2009;
Chen, Deng, and Teng 2009), the research community has
focused on computing approximate Nash equilibria. Al-
though this is a relaxation of the initial algorithmic question,
approximate equilibria still form an appealing concept and
can be quite useful in practical settings, see e.g. the recent
work of (McCarthy et al. 2018).

Even for approximate Nash equilibria, efficient algo-
rithms have been hard to obtain for all interesting notions
of approximation. The more standard and popular concept
of approximation, dictates that no player can gain much by
deviating to a different strategy. This is referred to as an ε-
Nash equilibrium, where ε is the maximum gain allowed by
a deviation. So far, it is known that we can compute such ap-
proximate equilibria in time nO(logn/ε2), which is a quasi-
polynomial time algorithm (quasi-PTAS), for any constant
ε > 0 (Lipton, Markakis, and Mehta 2003). If we insist
on polynomial time, then efficient algorithms exist only for
ε ≥ 0.3393 (Tsaknakis and Spirakis 2008). A strengthening
of this concept is that of ε-well-supported Nash equilibrium,
for which the picture is even worse. An ε-well-supported
Nash equilibrium is a strategy profile in which the expected
payoff of any pure strategy played with positive probability
(i.e., in the support of the mixed strategy of some player) is
at most ε less than the best-response payoff against the strat-
egy of the other player. We can still have a quasi-polynomial
time algorithm for this stronger notion (Kontogiannis and
Spirakis 2010), for any constant ε > 0, but when it comes to
polynomial time, the best known algorithm works only for
ε ≥ 0.6528 (Czumaj et al. 2018). Hence, a major open ques-
tion is whether we can have polynomial time algorithms for
smaller values of ε.

Our focus in this work is on the notion of well-supported
equilibria. Note that since any ε-well-supported Nash equi-
librium is also an ε-Nash equilibrium (the other direction
does not always hold), any algorithmic result directly im-
plies the same approximation for ε-Nash equilibria. Given
the difficulty of going from quasi-polynomial to simply
polynomial running times, we take an intermediate step and
pose the following question: Is it possible to beat the 0.6528-
approximation by quasi-polynomial algorithms of better
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running time? In other words, if we allow non-polynomial
time algorithms, can we achieve a better running time than
nO(logn), for values of ε below 0.6528?

1.1 Our Contribution
We provide a positive answer to the above question, and
our main result is a new and faster algorithm for finding a
(1/2 + ε)-well-supported Nash equilibrium, for any con-
stant ε > 0 in 2-player games. The complexity of the al-

gorithm is nO(log logn
1
ε /ε2), where n is the number of avail-

able pure strategies to the players. Although this is still not
polynomial, the exponent in the running time is significantly
improved (from O(log n) to O(log log n)) and asymptoti-
cally closer to a constant than the previously known results.
Our result is based on combining sampling arguments and
support enumeration with solving carefully constructed lin-
ear systems. The starting point to design the algorithm in-
volves sampling followed by enumerating possible strategy
profiles, as in some of the previous works (Lipton, Markakis,
and Mehta 2003; Kontogiannis and Spirakis 2010). What
differs from previous algorithms is that our analysis allows
for an enumeration of candidate profiles over a much re-
duced search space. To achieve this, our main technical in-
sight is captured by Theorem 2 in Section 3, establishing that
for one of the players it suffices to focus on mixed strategies
of support size O(log log n). On top of that, the strategy of
the other player can then be found by solving an appropriate
system of linear inequalities within each enumeration step.

1.2 Further Related Work
For the simpler class of zero-sum games, the works of
(Althöfer 1994; Lipton and Young 1994) were the first to
demonstrate the existence of approximate maxmin strate-
gies with logarithmic support. This was extended for general
2-player normal-form games, yielding quasi-polynomial al-
gorithms for computing both ε-Nash equilibria and ε-well-
supported Nash equilibria in (Lipton, Markakis, and Mehta
2003) and (Kontogiannis and Spirakis 2010), respectively.
Similar results for games with a higher number of play-
ers have also been obtained, e.g., in (Lipton, Markakis,
and Mehta 2003; Babichenko, Barman, and Peretz 2017;
Hémon, de Rougemont, and Santha 2008; Czumaj, Fa-
soulakis, and Jurdziński 2017a).

Regarding polynomial time algorithms for computing ad-
ditive ε-Nash equilibria in bimatrix games, there was a se-
ries of works achieving different values of approximation.
Namely, for ε = 3/4 (Kontogiannis, Panagopoulou, and
Spirakis 2009), for ε = 1/2 (Daskalakis, Mehta, and Pa-
padimitriou 2009), for ε ≈ 0.38 (Daskalakis, Mehta, and
Papadimitriou 2007; Czumaj, Fasoulakis, and Jurdziński
2017b; Czumaj et al. 2018), for ε ≈ 0.36 (Bosse, Byrka,
and Markakis 2010), and finally for ε = 0.3393 (Tsaknakis
and Spirakis 2008), which is also the currently best known
approximation. Furthermore, for symmetric bimatrix games
there is an algorithm for computing (1/3+ ε)-Nash equilib-
ria (Kontogiannis and Spirakis 2011), for any ε > 0.

On the other hand, for the stronger notion of approx-
imation of additive ε-well-supported Nash equilibria, the

picture is more limited. There were polynomial time algo-
rithms for ε = 2/3 (Kontogiannis and Spirakis 2010), for
ε ≈ 0.6619 (Fearnley et al. 2016), and finally for ε = 0.6528
(Czumaj et al. 2018). For the specific classes of win-lose
and symmetric games, there are polynomial time algorithms
achieving an approximation of 1/2 (Kontogiannis and Spi-
rakis 2010), and (1/2 + ε), for any constant ε > 0 (Czu-
maj, Fasoulakis, and Jurdziński 2014), respectively. Further-
more, in bimatrix games where both payoff matrices are
symmetric, a 1/2-well-supported Nash equilibrium can be
found in polynomial time (Czumaj, Fasoulakis, and Jur-
dziński 2017b). Another interesting special case is that of
sparse payoff matrices, for which a PTAS has been recently
obtained (Barman 2018). Finally, in (Anbalagan et al. 2013;
2015) the authors studied the size of the support required at
approximate well-supported Nash equilibria.

Negative results have also been established, as to what
we can hope to achieve algorithmically. The results of
(Babichenko, Papadimitriou, and Rubinstein 2016; Rubin-
stein 2016) show that under certain assumptions, one cannot
hope for better than quasi-polynomial time algorithms for
approximate equilibria. Also, stronger notions of approxi-
mation have been proved to be hard in (Etessami and Yan-
nakakis 2010), e.g., if we ask to be geometrically close to an
exact equilibrium. Moreover, there are negative results for
approximate Nash equilibria subject to further constraints
(Deligkas, Fearnley, and Savani 2018), e.g., with regard to
the social welfare they can guarantee.

Regarding empirical behavior, there have been numer-
ous works, spanning several decades, on heuristic algo-
rithms and experimental comparisons for exact Nash equi-
libria. These are algorithms that usually have worst-case
exponential time, but may behave very well in practice or
for special classes of games. This line of works originates
with the celebrated Lemke-Howson algorithm (Lemke and
Howson 1964), and for more recent works, see among oth-
ers (Bhat and Leyton-Brown 2004; Thompson, Leung, and
Leyton-Brown 2011) for the class of action-graph games and
(Porter, Nudelman, and Shoham 2008) for the support enu-
meration method. More recently, there have also been exper-
imental evaluations for methods that compute approximate
equilibria, as reported in (Tsaknakis, Spirakis, and Kanoulas
2008; Kontogiannis and Spirakis 2011; Fearnley, Igwe, and
Savani 2015), highlighting the need for creating new fami-
lies of testbeds for such algorithms.

2 Definitions
We consider finite, 2-player, bimatrix games defined by a
pair of matrices, (R,C) ∈ [0, 1]n×n, where R is the payoff
matrix of the row player and C is the payoff matrix of the
column player. We assume the matrices are normalized so
that every entry lies in the interval [0, 1]. We also assume
each player has n pure strategies at her disposal, and we let
[n] = {1, 2, . . . , n} denote the set of strategies. This is with-
out loss of generality, since in the case that the players do not
have the same number of available pure strategies, we can
simply add dummy strategies to equalize them. If the row
player plays the pure strategy i, and the column player plays
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the pure strategy j, then Rij and Cij are the payoffs derived
for the row player and the column player respectively.

The players are also allowed to play a mixed strat-
egy, which is simply a probability distribution on the
set of pure strategies. We will denote a mixed strategy
by a column vector, so that for a mixed strategy x =
(x(1), x(2), . . . , x(n))T , the probability x(i) corresponds to
the probability of playing the i-th pure strategy. Obviously,
the probabilities need to satisfy that

∑
i∈[n] x(i) = 1. Pure

strategies can also be written as mixed strategies, in vector
format, and we will denote by ei the vector corresponding
to the i-th pure strategy, i.e., the column vector whose i-th
coordinate equals 1 and all the rest are equal to 0. If x is a
mixed strategy of the row player and y is a mixed strategy
of the column player, then the expected payoff of the row
player equals

uR(x, y) =
∑
i∈[n]

∑
j∈[n]

x(i)y(j)Rij = xTRy.

Similarly, the expected payoff of the column player can be
written as uC(x, y) = xTCy.

An important notion both in our work and in many previ-
ous related works is the support of a mixed strategy x, de-
noted by supp(x). This is simply the set of pure strategies
that are played with positive probability under the mixed
strategy x:

supp(x) = {i ∈ [n] : x(i) > 0}.
Most algorithms on approximating Nash equilibria are

based on finding strategies with small support. Furthermore,
the following form of simplified, small support mixed strate-
gies is crucial for our algorithm.
Definition 1. A mixed strategy x is a k-uniform strategy if
and only if x(i) ∈ {0, 1

k ,
2
k , . . . , 1}, for any i ∈ [n].

Hence, for a k-uniform strategy x, it holds that
|supp(x)| ≤ k, and as an example, the uniform dis-
tribution over all strategies is the n-uniform strategy
(1/n, 1/n, . . . , 1/n)T . When looking for strategies with
small support in the sequel, we will focus on k-uniform
strategies for appropriate values of k. We continue now with
defining the relevant equilibrium notions.
Definition 2. A strategy profile (x∗, y∗) is a Nash equilib-
rium if and only if, for any i ∈ [n],

x∗TRy∗ ≥ eTi Ry∗, and

x∗TCy∗ ≥ x∗TCei.

In other words the players mutually play best-response
strategies and no player has an incentive to deviate. Note
that in the definition, it suffices to check only deviations to
pure strategies (a profitable deviation by a mixed strategy
implies there exists a deviation by a pure strategy). Perhaps
the most natural way to relax this requirement is the notion
of an ε-Nash equilibrium.
Definition 3. A strategy profile (x∗, y∗) is an ε-Nash equi-
librium if and only if, for any i ∈ [n],

x∗TRy∗ + ε ≥ eTi Ry∗, and

x∗TCy∗ + ε ≥ x∗TCei.

In other words, no player can gain more than ε by deviat-
ing to another strategy.

Finally, to define the stronger notion of approximation
that we will work with, we will say that a strategy is an ε-
best-response strategy to the other player’s action, if the ex-
pected payoff of playing this strategy is at most ε less than
the payoff of the best-response strategy against the other
player’s action.

Definition 4. A strategy profile (x∗, y∗) is an ε-well-
supported Nash equilibrium if and only if, for any i ∈ [n],
for any k ∈ supp(x∗), and for any ` ∈ supp(y∗),

eTkRy∗ + ε ≥ eTi Ry∗, and

x∗TCe` + ε ≥ x∗TCei.

Hence, in an ε-well-supported Nash equilibrium, any
strategy in the support of x∗ is an ε-best-response strategy
against y∗ and vice versa. It is easy to see that Definition 4
implies Definition 3, thus an ε-well-supported Nash equilib-
rium is also an ε-Nash equilibrium.

3 Computing approximate well-supported
Nash equilibria

As already mentioned, the currently best approximation
by polynomial time algorithms achieves a 0.6528-well-
supported Nash equilibrium. Furthermore, in the work of
(Czumaj, Fasoulakis, and Jurdziński 2014), the authors pro-
vided a polynomial time algorithm for computing a (1/2 +
ε)-well-supported Nash equilibrium, for any constant ε > 0,
but under the condition that there exists an exact Nash equi-
librium, where the payoffs for both players are simultane-
ously no greater or greater than 1/2. Specifically, as it was
pointed out in section 3.3 of (Czumaj, Fasoulakis, and Ju-
rdziński 2014), in the case when both values of a Nash
equilibrium are no greater than 1/2, a 1/2-well-supported
Nash equilibrium can be found by using a linear program
in polynomial time. On ther other hand, in the case when
both values are greater than 1/2, a (1/2 + ε)-well-supported
Nash equilibrium can be found with support enumeration
of strategies with small support and systems of linear con-
straints in polynomial time. We state their result in the fol-
lowing theorem.

Theorem 1. (Czumaj, Fasoulakis, and Jurdziński 2014). For
bimatrix games where there exists a Nash equilibrium such
that the payoffs for the two players are either both greater
or both no greater than 1/2, there is a polynomial time algo-
rithm for computing a (1/2 + ε)-well-supported Nash equi-
librium, for any constant ε > 0.

Thus, to obtain a polynomial time (1/2 + ε)-
approximation, it suffices to handle the remaining case, i.e.,
games where in all exact Nash equilibria, the payoff of one
player is no greater than 1/2 and the payoff of the other
player is greater than 1/2. The main insight of our work is the
following theorem, which establishes that for such games,
we can focus on strategies with much smaller support for
one of the two players.
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Theorem 2. Let (R,C) ∈ [0, 1]n×n be a bimatrix game,
such that there exists a Nash equilibrium (x∗, y∗) where the
payoff of the row player satisfies that uR = x∗TRy∗ ∈
( 12 , 1], and the payoff of the column player satisfies that
uC = x∗TCy∗ ∈ [0, 1

2 ]. Then, for any ε > 0, there exists a
strategy profile (x̂, ŷ), such that,

• x̂ is a k-uniform strategy with k = ln(n)/ε2, and ŷ is an
`-uniform strategy with ` = ln ln(n

1
ε )/ε2,

• supp(x̂) ⊆ supp(x∗), and supp(ŷ) ⊆ supp(y∗),
• (x̂, ŷ) is a (1/2 + ε)-well-supported Nash equilibrium,
• for any i ∈ supp(x̂), eTi Rŷ ≥ uR − ε > 1/2− ε,

• for any j ∈ [n], x̂TCej ≤ uC + ε ≤ 1/2 + ε.

We postpone the proof of Theorem 2 till Section 4, but
we elaborate further now on some consequences. First, an
analogous statement is true in the reverse case where uR ∈
[0, 1

2 ], and uC ∈ ( 12 , 1]. Second, the most important aspect
of the theorem is the fact that |supp(ŷ)| ≤ ln ln(n

1
ε )/ε2.

Although Theorem 2 is purely an existential statement, it al-
lows for a brute-force enumeration of such strategies in time
that is much better than nO(logn). Finally, one still needs to
worry that the support of x̂ may be larger, but as we will see,
this can be taken care of by avoiding any enumeration for
this player, and solving instead a linear system of inequali-
ties.

Algorithm 1

Input: A bimatrix game (R,C) ∈ [0, 1]n×n and a
parameter ε ∈ (0, 1].

1. Run the algorithm of (Czumaj, Fasoulakis, and
Jurdziński 2014). If you find a (1/2 + ε)-well-
supported Nash equilibrium, then STOP.

2. Enumerate all the multisets of size (ln lnn
1
ε )/ε2

among the pure strategies of the column player.
• Every multiset corresponds to an `-uniform

strategy ŷ for the column player, with ` =

(ln lnn
1
ε )/ε2. Given ŷ, identify the set A ⊆ [n]

of the pure strategies i of the row player such
that eTi Rŷ > 1/2− ε.

• For this set A, solve the linear system (1), de-
scribed below. If you find a solution x̂, then
STOP and return the profile (x̂, ŷ).

3. Enumerate all the multisets of size (ln lnn
1
ε )/ε2

for the row player.
• As before, every such multiset corresponds to

a strategy x̂ of the row player with support at
most (ln lnn

1
ε )/ε2. Given x̂, find the set B ⊆

[n] of the pure strategies j of the column player
such that x̂TCej > 1/2− ε.

• For this set B, solve the linear system (2). If
you find a solution ŷ, then STOP and return the
profile (x̂, ŷ).

Linear System (1)

x̂(i) ≥ 0, ∀i ∈ A,

x̂(j) = 0, ∀j 6∈ A,
n∑

i=1

x̂(i) = 1,

x̂TCej ≤ 1/2 + ε, for any j ∈ [n].

Linear System (2)

ŷ(j) ≥ 0, ∀j ∈ B,

ŷ(i) = 0, ∀i 6∈ B,
n∑

j=1

ŷ(j) = 1,

eTi Rŷ ≤ 1/2 + ε, for any i ∈ [n].

3.1 The algorithm
We are now ready to state the algorithm for computing
(1/2 + ε)-well-supported Nash equilibria, for any constant
ε > 0. Since we cannot compute an exact Nash equilib-
rium, we first try to see if the input game falls within the
cases of Theorem 1, by running the algorithm of (Czumaj,
Fasoulakis, and Jurdziński 2014). If this does not succeed,
we then make use of Theorem 2, and we explore both pos-
sible cases: uC ∈ [0, 1

2 ], uR ∈ ( 12 , 1], and uR ∈ [0, 1
2 ],

uC ∈ ( 12 , 1].
Given Theorem 2, the following statement is the main

conclusion of our work.

Corollary 1. For any bimatrix game (R,C) ∈ [0, 1]n×n,
there is an algorithm for computing a (1/2 + ε)-well-
supported Nash equilibrium, for any constant ε > 0, in time

nO(log logn
1
ε /ε2).

Proof. We know that every game has at least one exact Nash
equilibrium by Nash’s theorem (Nash 1951). Fix one such
equilibrium and let uR be the payoff of the row player and
uC be the payoff of the column player respectively. Note
that we cannot know in advance any information about uR

and uC , and hence we need to explore all possible cases. If
both payoff values are no greater than 1/2 or both greater
than 1/2, then step 1 of our algorithm will terminate with a
(1/2 + ε)-well-supported Nash equilibrium in polynomial-
time, given the result of (Czumaj, Fasoulakis, and Jurdziński
2014). Suppose now that uR ∈ (1/2, 1] and uC ∈ [0, 1/2],
which corresponds to step 2 of our algorithm. By Theorem
2, we know there exists a strategy profile that has the proper-
ties we need, along with additional properties on the payoffs
(conditions 4 and 5 of Theorem 2). It is precisely this strat-
egy profile that we attempt to find in step 2 of the algorithm.
Since we know its existence, we then construct the set A as
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the subset of pure strategies that satisfy condition 4 of Theo-
rem 2 and we give this as input to the linear system. Hence,
we have a guarantee that there will be at least one occasion in
the enumeration process where the linear system will have
a solution and the profile returned will satisfy the desired
approximation. Here we need to clarify that our algorithm
may return a strategy profile (x̂, ŷ) that is a (1/2 + ε)-well-
supported equilibrium but different from the strategy profile
described by Theorem 2. This is of no concern, since our
goal is still achieved.

In the case that uC ∈ (1/2, 1] and uR ∈ [0, 1/2], then
we can apply completely analogous arguments as in step 2
of the algorithm. Hence, in all cases, the algorithm returns a
(1/2 + ε)-well-supported Nash equilibrium.

To find the complexity of the algorithm we need to
find first the number of all possible multisets of size
(ln lnn

1
ε )/ε2, which is equal to(
n+ (ln lnn

1
ε )/ε2 − 1

(ln lnn
1
ε )/ε2

)
= nO((log logn

1
ε )/ε2).

In worst case, we need to examine these multisets both for
the row and the column player. For any multiset under exam-
ination, the algorithm performs polynomially many steps.
In particular, note that for every multiset, we need to solve
a system of linear inequalities. But since this can be done
in polynomial time, the total complexity of the algorithm is

nO((log logn
1
ε )/ε2), as claimed.

4 Proving Theorem 2
For the proof of Theorem 2, we will give a probabilistic ar-
gument inspired by previous works such as (Althöfer 1994;
Lipton and Young 1994; Lipton, Markakis, and Mehta 2003;
Czumaj, Fasoulakis, and Jurdziński 2014). In particular,
given a Nash equilibrium profile (x∗, y∗), satisfying the
properties stated in the theorem, we will perform sampling
with replacement on the equilibrium strategies x∗ and y∗,
creating two empirical distributions x̂ and ŷ. Note that The-
orem 2 is purely an existential result, we do not need to com-
pute the Nash equilibrium from which we do our sampling.

We will analyze the empirical distributions we create by
using the well-known Hoeffding’s inequality, which is stated
next.
Lemma 1 (Hoeffding’s inequality (Hoeffding 1963)). Let
Y1, Y2, . . . , Y`, be ` independent random variables in the in-

terval [0, 1], with Y = 1
`

∑̀
i=1

Yi, and E[Y ] be the expectation

of of the random variable Y . Then, for any ε > 0, it holds
that Pr

[
|Y − E[Y ]| ≥ ε

]
≤ 2e−2ε

2`.

Proof of Theorem 2. Fix ε > 0, and consider a game
that has a Nash equilibrium profile (x∗, y∗), for which the
expected payoffs of the two players satisfy that uR =
x∗TRy∗ ∈ ( 12 , 1] and uC = x∗TCy∗ ∈ [0, 1

2 ]. We sample
with replacement on the equilibrium strategies x∗ and y∗,
creating two empirical distributions x̂ and ŷ, respectively.
Specifically, for the row player we sample ` times, with
` = ln(n)/ε2, from the pure strategies in the support of the

mixed strategy x∗, according to the probability distribution
of x∗. This corresponds to sampling a multiset among the
support of x∗, since each pure strategy may be sampled mul-
tiple times. Hence, the sampling process yields an `-uniform
mixed strategy x̂ (the empirical distribution), where for each
i ∈ [n], the probability x̂(i) is the fraction of the number of
appearances of pure strategy i in the sampling, divided by
`. For the column player we do a similar procedure creating
a k-uniform strategy profile ŷ, with k = ln(ln(n

1
ε ))/ε2, by

sampling from the distribution y∗. This way, we satisfy the
first condition of Theorem 2.

We take a closer look now at distribution ŷ. For each
sample t ∈ [k], let Jt be a random variable, whose value
equals the index of the column that we sampled. Since we
sample from y∗, we have that Pr

[
Jt = j

]
= y∗(j). The

distribution ŷ that we create from y∗ can be written as
ŷ = (ŷ(1), ŷ(2), . . . , ŷ(n))T with

ŷ(j) =
1

k

k∑
t=1

1{Jt=j}.

By the way that ŷ is created from y∗, it trivially follows that
supp(ŷ) ⊆ supp(y∗) (and similarly supp(x̂) ⊆ supp(x∗)),
thus satisfying the second condition of Theorem 2. We now
focus on establishing the last three conditions of Theorem
2 and consider the random variable eTi Rŷ, for any i ∈ [n],
which expresses the expected payoff of the row player when
she chooses her i-th row while the column player plays ŷ.

We can write this as: eTi Rŷ = 1
k

k∑
t=1

Ri,Jt
. To derive the

expectation of this expression, note that

E[Ri,Jt
] =

n∑
j=1

Pr
[
Jt = j

]
Rij =

n∑
j=1

y∗(j)Rij = eTi Ry∗.

This directly implies that the expectation of eTi Rŷ is equal
to eTi Ry∗. Thus, we can apply Hoeffding’s inequality1 and
establish that for any i ∈ [n]:

Pr
[
eTi Rŷ−eTi Ry∗ ≤ −ε

]
= Pr

[
−eTi Rŷ+eTi Ry∗ ≥ ε

]
≤ e−2ε

2k =
ε2

ln2(n)
. (1)

Similarly, for the strategy x̂, and for any j ∈ [n], we can use
Hoeffding’s inequality and obtain that

Pr
[
|x̂TCej − x∗TCej | ≥ ε

]
≤ 2e−2ε

2` =
2

n2
. (2)

Moving on, we provide an auxiliary observation that we

1To derive inequality (1), we use a simpler variant of Hoeffd-
ing’s inequality, since we do not need to bound the absolute value
of the difference.
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will use shortly. In particular, we have that

Pr
[
∃i ∈ supp(x̂) s.t. eTi Rŷ ≤ eTi Ry∗ − ε

]
= Pr

[
∃i ∈ supp(x̂) s.t. eTi Rŷ ≤ uR − ε

]
≤

∑
i∈supp(x̂)

Pr
[
eTi Rŷ ≤ uR − ε

]
≤ ln(n)

ε2
· ε2

ln2(n)
=

1

ln(n)
. (3)

To see the above implications, recall the fact that uR =
eTi Ry∗, for any i ∈ supp(x̂) ⊆ supp(x∗) (by the definition
of Nash equilibrium). The first inequality holds by the Union
bound and the second inequality holds by (1) and the fact
that |supp(x̂)| ≤ ln(n)/ε2.

In a similar manner, using (2), we can prove that

Pr
[
∃j ∈ [n] s.t. x̂TCej ≥ x∗TCej + ε

]
≤
∑
j∈[n]

Pr
[
x̂TCej ≥ x∗TCej + ε

]
≤ n

2

n2
=

2

n
. (4)

Our goal is to prove that

Pr
[
eTi Rŷ ≥ uR − ε, for all i ∈ supp(x̂),

and x̂TCej ≤ uC + ε, for all j ∈ [n]
]
> 0, (5)

and since by the Nash equilibrium definition we have that
x∗TCej ≤ uC , for any j, it suffices to prove that

Pr
[
eTi Rŷ ≥ uR − ε, for all i ∈ supp(x̂),

and x̂TCej ≤ x∗TCej + ε, for all j ∈ [n]
]
> 0.

Looking at the complement of this event, we obtain that

Pr
[
eTi Rŷ < uR − ε, for some i ∈ supp(x̂),

or x̂TCej > x∗TCej + ε, for some j
]

≤
∑

I⊆supp(x∗)

(
Pr
[
supp(x̂) = I

]
·

Pr
[
eTi Rŷ ≤ uR − ε, for some i ∈ I|supp(x̂) = I

])
+
∑
j∈[n]

Pr
[
x̂TCej ≥ x∗TCej + ε

]
≤ 1

ln(n)

∑
I⊆supp(x∗)

Pr
[
supp(x̂) = I

]
+

2

n

=
1

ln(n)
+

2

n
< 1.

The second inequality holds by (3) and (4). It is easy to
see that the last inequality holds for any n ≥ 6. Thus,
we have proved that the probability of our desired event
is strictly positive, which means that there exists a strat-
egy profile (x̂, ŷ) such that inequality (5) holds, or in other
words there is a strategy profile (x̂, ŷ) such that for any
i ∈ supp(x̂), eTi Rŷ ≥ uR − ε > 1/2 − ε, and for any
j ∈ [n], x̂TCej ≤ uC + ε ≤ 1/2 + ε, since uR > 1/2 and

uC ≤ 1/2. This means we have satisfied the fourth and the
fifth condition of the theorem.

To conclude the proof, we now establish that the strategy
profile (x̂, ŷ) is a (1/2 + ε)-well-supported Nash equilib-
rium. Let i∗ be the best-response strategy of the row player
against the strategy ŷ of the column player. Then, we have
that, for any i ∈ supp(x̂),

eTi∗Rŷ − eTi Rŷ ≤ 1− uR + ε < 1/2 + ε,

the first inequality holds by the fourth condition of the the-
orem, and the second by the fact that uR > 1/2. On the
other hand, let j∗ be the best-response strategy of the col-
umn player against the strategy x̂ of the row player. We have
that, for any j,

x̂TCej∗ − x̂TCej ≤ uC + ε ≤ 1/2 + ε,

the first inequality holds by the fifth condition of the theo-
rem, and the fact that x̂TCej ≥ 0, for any j. The second
inequality holds since uC ≤ 1/2.

5 Conclusions
We have provided an improved algorithm for obtaining a
(1/2+ ε)-well-supported Nash equilibrium. We believe that
given this positive result, even better algorithms may still be
possible for this stronger notion of approximation. A ma-
jor open question that still remains is whether there exists a
polynomial time algorithm for finding a 1/2-well-supported
Nash equilibrium.

We would also like to explore possible applications of our
technique for other notions of approximation. As an exam-
ple, for ε-Nash equilibria, we only know of nO(logn) algo-
rithms when ε < 0.3393. It would be exciting if we can
provide improved running times for low values of ε beyond
0.3393.
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