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Abstract

We study the following multiagent variant of the knapsack
problem. We are given a set of items, a set of voters, and a
value of the budget; each item is endowed with a cost and
each voter assigns to each item a certain value. The goal is
to select a subset of items with the total cost not exceeding
the budget, in a way that is consistent with the voters’ pref-
erences. Since the preferences of the voters over the items
can vary significantly, we need a way of aggregating these
preferences, in order to select the socially best valid knap-
sack. We study three approaches to aggregating voters’ pref-
erences, which are motivated by the literature on multiwin-
ner elections and fair allocation. This way we introduce the
concepts of individually best, diverse, and fair knapsack. We
study the computational complexity (including parameterized
complexity, and complexity under restricted domains) of the
aforementioned multiagent variants of knapsack.

1 Introduction
In the classic knapsack problem we are given a set of items,
each having a cost and a value, and a budget. The goal is
to find a subset of items with the maximal sum of the val-
ues subject to the constraint that the total cost of the selected
items must not exceed the budget. In this paper we are study-
ing the following variant of the knapsack problem: instead
of having a single objective value for each item we assume
that there is a set of agents (also referred to as voters) who
have potentially different valuations (expressed through util-
ities) of the items. When choosing a subset of items we want
to take into account possibly conflicting preferences of the
voters with respect to which items should be selected: in this
paper we discuss three different approaches to how the vot-
ers’ valuations can be aggregated.

Multiagent knapsack forms an abstract model for a num-
ber of real-life scenarios. First, let us note that if the costs
of the items are all the same, then the multiagent knapsack
model collapses to the model for multiwinner elections (Fal-
iszewski et al. 2017) (in the literature on multiwinner elec-
tions, items are often called candidates). Multiwinner vot-
ing rules are applicable in a broad class of scenarios, rang-
ing from selecting a representative committee of experts,

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

through recommendation systems (Lu and Boutilier 2011)1,
to resource allocation and facility location problems. In each
of these settings it is quite natural to consider that differ-
ent items/candidates can incur different costs. Further, algo-
rithms for multiagent knapsack can be viewed as tools for
participatory budgeting (Cabannes 2004), where the author-
ities aggregate citizens’ preferences to decide which of the
potential local projects should obtain funding.

Perhaps the most straightforward way to aggregate voters’
preferences is to select a subset (a knapsack) that maximizes
the sum of the utilities of all the voters over all selected
items. This approach—which we call selecting an individ-
ually best knapsack—subject to differences in methods used
for eliciting voters’ preferences has been taken by Benabbou
and Perny (2016), and in the context of participatory budget-
ing by Goel et al. (2016) and Benade et al. (2017). However,
by selecting an individually best knapsack we can disadvan-
tage even large minorities of voters, which is illustrated by
the following example: assume that the set of items can be
divided into two subsets A1 and A2, that all items have the
same cost, and that 51% of the voters like items from A1

(assigning the utility of 1 to them, and the utility of 0 to
the other items) and the remaining 49% of voters like only
items from A2. An individually best knapsack would con-
tain only items from A1, that is 49% of the voters would be
effectively disregarded.

In this paper we introduce two other approaches to aggre-
gating voters’ preferences for selecting a multiagent knap-
sack. One such approach—which we call selecting a di-
verse knapsack—is inspired by the Chamberlin–Courant
rule (Chamberlin and Courant 1983) from the literature on
multiwinner voting. Informally speaking, in this approach
we aim at maximizing the number of voters who have at
least one preferred item in the selected knapsack. For the
second approach—which is the main focus of the paper and
which we call selecting a fair knapsack—we use the concept
of Nash welfare (Nash 1950) from the literature on fair allo-
cation. Nash welfare is a well-established solution concept
that implements a tradeoff between having an objectively ef-

1An example often described in the literature is when an
enterprise considers which set of products should be pushed
to production—it is natural to view such a problem as an in-
stance of multiwinner elections with products corresponding to the
items/candidates and potential customers to the voters.
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ficient resource allocation (knapsack, in our case), and hav-
ing an allocation which is acceptable for a large population
of agents. Indeed, extensive recent studies in the domain of
fair allocation confirm particularly strong fairness guaran-
tees of Nash welfare (Caragiannis et al. 2016; Moulin 2003;
Darmann and Schauer 2015), and this solution concept has
been applied e.g. in the context of public decision mak-
ing (Conitzer, Freeman, and Shah 2017), online resource al-
location (Freeman, Zahedi, and Conitzer 2017) or transmis-
sion congestion control (Kelly 1997) (therein referred to as
proportional fairness). Thus, our work introduces a new ap-
plication domain—now the goal is to select a set of shared
items—for the concept of Nash welfare. In particular, as a
side note, we will explain that our approach leads to a new
class of multiwinner rules, which can be viewed as gener-
alizations of the Proportional Approval Voting rule beyond
the approval setting.

Apart from introducing the new class of multiagent knap-
sack problems, our contributions are as follows:

(1) We study the complexity of computing an optimal in-
dividually best (IB), diverse, and fair knapsack. This
problem is in general NP-hard, except for the case of
IB knapsack with unarily encoded utilities of the voters
(as the IB knapsack problem is equivalent to the classic
knapsack problem).

(2) We study the parameterized complexity of computing a
diverse and fair knapsack, focusing on the number of
voters.2 We show that for unary-encoded utilities of the
voters computing a diverse knapsack is fixed-parameter
tractable when parameterized by the number of voters.
On the contrary, computing a fair knapsack is W[1]-hard
for the same parameter.

(3) We study the complexity of the considered problems for
single-peaked and single-crossing preferences. We show
that (under unary encoding of voters’ utilities) a diverse
knapsack can be computed in polynomial time when the
preferences are single-peaked or single-crossing, while
computing a fair knapsack remains NP-hard.

Our results are summarized in Table 1. Our main mes-
sage is that fairness comes with a surprisingly high compu-
tational complexity. Indeed, our most unexpected results are
that computing a fair knapsack is W[1]-hard when param-
eterized by the number of voters, and NP-hard on single-
peaked single-crossing domains, with unit-costs, and all util-
ities coming from the set {0, . . . , 6}. This was unforeseen
since by using a recent result of Peters (2018), one can show
that computing a fair knapsack on single-peaked domains
(which are not necessarily single-crossing, i.e., when one of
the assumptions is weakened), with unit-costs, and all util-
ities coming from the set {0, 1} (instead of {0, . . . , 6}, i.e.,
when another assumption is strengthened) is polynomial-
time solvable. Our result required a complex reduction from
the exact set cover problem. Most of our proofs are omitted

2Considering this parameter is relevant, e.g., for the case when
the set of voters is in fact a relatively small group of experts acting
on behalf of a larger population of agents.

Table 1: Overview of our results (for the case of utilities
encoded in unary): Herein, SP and SC abbreviate single-
peaked and single-crossing preferences, respectively, and “#
voters” refers to “when parameterized by the number of vot-
ers”. ∗ (Procaccia, Rosenschein, and Zohar 2008)

Knapsack general SP SC # voters

IB P (equivalent to KNAPSACK) ←
Diverse NP-hard ∗ P P FPT

(Thm. 3) (Thm. 3) (Thm. 4)
Fair NP-hard NP-hard W[1]-hard

(Thm. 5) (Thm. 9) (Thm. 6)

due to the space constraints.3
Most of the our results are presented for the costs and util-

ities of the agents given in the unary-encoding. This makes
our results more relevant for practical applications of our
framework. E.g., for participatory budgeting (PB) one does
not really need more than thousands of values to represent
utilities/costs. Further, by assuming efficient encoding of
the utilities/costs we would make the hardness results less
meaningful—the hardness would simply be an artifact of the
fact that we admit the values of the utilities/costs that are
exponentially large in the number of voters. By assuming
unary encoding we make—on the one hand—the hardness
results stronger, and—on the other hand—more applicable
to the real scenarios that our model represents.

We also show all three problems to be NP-hard in the
non-unary case (Theorems 2 and 5) and prove W-hardness
with respect to the budget (Proposition 1 and Corollary 1).

2 The Model
For a pair of natural numbers i, j ∈ N, i ≤ j, by [i, j] we
denote the set {i, i+ 1, . . . , j}. Further, we let [j] = [1, j].

Let V = {v1, . . . , vn} be the set of n voters and A =
{a1, . . . , am} be the set of m items. The voters have prefer-
ences over the items, which are represented as a utility pro-
file u = (ui(a) | i ∈ [n], a ∈ A): for each i ∈ [n] and a ∈ A
we use ui(a) to denote the utility that vi assigns to a; this
utility quantifies the extent to which vi enjoys a. We assume
that all utilities are nonnegative integers.

Each item a ∈ A comes with a cost c(a) ∈ N, and we
are given a global budget B ∈ N. We call a knapsack a
subset S of items whose total cost does not exceed B, that
is c(S) =

∑
a∈S c(a) ≤ B. Our goal is to select a knap-

sack that would be, in some sense, most preferred by the
voters. Below, we describe three representative rules which
extend the preferences of the individual voters over individ-
ual items to their aggregated preferences over all knapsacks.
Each such a rule induces a corresponding method for select-
ing the best knapsack. Our rules are rooted in concepts from
the literature on fair division and on multiwinner elections:

Individually best knapsack: this is the knapsack S which

3They are available in a long version of this paper under https:
//arxiv.org/abs/1711.04520.
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maximizes the total utility of the voters from the selected
items uIB(S) =

∑
a∈S

∑
vi∈V ui(a). This defines per-

haps the most straightforward way to select the knapsack:
we call it individually best, because the formula uIB(S)
treats the items separately and does not take into account
fairness-related issues. Indeed, such a knapsack can be
very unfair, as discussed in the introduction.

Diverse knapsack: this is the knapsack S that maximizes
the utility uDiv(S) =

∑
vi∈V maxa∈S ui(a). In words,

in the definition of uDiv we assume that each voter cares
only about his or her most preferred item in the knapsack.
This approach is inspired by the Chamberlin–Courant
rule (1983) for multiwinner elections and by classic mod-
els in facility location (Farahani and Hekmatfar 2009).
We call such a knapsack diverse following the convention
from the multiwinner literature (Faliszewski et al. 2017).
Intuitively, such a knapsack represents the diversity of the
opinions among the population of voters; in particular,
if the preferences of the voters are very diverse, such a
knapsack tries to incorporate the preferences of as many
groups of voters as possible at the cost of containing only
one representative item for each “similar” group.

Fair knapsack: we use Nash welfare (Nash 1950) as a so-
lution concept for fairness. Formally, we call a knap-
sack S fair if it maximizes the product uFair(S) =∏
vi∈V

(
1 +

∑
a∈S ui(a)

)
.4 Alternatively, by taking the

logarithm of uFair we can represent fair knapsack as the
one maximizing

∑
vi∈V log(1 +

∑
a∈S ui(a)). The fol-

lowing example intuitively explains the type of fairness
guaranteed by using the Nash welfare.

Example 1. Consider six groups of voters, V1, . . . , V6, with
|V1| = 300, |V2| = 200, |V3| = 100, and |V4| = |V5| =
|V6| = 1. Assume we have six sufficiently large groups of
items, A1 . . . , A6. Each voter from group Vi assigns utility
1 to all items from group Ai, and zero to all other items.
Finally, assume that the costs of all items are equal to 1,
and that the value of the budget is 6. An individually best
knapsack would consist only of the items fromA1. A diverse
knapsack would contain one item from each set Ai for i ∈
{1, . . . , 6}. A fair knapsack would contain 3 items from A1,
2 items from A2 and 1 item from A3—this solution can be
interpreted as fair since the number of items selected from
each group is proportional to the number of voters liking

4Typically, Nash welfare would be defined as∏
vi∈V

(∑
a∈S ui(a)

)
. In our definition, we add one to the

sum
∑

a∈S ui(a) in order to avoid pathological situations when
the sum is equal to zero for some voters. This also allows us to
represent the expression we optimize as a sum of logarithms,
and thus, to expose the close relation between the fair knapsack
and the Proportional Approval Voting rule. When the utilities
are normalized our definition results in better properties of the
outcome pertaining to fairness (Fain, Munagala, and Shah 2018).
Further, all our hardness results can be formulated for a weaker
(and perhaps the least disputable) notion of fairness in the follow-
ing way: it is hard to decide whether an instance of the collective
knapsack problem admits a solution where the sum of the utilities
of all the agents is the highest (among all valid solutions) and all
the agents have the same utility.

items from these groups.
If we assume that the costs of the items from

groups A1, A2, and A3 are equal to 3, 2, and 1, respectively,
and that our budget is equal to 6, then the fair knapsack will
consist of one item from each of the sets A1, A2, and A3—
this shows that each group will obtain a share of the cost of
the whole knapsack which is proportional to its size.

In Section 1 we referred to the literature supporting
the use of Nash welfare in various settings. Let us com-
plement these arguments with one additional observation.
When the utilities of the voters come from the binary set
{0, 1} and the costs of all items are one, then our multia-
gent knapsack framework boils down to the standard mul-
tiwinner elections model with approval preferences. In this
case, a very appealing rule, Proportional Approval Voting
(PAV), can be expressed as finding a knapsack maximizing∑
vi∈V H(

∑
a∈S ui(a)), where H(i) is the i-th harmonic

number. This is almost equivalent to finding a fair knapsack
(maximizing the Nash welfare) since the harmonic function
can be viewed as a discrete version of the logarithm. Thus,
fair knapsack can be considered an adjustment of PAV to
the model with cardinal utilities and costs. In particular (as
a side note), observe that the notion of fair knapsack com-
bined with positional scoring rules induces rules that can be
viewed as adaptations of PAV to the ordinal model.

3 Related Work
Our work extends the literature on the multi-objective (MO)
knapsack problem (Kellerer, Pferschy, and Pisinger 2004),
i.e., on the variant of the classic knapsack problem with mul-
tiple independent functions valuating the items. Typically,
in the MO knapsack problem the goal is to find a (the set
of) Pareto optimal solution(s) according to multiple objec-
tives defined through given functions valuating items. Our
approach is different since we consider specific forms of ag-
gregating objectives; in particular for each of our concepts—
for the individually best, diverse, and fair knapsack—there
always exists a Pareto optimal solution; further each solution
to the individually best and fair knapsack is Pareto optimal.
For an overview of the literature on the MO knapsack prob-
lem (with the focus on the analysis of heuristic algorithms)
we refer to the survey by Lust and Teghem (2012).

Lu and Boutilier (2011) studied a variant of the
Chamberlin–Courant rule that includes knapsack constraints
and so being very similar to our diverse knapsack problem.
The difference is that (i) they consider utilities which are ex-
tracted from the voters’ preference rankings, thus these utili-
ties have a specific structure, and (ii) in their model the items
are not shared; instead, the selected items can be copied and
distributed among the voters. Lu and Boutilier consider a
model with additional costs of copying a selected item and
sending it to a voter. Consequently, their general model is
more complex than our diverse knapsack; they also consid-
ered a more specific variant of the model, equivalent to win-
ner determination under the Chamberlin–Courant rule.

A variant of the diverse knapsack problem with the
utilities satisfying a form of the triangle inequality is
known as the knapsack median problem; see the work of
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Byrka et al. (2015) for a discussion on the approximability
of the problem.

As we discussed in the introduction, the multiagent
variant of the knapsack problem has been often consid-
ered in the context of participatory budgeting, yet to the
best of our knowledge this literature focuses on the sim-
plest aggregation rule corresponding to our individually
best knapsack approach (Cabannes 2004; Goel et al. 2016;
Benade et al. 2017). Another avenue has been explored by
Fain et al. (2016), who studied rules that determine the
level of funding provided to different projects (items, in our
nomenclature) rather than rules selecting subsets of projects
with predefined funding requirements.

4 Computing Multiagent Knapsacks
In this section we investigate the computational complexity
of finding individually best, diverse, and fair knapsack. For-
mally, we define the computational problem for computing
a fair knapsack as:
FAIR KNAPSACK
Input: An instance (V,A, u, c) and a budget B.
Task: Compute a knapsack S ⊆ A such that c(S) ≤ B and

uFair(S) is maximum.
We define the computational problems DIVERSE
KNAPSACK and INDIVIDUALLY BEST KNAPSACK
analogously—the difference is only in the expression to
maximize, which for the two problems is uDiv and uIB,
respectively. We will use the same names when referring
to the decision variants of these problems; in such cases
we will assume that one additional integer x is given in the
input, and that the decision question is whether there exists
S with value uIB(S) (respectively, uDiv(S) or uFair(S)) at
least x, and c(S) ≤ B.

We observe that the functions uIB, uDiv, and uFair (when
represented as a sum of logarithms—the use of the logarithm
in the objective is only relevant for the approximation ratio)
are submodular. Thus, we can use an algorithm of (Sviri-
denko 2004) with the following guarantees.
Theorem 1. There is a polynomial-time (1 − 1/e)-
approximation algorithm for INDIVIDUALLY BEST KNAP-
SACK, DIVERSE KNAPSACK, and FAIR KNAPSACK with
the objective function log(uFair).

In the remainder of the paper we focus on computing ex-
act solutions for the three problems. In particular, we study
the complexity under the following two restricted domains:
Single-peaked preferences. Let topi denote vi’s most pre-

ferred item, and let / be an order of the items. We say that
a utility profile u is single-peaked with respect to / if for
each a, b ∈ A and each vi ∈ V such that a / b / topi or
topi / b / a we have that ui(b) ≥ ui(a).

Single-crossing preferences. Let / be an order of the vot-
ers. We say that a utility profile u is single-crossing with
respect to / if for each two items a, b ∈ A the set
{vi ∈ V | ui(b) ≥ ui(a)} forms a consecutive block
according to /.
We say that a profile u is single-peaked (resp., single-

crossing) if there exists an order / of the items (resp., of the

voters) such that u is single-peaked (resp., single-crossing)
with respect to /. Note that an order witnessing single-
peakedness or single-crossingness can be computed in poly-
nomial time (see, e.g., (Elkind, Lackner, and Peters 2017;
Fitzsimmons 2015)).

We will also study the parameterized complexity of the
three problems. For a given parameter p, we say that a
problem is fixed-parameter tractable (FPT) when param-
eterized by p if there is an algorithm (FPT algorithm)
that solves each instance I of the problem in O

(
f(p) ·

poly(|I|)
)

time, where f is some computable function. In
parameterized algorithmics, FPT algorithms are considered
efficient. There is a whole hierarchy of complexity classes,
but informally speaking, a problem that is W[1]- or W[2]-
hard is assumed not to be FPT and, hence, hard (or fixed-
parameter intractable) from the parameterized point of view
(see (Downey and Fellows 2013) for more details).

Note that if the utilities are not unarily encoded, then FAIR
KNAPSACK is NP-hard even for one voter (see Theorem 5).

Diverse Knapsack
We now turn our attention to the problem of computing
a diverse knapsack. Through a straightforward reduction
from the standard knapsack problem, we get that DIVERSE
KNAPSACK is computationally hard even for profiles which
are both single-peaked and single-crossing, unless the utili-
ties are provided in unary encoding.

Theorem 2. DIVERSE KNAPSACK is NP-hard even for
single-peaked and single-crossing utility profiles.

Proof. We present a many-one reduction from KNAPSACK.
Let (X = {x1, . . . , xn}, x, y) be an instance of KNAP-
SACK where each xi comes with value ν(xi) ≥ 1 and
weight ω(xi); the question is whether there exists S ⊆ X
with

∑
xi∈S ν(xi) ≥ x and

∑
xi∈S ω(xi) ≤ y. We set our

set of items A = {a1, . . . , an} with c(ai) := ω(xi) for each
i ∈ [n]. We add n voters v1, . . . , vn with

ui(aj) :=


3n2 · ν(aj), i = j,

j, i > j,

2n− j + 1, i < j.

It is immediate that for each S we have that
∑
ai∈S c(ai) =∑

xi∈S ω(xi). Further,
∑
vi∈V maxaj∈S ui(aj) ≥ 3n2x if

and only if
∑
xj∈S ν(xj) ≥ x, which proves the correct-

ness. It is immediate to check that the utility profile is single-
peaked and single-crossing.

Note that DIVERSE KNAPSACK is NP-hard for utili-
ties encoded in unary as it generalizes the Chamberlin–
Courant rule, which is computationally hard (Procaccia,
Rosenschein, and Zohar 2008). For single-peaked or single-
crossing profiles the Chamberlin-Courant rule is computable
in polynomial time (Betzler, Slinko, and Uhlmann 2013;
Skowron et al. 2015). These known algorithms can be ex-
tended to the case of the diverse knapsack.

Theorem 3. DIVERSE KNAPSACK is solvable in polyno-
mial time when the utility profile is
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(i) single-peaked and encoded in unary;
(ii) single-crossing and encoded in unary.

Theorem 3(i) is proven via straight-forward dynamic pro-
gramming and omitted due to space constraints. We prove
our result for single-crossingness. Let us define a set of use-
ful tools. We will also use these tools later on, when analyz-
ing the parameterized complexity of the problem.

Given a tuple of voters ~V = (v1, . . . , vn) and a sub-
set S ⊆ A of items, we define an assignment πS,~V as a
surjection [n] → S. An assignment is called connected, if
for every s ∈ S it holds that π−1

S,~V
(s) := {i ∈ [n] | s =

πS,~V (i)} = [x, y] for some x, y ∈ [n], y ≥ x. For our first
tool we introduce the following auxiliary problem.
ORDERED DIVERSE KNAPSACK
Input: An instance (~V ,A, u, c) where ~V = (v1, . . . , vn) is

ordered and a budget B.
Task: Compute a knapsack S ⊆ A such that c(S) ≤ B,

and uOrd(S) = maxconnected πS,~V

∑n
i=1 ui(πS,~V (i))

is maximum.

If S = {s1, . . . , s`} ⊆ A is a cost-minimal solution to DI-
VERSE KNAPSACK on (V,A, u, c), then let Vi := {vj ∈
V | si ∈ argmaxa∈S uj(a)}. Consider an ordering ~V =
(V1, . . . , V`), where for each i ∈ [`], the voters in Vi are ar-
bitrarily ordered. Then it is not difficult to see that the assign-
ment πS,~V (i) = argmaxa∈S ui(a) is connected. Hence, we
obtain the following connection between DIVERSE KNAP-
SACK and ORDERED DIVERSE KNAPSACK.
Observation 1. There is an ordering ~V on the voters V such
that there is an S ⊆ A that forms a cost-minimal solution for
ORDERED DIVERSE KNAPSACK and for DIVERSE KNAP-
SACK.

Next, we give a dynamic program for computing knap-
sacks that qualitatively lie “between” optimal solutions for
ORDERED DIVERSE KNAPSACK and DIVERSE KNAP-
SACK (what “lying in between” means is specified later on).

Let us fix an input (V,A, u, c, B) and an ordering ~V =
(v1, . . . , vn) of the voters. We set û :=

∑n
i=1

∑
a∈A ui(a).

We give a dynamic program with table T , where T [i, x] de-
notes “some” cost of a knapsack with a value assigned by
voters from (v1, . . . , vi) at least equal to x. We set T [1, x] =
min{c(a) | a ∈ A, u1(a) ≥ x}, if there is an a ∈ A such
that u1(a) ≥ x, and T [1, x] = ∞ otherwise. We define a
helper function

f(i, a, x) =

{
c(a), if

∑i
j=1 uj(a) ≥ x,

∞, otherwise.

We set

T [i, x] = (1)

min
a∈A

 f(i, a, x),

c(a) + min
j∈[i−1]

T [j,max(0, x−
i∑

`=j+1

u`(a))]

 .

Observation 2. When the utilities are unarily encoded, we
can compute all entries of T in polynomial time.

Lemma 1. Let S be a cost-minimal solution to DI-
VERSE KNAPSACK on (V,A, u, c) and let x = uDiv(S).
Then T [n, x] ≥ c(S).

Proof. Suppose that this is not the case, that is, T [n, x] <
c(S). Then we construct a knapsack S′ from T [n, x] as fol-
lows. Let a ∈ A be an item that minimizes (1) for T [n, x],
then make a ∈ S′. If T [n, x] = f(n, a, x), then T [n, x] =
c(a) < c(S), contradicting the fact that S is cost-minimal.
Otherwise,

T [n, x] = c(a) + T [j, x′ := max(0, x−
n∑

`=j+1

u`(a))],

for some j ∈ [n − 1]. Then we proceed towards a contra-
diction as before: Let a′ ∈ A be an item that minimizes (1)
for T [j, x′], then make a′ ∈ S′, and continue the same rea-
soning.

Lemma 2. Let S be a cost-minimal solution to ORDERED
DIVERSE KNAPSACK on (~V ,A, u, c) where ~V is ordered
and let x = uOrd(S). Then T [n, x] ≤ c(S).

We have all ingredients at hand to prove our main results.

Proof of Theorem 3(ii). If ~V is an order witnessing single-
crossingness, then there is an S ⊆ A that forms a cost-
minimal solution for ORDERED DIVERSE KNAPSACK and
for DIVERSE KNAPSACK. Lemmas 1 and 2 guarantee that
our algorithm will find it.

Further, we can use our tools to obtain an FPT algorithm
(for the number of voters) for unrestricted domains.

Theorem 4. DIVERSE KNAPSACK is FPT when parame-
terized by the number of voters and the utilities are unarily
encoded.

Proof. By Observation 1, we know that there is an order ~V
on the voters such that there is an S ⊆ A that forms a cost-
minimal solution for ORDERED DIVERSE KNAPSACK and
for DIVERSE KNAPSACK. Together with Lemmas 1 and 2
we obtain that for ~V our dynamic program will find such S.
Hence, for each ordering of V , we compute T [n, x]. Then,
we take the minimum over all observed values. Note that x
is the largest value such that T [n, x] ≤ B for some or-
dering of the voters. Altogether, this yields a running time
of O(n! poly(û + n + m)) ⊆ O(2n logn poly(û + n +
m)).

Finally, we complement Theorem 4 by proving a
lower bound on the running time (via reducing from the
W[2]-complete DOMINATING SET problem), assuming the
Exponential-Time Hypothesis (ETH).

Proposition 1. DIVERSE KNAPSACK with binary utilities
and unary costs is W[2]-hard when parameterized by the
budget B and, unless the ETH breaks, there is no 2o(n+m) ·
poly(n+m) algorithm.
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Fair Knapsack
Let us now turn to the problem of computing a fair knap-
sack. We first prove that the problem is NP-hard, even for
restricted cases, and then we study its parameterized com-
plexity.
Theorem 5. FAIR KNAPSACK is NP-hard, even
1. for one voter;
2. for two voters and when all costs are equal to one;
3. if all utilities are in {0, 1} and all costs are equal to one.

The proof of Theorem 5 (3) uses the reduction from EX-
ACT REGULAR SET PACKING (ERSP). Since ERSP is
W[1]-hard with respect to the size of the solution (Ausiello,
D’Atri, and Protasi 1980), we get the following corollary.
Corollary 1. FAIR KNAPSACK is W[1]-hard when param-
eterized by the budget, even if all utilities are in {0, 1} and
all costs are equal to one.

Using a different construction, we can show that for the
combination of the two parameters—the number of voters
and the budget—we still get fixed-parameter intractability.
Theorem 6. FAIR KNAPSACK is W[1]-hard when parame-
terized by the number of voters and the budget, even if the
utilities and the budget are represented in unary encoding
and the costs of all items are equal to one.

Proof. We provide a parameterized reduction from the k-
MULTICOLORED CLIQUE problem, which is known to be
W[1]-hard with respect to the number of colors. Let I be an
instance of k-MULTICOLORED CLIQUE. In I we are given
a graph G with the set V (G) of vertices and the set E(G)
of edges, a natural number k ∈ N, and a coloring function
f : V (G) → [k] that assigns one of k colors to each vertex.
We ask if G contains k pairwise connected vertices, each
having a different color. Without loss of generality we as-
sume that k ≥ 2.

From I we construct an instance IF of FAIR KNAPSACK
as follows (we refer to Figure 1 for an illustration). Let T =
|V (G)|. We set the set of items to V (G) ∪ E(G), that is
we associate one item with each vertex and with each edge.
We construct the set of voters as follows (unless specified
otherwise, by default we assume that a voter assigns utility
of zero to an item):

1. For each color we introduce one voter who assigns util-
ity of T to each vertex with this color. Clearly, there
are k such voters.

2. For each pair of two different colors we introduce k −
2 voters, each assigning utility of T to each edge that
connects two vertices with these two colors. There are
(k − 2)

(
k
2

)
such voters.

3. For each ordered pair of colors, c1 and c2, with c1 6= c2
we introduce two voters, call them a and b, with the fol-
lowing utilities. Consider the set of vertices with color c1
and rename them in an arbitrary way so that they can be
put in a sequence n1, n2, . . . , n`. For each i ∈ [`] voter a
assigns utility i to vertex ni and utility (T − i) to each
edge that connects ni with a vertex with color c2. Voter b
assigns utility (T − i) to ni and utility i to each edge

n11 · · · n
1
i
· · · n1` n

2
1
· · · n2j · · · n

2
`
· · · · · ·{n1i , n2j}· · ·

v1

v2
...

v1{1,2}
...

vk−2{1,2}
...
...

va(1,2)

vb(1,2)
va(2,1)

vb(2,1)
...

T · · · T · · · T

T · · · T · · · T

· · ·

T
...

T

1 · · · i · · · ` T − i

T − 1 · · · T − i · · · T − ` i

1 · · · j · · · ` T − j

T − 1 · · · T − j · · · T − ` j

0

0
0

0

0

0

0

0

0

0 0

0 0

0

(1)

(2)

(3)

, V (G) , E(G)

Figure 1: Illustration of the instance obtained in the proof
of Theorem 6. Herein, ncb denotes vertex b in color class c,
where each color class contains ` vertices. In the presented
example, the vertices n1i and n2j are adjacent. Blocks con-
taining a zero indicate that the corresponding entries are
zero.

that connects ni with a vertex with color c2. There are
2k(k − 1) such voters.

We set the cost of each item to one, and the total budget to
B = k+

(
k
2

)
. By a simple calculation one can check that the

total number of voters is equal to k+(k− 2) ·
(
k
2

)
+2k(k−

1) = kB. This completes our construction.
First, observe that in total each item is assigned utility kT

from all the voters. Indeed, each item corresponding to a
vertex gets utility of T from exactly one voter from the first
group, and total utility of (k − 1) · T from 2(k − 1) voters
from the third group. Similarly, each item corresponding to
an edge gets utility of T from k − 2 voters from the sec-
ond group, and total utility of 2 · T from four voters from
the third group. Thus, independently of how we select B
items, the sum of the utilities they are assigned from the
voters will always be the same, that is BkT . Thus, clearly
the Nash welfare would be maximized if the total utility as-
signed to the selected items by each voter is the same, and
equal to T . Only in such case the Nash welfare would be
equal to (T + 1)kB . We will show, however, that each voter
assigns to the set of B items utility T if and only if k out of
such items are vertices with k different colors, the remain-
ing
(
k
2

)
of such items are edges, and each selected edge con-

nects two selected vertices.
Indeed, it is easy to see that if the selected set of items

has the structure as described above, then each voter assigns
to this set the utility of T . We will now prove the other im-
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plication. Assume that for the set of B items S each voter
assigns total utility of T . By looking at the first group of vot-
ers, we infer that k items from S correspond to the vertices,
and that these k vertices have different colors. By looking at
the second group of voters, we infer that for each pair of two
different colors, S contains exactly one edge connecting ver-
tices with such colors. Finally, by looking at the third group
of voters we infer that each edge from S that connects col-
ors c1 and c2 is adjacent to the vertices from S with colors c1
and c2. This completes the proof.

By Theorem 6 we presumably cannot hope for an
FPT algorithm for FAIR KNAPSACK when parameterized
by the number n of voters. However, each instance I
of FAIR KNAPSACK with unarily encoded utilities is solv-
able in O(|I|f(n)) time (that is, it is in XP when parame-
terized by n), where f is some computable function only
depending on n.

Theorem 7. For unarily encoded utilities, FAIR KNAPSACK
is in XP when parameterized by the number of voters.

On the positive side, with stronger requirements on the
voters’ utilities, that is, if the number of different values over
the utilities is small, we can strengthen Theorem 7 and prove
membership in FPT (using integer linear programming).

Theorem 8. FAIR KNAPSACK is FPT when parameterized
by the combination of the number of voters and the number
of different values that a utility function can take.

Proof. We will use the classic result of Lenstra (1983)
which says that an integer linear program (ILP) can be
solved in FPT time with respect to the number of inte-
ger variables. We will also use a recent result of Bred-
ereck et al. (2017) who proved that one can apply con-
cave/convex transformations of certain variables in an ILP,
and that such a modified program can be still solved in an
FPT time. We construct an ILP as follows. Let U be the
set of values that a utility function can take. For each vec-
tor z = (z1, . . . , zn) with zi ∈ U for each i, we define Az
as the set of items a such that for each voter vi we have
ui(a) = zi. Intuitively, Az describes a subcollection of the
items with the same “type”: such items are indistinguish-
able when we look only at the utilities assigned by the vot-
ers; they may vary only with their costs. For each such a
set Az we introduce an integer variable xz which intuitively
denotes the number of items from the optimal solution that
belong to Az . Further, we construct a function fz such that
fz(x) is the cost of the x cheapest items from Az; clearly fz
is convex. We formulate the following program:

maximize:
∑
vi∈V

log

(∑
z∈Un

zi · xz

)
subject to:

∑
z∈Un

fz(xz) ≤ B

xz ∈ Z, z ∈ Un

The above program uses concave transformations (loga-
rithms) for the maximized expression, and convex trans-
formations (functions fz) in the left-hand sides of the con-
straints, so we can use the result of Bredereck et al. (2017)
and claim that this program can be solved in an FPT time
with respect to the number of integer variables. This com-
pletes the proof.

Fair Knapsack under Restricted Domains
In contrast to INDIVIDUALLY BEST KNAPSACK and DI-
VERSE KNAPSACK, both being solvable in polynomial time
on restricted domains, FAIR KNAPSACK remains NP-hard
on utility profiles that are even both, single-peaked and
single-crossing.

Theorem 9. FAIR KNAPSACK is NP-hard even on single-
peaked single-crossing domains, when the costs of all items
are equal to one, and the utilities of each voter come from
the set {0, . . . , 6}.

As we discussed in Section 2, if the voters’ utilities come
from the binary set {0, 1} and if the costs of the items are
equal to one, then FAIR KNAPSACK is equivalent to com-
puting winners according to Proportional Approval Voting.
For this case with single-peaked preferences, Peters (2018)
showed that the problem can be formulated as an integer lin-
ear program with totally unimodular constraints, and thus it
is solvable in polynomial time. This makes our result inter-
esting, as it shows that by allowing slightly more general
utilities (coming from the set {0, . . . , 6} instead of {0, 1})
the problem becomes already NP-hard (even if we addition-
ally assume single-crossingness of the preferences).

5 Conclusion
We studied three variants of the knapsack problem in multia-
gent settings. One of these variants, selecting an individually
best knapsack, has been considered in the literature before,
and our work introduces the other two concepts: diverse and
fair knapsack. Our paper establishes a relation between the
multiagent knapsack model and a broad literature including
work on multiwinner voting and on fair allocation. This way,
we expose a variety of ways in which the preferences of the
voters can be aggregated in different applications that are
captured by the abstract model of the multiagent knapsack
problem.

Our complexity results are outlined in Table 1. In sum-
mary, we showed that computing an individually best or a
diverse knapsack can be done efficiently under some con-
straints. On the contrary, we give multiple evidences that
computing a fair knapsack is computationally hard. This
also motivates the study of approximation and heuristic al-
gorithms for computing a fair knapsack.
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