
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Computing the Yolk in Spatial Voting Games without Computing Median Lines

Joachim Gudmundsson, Sampson Wong
University of Sydney

Sydney, Australia
joachim.gudmundsson@sydney.edu.au, swon7907@sydney.edu.au

Abstract

The yolk is an important concept in spatial voting games: the
yolk center generalises the equilibrium and the yolk radius
bounds the uncovered set. We present near-linear time algo-
rithms for computing the yolk in the plane. To the best of our
knowledge our algorithm is the first that does not precompute
median lines, and hence is able to break the best known upper
bound of O(n4/3) on the number of limiting median lines.
We avoid this requirement by carefully applying Megiddo’s
parametric search technique, which is a powerful framework
that could lead to faster algorithms for other spatial voting
problems.

1 Introduction
Voting theory is concerned with preference aggregation and
group decision making. A classic framework for aggregating
voter’s preferences is the Downsian (1957), or spatial model
of voting.

In this model, voters are positioned on a ‘left-right’ con-
tinuum along multiple ideological dimensions, such as eco-
nomic, social or religious. These dimensions together form
the policy space. Each voter is required to choose a single
candidate from a set of candidates, and a common voter
preference function is a metric/distance function within the
policy space. An intuitive reason behind using metric pref-
erences is that voters tend to prefer candidates ideologically
similar to themselves.

The spatial model of voting with metric preferences
have been studied extensively, both theoretically (McKelvey
1976; 1986; Enelow and Hinich 1984; Miller, Grofman, and
Feld 1989; Tovey 1993) and empirically (Poole and Rosen-
thal 1984; 1991; 2001; Ordeshook 1993; Schofield, Miller,
and Martin 2003; Schofield 2004; 2007). Recently, lower
bounds were provided on the distortion of voting rules in
the spatial model, and interestingly, metrics other than the
Euclidean metric were considered (Anshelevich, Bhardwaj,
and Postl 2015; Skowron and Elkind 2017; Goel, Krish-
naswamy, and Munagala 2017).

We focus our attention on two-candidate spatial voting
games, where the winner is the candidate preferred by a
simple majority of voters. In a one dimension policy space,

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Black’s Median Voter Theorem (1948) states that a vot-
ing equilibrium (alt. Condorcet winner, plurality point, pure
Nash equilibrium) is guaranteed to exist and coincides with
the median voter.

Naturally, social choice theorists searched for the equi-
librium in the two dimensional policy space, but these at-
tempts were shown to be fruitless (Plott 1967). The ini-
tial reaction was one of cynicism (McKelvey 1976), but
in response a multitude of generalisations were developed,
with the yolk being one such concept (McKelvey 1986;
Miller, Grofman, and Feld 1989). The yolk in the Eu-
clidean L2 metric is defined as the minimum radius disk that
intersects all median lines of the voters.

L2

Figure 1: The L2 yolk intersects all median lines of voters.

The yolk is an important concept in spatial voting games
due to its simplicity and its relationship to other concepts.
The yolk radius provides approximate bounds on the uncov-
ered set (Feld et al. 1987; Miller 1980; Miller, Grofman,
and Feld 1989), limits on agenda control (Feld, Grofman,
and Miller 1989), Shapley-Owen power scores (Feld and
Grofman 1990), the Finagle point (Wuffle et al. 1989) and
the ε-core (Tovey 2011). As such, studies on the size of
the yolk (Feld, Grofman, and Miller 1988; Koehler 1990;
Tovey 2010a) translate to these other concepts as well.

From the perspective of computational social choice, this

2012



raises the following problem: Are there efficient algorithms
for computing the yolk? Fast algorithms would, for instance,
facilitate empirical studies on large data sets. Tovey (1992)
provides the first polynomial time algorithm, which in two
dimensions, computes the yolk in O(n4) time. De Berg et
al. (2016) provides an improved O(n4/3 log1+ε n) time al-
gorithm for the same.

The shortcoming of existing algorithms is that they re-
quire the computation of all limiting median lines, which are
median lines that pass through at least two voters (Stone and
Tovey 1992). However, there are Ω(ne

√
logn) (Tóth 2000)

limiting median lines in the worst case. Moreover, the best
known upper bound of O(n4/3) seems difficult to improve
on (Dey 1997). It is an open problem as to whether there is a
faster algorithm that computes the yolk without precomput-
ing all limiting median lines .

Problem Statement
Given a set V of n points in the plane, a median line of V
is any line that divides the plane into two closed halfplanes,
each with at most n/2 points. The yolk is a minimum radius
disk in the Lp metric that intersects all median lines of V .

L1
L∞

Figure 2: Example of yolks in the L1 and L∞ metrics.

We compute yolks in the L1 (Taxicab), the L2 (Eu-
clidean), and the L∞ (Uniform) metrics. As shown in Fig-
ure 2, the yolk in L1 is the smallest 45◦-rotated square and
in L∞ the smallest axis-parallel square, that intersects all
median lines of V .

Our Contributions and Results
Our contributions are, first, an algorithm that computes the
yolk in the L1 and L∞ metrics inO(n log7 n) time, and sec-
ond, an algorithm that computes a (1 + ε)-approximation of
the yolk in the L2 metric in O(n log7 n · log4 1

ε ) time.
We achieve the improved upper bounds by carefully

applying Megiddo’s (1983) parametric search technique,
which is a powerful yet complex technique and that could
be useful for other spatial voting problems.

The parametric search technique is a framework for con-
verting decision algorithms into optimisation algorithms.
For the yolk problem, a decision algorithm would decide
whether a given disk intersects all median lines. If this deci-
sion algorithm satisifies the three properties as specified by
the framework, then Megiddo’s result states that there is an
efficient algorithm to compute the yolk.

For the purposes of designing a decision algorithm with
the desired properties, we instead consider the more general
problem of finding the smallest regular, k-sided polygon that
intersects all median lines of V . The regular k-sided poly-
gon Pk(r, x, y) is shown in Figure 3 and is defined as:

Definition 1. Given an integer k ≥ 3, construct the regu-
lar k-sided polygon Pk(r, x, y) by:

• Constructing a circle with radius r and centered at (x, y).
• Placing a vertex at the top-most point on the circle, i.e.

at (x, y + r).
• Placing the remaining k − 1 vertices around the circle so

that the k vertices are evenly spaced.

(x, y)

(x, y + r)

Pk(r, x, y)

Figure 3: The regular, k-sided polygon Pk(r, x, y).

In Section 2, we present the decision algorithm, which
given a regular, k-sided polygon Pk(r, x, y), decides
whether the polygon intersects all median lines of V . Next,
in Section 3, we apply Megiddo’s technique to the decision
algorithm and prove the convexity and parallelisability prop-
erties. This leaves one final property, the existence of criti-
cal hyperplanes, left to check. We prove this final property in
Sections 4-6, thus completing the parametric search. Finally,
in Section 7, we show that our general problem for the regu-
lar, k-sided polygon Pk(r, x, y) implies the claimed running
times by setting k = 4 for L1 and L∞, and k = 1

ε for L2.

2 Decision Algorithm
The aim of this section is to design an algorithm that solves
the following decision problem:

Definition 2. Given an integer k ≥ 3 and a set V of n points
in the plane, the decision problem Dk,V (r, x, y) is to decide
whether the polygon Pk(r, x, y) intersects all median lines
of V .

We show that there is a comparison-based decision algo-
rithm that solves Dk,V (r, x, y) in O(n log n · log k) time,
provided the following two comparison-based subroutines.

Subroutine 1. A comparison-based subroutine that, given
a point p and a regular k-sided polygon Pk(r, x, y), decides
if p is outside Pk(r, x, y) in O(log k) time.

Subroutine 2. A comparison-based subroutine that, given
points p, q outside a regular k-sided polygon Pk(r, x, y),

2013



computes the relative clockwise order of the four tangent
lines drawn from {p, q} to Pk(r, x, y) in O(log k) time.

Although the running time of these two subroutines are
not too difficult to prove, we shall see in Section 3 that these
subroutines must satisfy a stronger requirement for the para-
metric search technique to apply. We will formally define the
stronger requirement in the next section. To avoid repetition,
we simultaneously address the subroutine and the stronger
requirement in Sections 5 and 6. But for now, we assume the
subroutines exist and present the decision algorithm:
Theorem 1. Given an integer k ≥ 3 and a set V of n points
in the plane, there is a comparison-based algorithm that
solve the decision problemDk,V (r, x, y) inO(n log n·log k)
time, provided that Subroutine 1 and Subroutine 2 exist.

Proof. The proof comes in three parts. First, we transform
the decision problem Dk,V (r, x, y) into an equivalent form
that does not have median lines in its statement. Then, we
present a sweep line algorithm for the transformed version.
Finally, we perform an analysis of the running time.

Consider for now a single median line mg that has gra-
dient g. Construct two parallel lines tU (g) and tD(g) that
also have gradient g, but are tangent to Pk(r, x, y) from
above and below respectively. If the median line mg inter-
sects Pk(r, x, y), as shown in Figure 4, then mg must be in
between tU (g) and tD(g).

Pk(r, x, y)

mg

tU (g)

tD(g)

Figure 4: The relative positions of mg , tU (g) and tD(g)
if mg intersects the k-sided regular polygon Pk(r, x, y).

We will decide whether all median lines of gradient g are
between tU (g) and tD(g), as this would immediately decide
whether all median lines of gradient g intersects Pk(r, x, y).
We will solve this restricted decision problem by counting
the number of points in V above tU (g) and the number of
points in V below tD(g).

Let t+U (g) be the number of points in V that are
above tU (g), and similarly t−D(g) for the points in V be-
low tD(g). Suppose that t+U (g) < n/2 and t−D(g) <
n/2. Then there cannot be a median line of gradient g
above tU (g) or below tD(g), since one side of the me-
dian line, in particular the side that contains the polygon,
will have more than n/2 points. Hence, if t+U (g) < n/2

and t−D(g) < n/2, then all median lines of gradient g must
be between tU (g) and tD(g).

Conversely, suppose that all median lines of gradient g
are between tU (g) and tD(g). Then if t+U (g) ≥ n/2, we
can move tU (g) continuously upwards until it becomes a
median line, which is a contradiction. So in this case, we
know t+U (g) < n/2 and t−D(g) < n/2.

In summary, we have transformed the decision problem
into one that does not have median lines in its statement: All
median lines intersect Pk(r, x, y) if for all gradients g, the
pair of inequalities t+U (g) < n/2 and t−D(g) < n/2 hold.

We present a sweep line algorithm that computes whether
the pair of inequalities hold for all gradients g. Let t be an ar-
bitrary line tangent to the polygon Pk(r, x, y), and define t+
to be the open halfplane that has t as its boundary and does
not include the polygon Pk(r, x, y). Then all median lines
intersect Pk(r, x, y) if and only if for all positions of t, the
open halfplane t+ contains less than n/2 points.

Pk(r, x, y)

t

t+

Figure 5: The rotating sweepline t and the open halfplane t+.

The tangent line t is a clockwise rotating sweep line and
the invariant maintained by the sweep line algorithm is the
number of points of V inside the region t+. Take any tan-
gent line t0 to be the starting line, and calculate the number
of points in t+0 . From here, define an event to be when the
line t passes through a point. There are two events for each
point outside Pk(r, x, y); there is one event for when the
point enters the region t+, and one for when it exits. There
are no events for points of V that lie inside Pk(r, x, y). The
unsorted set of event points can be computed by applying
Subroutine 1 to each of point in V .

We sort the set of event points in a clockwise fashion. If
we consider only two voters, their associated events can be
sorted using Subroutine 2. We can extend this to sort the as-
sociated events of all voters with any standard comparison-
based sorting algorithm, for example Merge sort.

Once the sorted set of events is computed, we process the
events in order. At each new event we maintain our invari-
ant, the number of points inside the region t+. This value
increases by one at “entry” events and decreases by one at
“exit” events. Finally, we return whether our invariant re-
mained less than n/2 at all events.

The running time analysis for the algorithm is as follows.
Computing the points outside Pk(r, x, y) takes O(log k)
time per point by Subroutine 1, so in total this

2014



takes O(n log k) time. Computing the sorted order of the
event points takes O(log k) time per comparison by Subrou-
tine 2, which adds up to O(n log n · log k) time. Processing
the sorted event points takes O(n) time. Adding these gives
the stated bound.

3 Parametric Search
Parametric search is a powerful yet complex technique for
solving optimisation problems. The two steps involved in
this technique are, first, to design a decision algorithm, and
second, to convert the decision algorithm into an optimisa-
tion algorithm.

For example, our parameter space is (r, x, y) ∈ R3, our
decision algorithm is stated in Theorem 1, and our optimisa-
tion objective is to minimise r ∈ R+.

Preliminaries
Megiddo’s (1983) states the requirements for converting the
decision algorithm into an optimisation algorithm. First, let
us introduce some notation. Let Rd be a parameter space,
let λ ∈ Rd be a parameter and let D(λ) be a decision prob-
lem that either evaluates to true or false. Then the first re-
quirement is for the decision problem D(λ).

Property 1. The set of parameters {λ ∈ Rd : D(λ)} that
satisfies the decision problem is convex.

Convexity guarantees that the optimisation algorithm
finds the global optimum.

The second property of the technique relates to the de-
cision algorithm. Let A(λ) be a comparison-based decision
algorithm that computes D(λ). Let C(λ) be any compari-
son in the comparison-based decision algorithm A(λ). The
comparison C(λ) is said to have an associated critical hy-
perplane in Rd if the result of the comparison is linearly
separable with respect to λ ∈ Rd. Formally, suppose that
the comparison C(λ) evaluates to either >, = or <. Then
we say that the (d − 1)-dimensional hyperplane H ⊂ Rd
is the associated critical hyperplane of C(λ) if C evaluates
to >, = or < if and only if λ is above, on, or below H re-
spectively. The comparisons of the decision algorithm must
satisfy the following property.

Property 2. Every comparison C(λ) in the comparison-
based decision algorithm A(λ) either (i) does not depend
on λ, or (ii) has an associated critical hyperplane in Rd.

This requirement allows us to compute a large set of criti-
cal hyperplanes that determines the result of A(λ). More-
over, the optimum must lie on one of these critical hy-
perplanes, since the result of A(λ) locally changes sign at
the optimum. The new search space now has dimension
d − 1 instead of dimension d, and we can recursively apply
this procedure to reduce the dimension further. For details
see (Agarwal and Sharir 1998).

The final property speeds up the parametric search.

Property 3. The decision algorithm has an efficient parallel
algorithm.

If the decision algorithm A(λ) runs in Ts time and runs
on P processors in Tp parallel steps, then the paramet-

ric search over λ ∈ Rd runs in O(TpP + Ts(Tp logP )d)
time (Agarwal and Sharir 1998).

Applying the technique
To apply the parametric search technique, we show that our
decision problem Dk,V (r, x, y) satisfies Properties 1-3.

Lemma 1. Given an integer k ≥ 3 and a set V of n points
in the plane, the set of parameters {(r, x, y) : Dk,V (r, x, y)}
that satisfies the decision problem is convex.

Proof. Suppose we are given a convex combination λ3 =
αλ1 + (1 − α)λ2 of the two parameters λ1, λ2 ∈ R3. Then
the polygon Pk(λ3) is a convex combination of the poly-
gons Pk(λ1) and Pk(λ2). It is easy to check that if a line m
intersects both Pk(λ1) and Pk(λ2), then the line m must
also intersect the convex combination Pk(λ3).

Now assume that both Dk,V (λ1) and Dk,V (λ2) are true.
Then for any median line m both Pk(λ1) and Pk(λ2) in-
tersect m. By the observation above, the convex combi-
nation Pk(λ3) must also intersects m. Repeating this fact
for all median lines implies that Pk(λ3) intersects all me-
dian lines of V . So Dk,V (λ3) is true whenever Dk,V (λ1)
and Dk,V (λ2) are true. Therefore, the set of parame-
ters {(r, x, y) ⊆ R3 : Dk,V (r, x, y)} is convex.

Lemma 2. Every comparison in the decision algorithm in
Theorem 1 either (i) does not depend on (r, x, y), or (ii) has
an associated critical hyperplane in R3.

Proof. Theorem 1 consists of three steps, computing the
points outside the polygon, computing the event order, and
processing the events. For the first two steps, the compar-
isons do depend on (r, x, y) and have associated critical hy-
perplanes. We defer the proof of this claim to Sections 5
and 6 respectively. For the third step, the comparisons do not
depend on (r, x, y) but rather the event order, so there is no
requirement that comparisons have critical hyperplanes.

Lemma 3. The decision algorithm in Theorem 1 has an ef-
ficient parallel algorithm that runs on O(n) processors and
takes O(log n · log k) parallel steps per processor.

Proof. Given O(n) processors, we decide which points are
outside the polygon in parallel by assiging a processor to
each point. By Subroutine 1, this takes O(log k) parallel
steps per processor. We compute the event order in paral-
lel using Preparata’s sorting scheme (Preparata 1978). Each
processor requires O(log n) calls to Subroutine 2, so it to-
tal, each processor requires O(log n · log k) parallel steps.
Finally, processing the events generates no critical hyper-
planes, so this step does not require parallelisation.

Now we combine Properties 1-3 with Megiddo’s result to
obtain an optimisation algorithm for the smallest, regular,
k-sided polygon Pk(r, x, y) that intersects all median lines.

Theorem 2. Given a set V of n points in the plane, there is
an O(n log7 n · log4 k) time algorithm to compute the min-
imum r such that Dk,V (r, x, y) is true for some regular, k-
sided polygon Pk(r, x, y).

2015



Proof. Megiddo’s multidimensional parametric search im-
plies that there is an efficient optimisation algorithm. It only
remains to show the running time of the technique.

The parallel algorithm runs on P = O(n) processors
in Tp = O(log n · log k) parallel steps, whereas the deci-
sion algorithm runs in Ts = O(n log n · log k) time. The
dimension d of the parameter space is three. The running
time of multidimensional parametric search is O(TpP +
Ts(Tp logP )d) (Agarwal and Sharir 1998). Substituting our
values into the above formula yields the required bound.

4 Computing Critical Hyperplanes
The only requirement left to check is Property 2 for the com-
parisons in the comparison-based subroutines, that is, Sub-
routine 1 and Subroutine 2. Before launching into the anal-
ysis of the two subroutines, we first prove a tool. We will
use the tool repeatedly in the next two sections to simplify
checking Property 2.

Lemma 4. Let gradient g ∈ R, point p ∈ R2 and vec-
tor v ∈ R2 be given, and let (r, x, y) ∈ R3 be a vari-
able parameter. Let Lg,v(r, x, y) be the line of gradient g
through the point (x, y) + r · v. Then p is above, on, or be-
low Lg,v(r, x, y) if and only if the point (r, x, y) is above,
on, or below its associated critical hyperplane Hp,g,v .

p

Lg,v(r, x, y)

⇐⇒

(r, x, y)

Hp,g,v

Figure 6: Point p is above Lg,v(r, x, y) if and only if param-
eter (r, x, y) is above Hp,g,v .

Proof. Let point p = (px, py) and vector v = (vx, vy).
Now, (px, py) is above the line through (qx, qy) of gradi-
ent g if (px − qx) − g · (py − qy) > 0. Substituting the
point (qx, qy) = (x, y) + r · (v1, v2), we get the inequality

(p2 − y − rv2)− g · (p2 − x− rv2) > 0.

This inequality can be rearranged into the form ax + by +
cr + d > 0, where

a = g, b = −1, c = (gv1 − v2), d = p2 − gp1.

In this form, we can see that the inequality is satisfied if and
only if (r, x, y) lies above the hyperplane Hp,g,v := (ax +
by + cr + d = 0), where a, b, c, d are given above. Hence,
the two conditions, p above a line and (r, x, y) above a hy-
perplane, can be decided with the same inequality, which
completes the proof.

Now we are ready to address the subroutines.

5 Subroutine 1
Subroutine 1 decides whether a given point p is out-
side the k-sided, regular polygon Pk(r, x, y). We present
anO(log k) time comparison-based algorithm and show that
Property 2 holds.

Lemma 5. Subroutine 1 has an O(log k) time comparison-
based algorithm, and comparisons in the algorithm that de-
pend on the parameter (r, x, y) each have an associated crit-
ical hyperplane.

Proof. We partition the polygon Pk(r, x, y) into k triangles,
and decide which partition the point p is in, if it indeed is
in any of these partitions. For 1 ≤ i ≤ k, the ith par-
tition of Pk(r, x, y) is the triangle joining the ith vertex,
the (i + 1)th vertex and the center of Pk(r, x, y). Figure 7
shows the ith partition of Pk(r, x, y).

Pk(r, x, y)

i

i+ 1

Figure 7: The ith partition of Pk(r, x, y).

Assume for now that the point p is indeed in the poly-
gon Pk(r, x, y) and hence in one of the k partitions. We de-
cide whether p is in the ith partition for some i ≤ j, or for
some i > j, and perform a binary search for the index i. This
can be done by deciding if the point p is above, on, or be-
low the line joining the center of Pk(r, x, y) and its jth ver-
tex. The comparison depends on (r, x, y), so we must com-
pute its associated critical hyperplane using Lemma 4. Let
Pk(1, 0, 0) be the k-sided polygon of radius 1 and centered
at the origin. Then set g to be the gradient of the line joining
the center to the ith vertex of Pk(1, 0, 0), and vector v = 0
in Lemma 4 to obtain the associated critical hyperplane.

We have searched for the partition that p is in if it is indeed
in Pk(r, x, y). Hence, it only remains to decide whether p is
indeed in that partition. This requires a constant number of
comparisons, each of which depend on (r, x, y). We have
already computed associated critical hyperplanes for two of
the sides. The last side joins two adjacent vertices of the
polygon Pk(r, x, y). Set g to be the gradient of the ith side of
polygon Pk(1, 0, 0), and the vector v to be the ith vertex of
Pk(1, 0, 0), to obtain the final associated critical hyperplane.

The running time is dominated by the binary search for
the ith partition, which takes O(log k) time.

6 Subroutine 2
Subroutine 2 computes the relative clockwise order of four
tangent lines drawn from two points to polygon Pk(r, x, y).

2016



Lemma 6. Subroutine 2 has an O(log k)-time comparison-
based algorithm, and comparisons in the algorithm that de-
pend on the parameter (r, x, y) each have an associated crit-
ical hyperplane.

Proof. Draw two lines ti, tj tangent to Pk(r, x, y) and par-
allel to pq, and let the points of tangency be vertex i and ver-
tex j. If there are multiple points of tangency then choose
any such point. Then without loss of generality, set ij to be
horizontal, and assume further that p has a larger y coordi-
nate than q. Then the ti, tj and ij partition the plane into
the four regions, as shown in Figure 8. Region L is left of
both tangents, R is right of both tangents, U is between the
tangents and above ij, and D is between the tangents and
below ij.

Pk(r, x, y)

U

D

L R

titj

ij

p

q

Figure 8: The lines ti, tj , ij partition the plane into re-
gions L,R,U,D.

Then the relative clockwise order of the four lines drawn
from p and q are determined by which of the four re-
gions L, R, U or D the points p and q are located. See Fig-
ure 9.

Pk(r, x, y)

p

q

qx

pe

px

qe

Pk(r, x, y)

p

q

pe

px

qe

qx

Pk(r, x, y)

p

q

px

pe qx
qe

Pk(r, x, y)

p

q

pe px

qx qe

Figure 9: The relative orders shown for when (i) p, q ∈
L, (ii) p, q ∈ R, ((iii) p, q ∈ U and (iv) p ∈ U, q ∈ D.

Five cases follows. Let pe and px points of tangency
from p such that the points pe, p, px are in clockwise or-
der. If p, q are in the same region, then the containing re-

gion L, R, U , and D correspond to the relative clockwise
orders qepeqxpx, peqepxqx, peqeqxpx, and qepepxqx respec-
tively. If p, q are in different regions, then they must be in U
and D respectively, and the relative order is pepxqeqx. The
proof for case analysis for the five cases is omitted, but the
diagrams in Figure 9 may be useful for the reader.

The running time of the algorithm is as follows. Given the
gradient of pq, there is an O(log k) time algorithm to binary
search the gradients of the sides of Pk(r, x, y) to compute
the vertices i and j. Then the remainder of the algorithm
takes constant time: rotating the diagram so that ij is hor-
izontal, deciding whether p or q has a larger y coordinate,
and computing the region L,R,U,D that points p, q are in.

The proof of existence of critical hyperplanes is as fol-
lows. Since the gradients of pq and sides of Pk do not depend
on (r, x, y), computing i and j generates no critical hyper-
planes. Similarly, rotating the diagram so that ij is horizon-
tal and then deciding which of p or q have larger y coordi-
nates also generates no critical hyperplanes. It only remains
to decide which of the four regions L,R,U,D the point p,
and respectively q, is in. Set g to the gradient of pq and vec-
tor v to be the ith vertex of Pk(1, 0, 0) in Lemma 4 to decide
if p is to the left of the tangent through i. Do so similarly
for j to decide if p is to the right of the tangent through j.
Finally, set g to the gradient of ij and vector v to be either
the ith or jth vertex of Pk(1, 0, 0) to decide if p is above the
chord ij.

Checking that Property 2 holds for the comparison-based
subroutines, Subroutine 1 and Subroutine 2, completes the
proof to Theorem 2. In the final section we will prove that
Theorem 2 implies that we have an efficient algorithm for
computing the yolk in the L1 and L∞ meetrics, and an effi-
cient approximation algorithm for the L2 metric.

7 Computing the Yolk in L1,L2, and L∞
It remains to show that our general problem for Pk(r, x, y)
implies the results as claimed in the introduction.

Theorem 3. Given a set V of n points in the plane, there is
an O(n log7 n) time algorithm to compute the yolk of V in
the L1 and L∞ metrics.

Proof. Setting k = 4 in Theorem 2 gives an algorithm to
compute the smallest P4(r, x, y) that intersects all median
lines of V inO(n log7 n) time. This rotated square coincides
with yolk in theL1 metric, refer to Figure 2 and Definition 1.

Computing the yolk in the L∞ metric requires one extra
step. Rotate the points of V by 45◦ clockwise, compute the
smallest P4(r, x, y), and then rotate the square P4(r, x, y)
back 45◦ anticlockwise to obtain the yolk in the L∞ metric.

Theorem 4. Given a set V of n points in the plane and
an ε > 0, there is an O(n log7 n · log4 1

ε ) time algorithm
to compute a (1 + ε)-approximation of the yolk in the L2

metric.

Proof. Setting k ≈ π · (1 + 1
ε ) in Theorem 2 gives an algo-

rithm to compute the smallest Pk(r, x, y) that intersects all

2017



median lines of V in the desired running time. It suffices to
show that for this parameter set (r, x, y), the disk centered
at (x, y) with radius r is a (1+ε)-approximation for the yolk
in the L2 metric.

First, note that Pk(r, x, y) intersects all median lines,
and B(r, x, y) encloses Pk(r, x, y), so the disk must also in-
tersect all median lines of V . Hence, it suffices to show that
the radius r of B(r, x, y) satisfies r ≤ (1 + ε) · r2, where r2
is the radius of the true yolk in the L2 metric.

Let the yolk in the L2 metric be the disk B(r2, x2, y2).
Consider the regular, k-sided polygon Pk(r2 · sec π

k , x2, y2),
so that by construction, all sides of this polygon are tangent
to B(r2, x2, y2).

Pk(r2 · sec πk , x2, y2)

r2 · sec πk r

Figure 10: The polygon Pk(r2 · sec π
k , x2, y2) is externally

tangent to the disk B(r2, x2, y2).

Now since B(r2, x2, y2) is the L2 yolk, it intersects all
median lines and so does its enclosing polygon Pk(r2 ·
sec π

k , x2, y2). By the minimality of Pk(r, x, y), we get r ≤
sec π

k · r2. But for θ ∈ [0, π3 ], we have sec θ ≤ 1
1−θ . So,

sec
π

k
≤ 1

1− π
k

≤ 1 + ε,

which implies that r ≤ (1 + ε) · r2, as required.

8 Concluding Remarks
Cole’s (1987) extension to parametric search states that the
running time of the parametric search may be reduced if cer-
tain comparisons are delayed. This is a direction for further
research that could potentially improve the running time of
our algorithms.

An open problem is whether one can compute the yolk
in higher dimensions without precomputing all median hy-
perplanes. Avoiding the computation of median hyperplanes
yields even greater benefits as less is known about bounds
on the number of median hyperplanes in higher dimensions.

Similarly, our approximation algorithm for the L2 yolk in
the plane is optimal up to polylogarithmic factors, however,
it is an open problem as to whether there is a near-linear time
exact algorithm. Our attempts to apply Megiddo’s paramet-
ric search technique to the L2 yolk have been unsuccessful
so far.

Finally, there are other solution concepts in computa-
tional spatial voting that currently lack efficient algorithms.
The shortcomings of existing algorithms are: for the Shap-
ley Owen power score there is only an approximate algo-
rithm (Godfrey 2005), for the Finagle point only regular

polygons have been considered (Wuffle et al. 1989) and
for the ε-core only a membership algorithm exists (Tovey
2010b). Since these problems have a close connection to
either median lines or minimal radius, we suspect that
Megiddo’s parametric search technique could also be use-
ful for these problems.

References
Agarwal, P. K., and Sharir, M. 1998. Efficient algo-
rithms for geometric optimization. ACM Computing Surveys
30(4):412–458.
Anshelevich, E.; Bhardwaj, O.; and Postl, J. 2015. Ap-
proximating optimal social choice under metric preferences.
In Twenty-Ninth AAAI Conference on Artificial Intelligence,
AAAI 2015, 777–783.
Berg, M. D.; Gudmundsson, J.; and Mehr, M. 2016. Faster
algorithms for computing plurality points. In 32nd Interna-
tional Symposium on Computational Geometry, SoCG 2016,
32:1–32:15.
Black, D. 1948. On the rationale of group decision-making.
Journal of Political Economy 56(1):23–34.
Cole, R. 1987. Slowing down sorting networks to obtain
faster sorting algorithms. Journal of the ACM 34(1):200–
208.
Dey, T. K. 1997. Improved bounds on planar k-sets and k-
levels. In 38th Annual Symposium on Foundations of Com-
puter Science, FOCS 1997, 156–161.
Downs, A. 1957. An economic theory of political action in
a democracy. Journal of Political Economy 65(2):135–150.
Enelow, J. M., and Hinich, M. J. 1984. The spatial theory of
voting: An introduction. CUP Archive.
Feld, S. L., and Grofman, B. 1990. A theorem connecting
Shapley-Owen power scores and the radius of the yolk in
two dimensions. Social Choice and Welfare 7(1):71–74.
Feld, S. L.; Grofman, B.; Hartly, R.; Kilgour, M.; Miller,
N.; et al. 1987. The uncovered set in spatial voting games.
Theory and Decision 23(2):129–155.
Feld, S. L.; Grofman, B.; and Miller, N. 1988. Centripetal
forces in spatial voting: on the size of the yolk. Public
Choice 59(1):37–50.
Feld, S. L.; Grofman, B.; and Miller, N. R. 1989. Limits on
agenda control in spatial voting games. Mathematical and
Computer Modelling 12(4-5):405–416.
Godfrey, J. 2005. Computation of the Shapley-Owen power
index in two dimensions. In 4th Annual workshop, Univer-
sity of Warwick, 20–22.
Goel, A.; Krishnaswamy, A. K.; and Munagala, K. 2017.
Metric distortion of social choice rules: Lower bounds and
fairness properties. In Proceedings of the 2017 ACM Con-
ference on Economics and Computation, EC 2017, 287–304.
Koehler, D. H. 1990. The size of the yolk: computations
for odd and even-numbered committees. Social Choice and
Welfare 7(3):231–245.

2018



McKelvey, R. D. 1976. Intransitivities in multidimensional
voting models and some implications for agenda control.
Journal of Economic Theory 12(3):472 – 482.
McKelvey, R. D. 1986. Covering, dominance, and
institution-free properties of social choice. American Jour-
nal of Political Science 283–314.
Megiddo, N. 1983. Applying parallel computation algo-
rithms in the design of serial algorithms. Journal of the ACM
30(4):852–865.
Miller, N. R.; Grofman, B.; and Feld, S. L. 1989. The
geometry of majority rule. Journal of Theoretical Politics
1(4):379–406.
Miller, N. R. 1980. A new solution set for tournaments and
majority voting: Further graph-theoretical approaches to the
theory of voting. American Journal of Political Science 68–
96.
Ordeshook, P. C. 1993. The spatial analysis of elections
and committees: Four decades of research. Technical report,
California Institute of Technology, Division of the Humani-
ties and Social Sciences.
Plott, C. R. 1967. A notion of equilibrium and its possibility
under majority rule. The American Economic Review 787–
806.
Poole, K. T., and Rosenthal, H. 1984. The polarization of
American politics. The Journal of Politics 46(4):1061–1079.
Poole, K. T., and Rosenthal, H. 1991. Patterns of congres-
sional voting. American Journal of Political Science 228–
278.
Poole, K. T., and Rosenthal, H. 2001. D-nominate after
10 years: A comparative update to congress: A political-
economic history of roll-call voting. Legislative Studies
Quarterly 5–29.
Preparata, F. P. 1978. New parallel-sorting schemes. IEEE
Transactions on Computers (7):669–673.
Schofield, N.; Miller, G.; and Martin, A. 2003. Critical
elections and political realignments in the USA: 1860–2000.
Political Studies 51(2):217–240.
Schofield, N. 2004. Equilibrium in the spatial ‘valence’
model of politics. Journal of Theoretical Politics 16(4):447–
481.
Schofield, N. 2007. The spatial model of politics. Routledge.
Skowron, P. K., and Elkind, E. 2017. Social choice un-
der metric preferences: Scoring rules and STV. In Thirty-
First AAAI Conference on Artificial Intelligence, AAAI 2017,
706–712.
Stone, R. E., and Tovey, C. A. 1992. Limiting median lines
do not suffice to determine the yolk. Social Choice and Wel-
fare 9(1):33–35.
Tóth, G. 2000. Point sets with many k-sets. In 16th Annual
Symposium on Computational Geometry, SoCG 2000, 37–
42.
Tovey, C. A. 1992. A polynomial-time algorithm for com-
puting the yolk in fixed dimension. Mathematical Program-
ming 57(1):259–277.

Tovey, C. A. 1993. Some foundations for empirical study
in the Euclidean spatial model of social choice. In Politi-
cal economy: institutions, competition, and representation:
Proceedings of the Seventh International Symposium in Eco-
nomic Theory and Econometrics, 175. Cambridge Univ Pr.
Tovey, C. A. 2010a. The almost surely shrinking yolk.
Mathematical Social Sciences 59(1):74–87.
Tovey, C. A. 2010b. A finite exact algorithm for epsilon-
core membership in two dimensions. Mathematical Social
Sciences 60(3):178–180.
Tovey, C. A. 2011. The Finagle point and the epsilon-core:
a comment on Bräuninger’s proof. Journal of Theoretical
Politics 23(1):135–139.
Wuffle, A.; Feld, S. L.; Owen, G.; and Grofman, B. 1989.
Finagle’s law and the finagle point, a new solution concept
for two-candidate competition in spatial voting games with-
out a core. American Journal of Political Science 348–375.

2019


