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Abstract

The HOUSING MARKET problem is a widely studied re-
sources allocation problem. In this problem, each agent can
only receive a single object and has preferences over all ob-
jects. Starting from an initial endowment, we want to reach
a certain assignment via a sequence of rational trades. We
consider the problem whether an object is reachable for a
given agent under a social network, where a trade between
two agents is allowed if they are neighbors in the network
and no participant has a deficit from the trade. Assume that
the preferences of the agents are strict (no tie is allowed). This
problem is polynomially solvable in a star-network and NP-
complete in a tree-network. It is left as a challenging open
problem whether the problem is polynomially solvable when
the network is a path. We answer this open problem posi-
tively by giving a polynomial-time algorithm. Furthermore,
we show that the problem on a path will become NP-hard
when the preferences of the agents are weak (ties are al-
lowed).

Introduction
Allocating indivisible objects to agents is an important prob-
lem in both computer science and economics. A widely stud-
ied setting is that each agent can only receive one single ob-
ject and each agent has preferences over objects. This prob-
lem was previously called ASSIGNMENT problem (Garden-
fors 1973; Wilson 1977) and now we prefer to call it HOUSE
ALLOCATION problem (Abdulkadiroğlu and Sönmez 1998;
Manlove 2013). When each agent is initially endowed with
an object and we want to reallocate objects under some
conditions without any monetary transfers, the problem
is known as HOUSING MARKET problem (Shapley and
Scarf 1974). HOUSING MARKET has several real-life ap-
plications such as allocation of housings (Abdulkadiroğlu
and Sönmez 1999), organ exchange (Roth, Sönmez, and
Ünver 2004) and so on. There are two different prefer-
ence sets for agents. One is strict, which is a full ordinal
list of all objects, and the other one is weak, where agents
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are allowed to be indifferent between objects. Both pref-
erence sets have been widely studied. Under strict pref-
erences, the celebrated Top Trading Cycle rule (Shapley
and Scarf 1974) has several key desirable properties. Some
modifications of Top Trading Cycle rule, called Top Trad-
ing Absorbing Sets rule and Top Cycles rule, were intro-
duced for weak preferences (Alcalde-Unzu and Molis 2011;
Jaramillo and Manjunath 2012), which also hold some
good properties. More studies of HOUSING MARKET un-
der the two preference sets from different aspects can be
found in the literature (Jaramillo and Manjunath 2012;
Aziz and De Keijzer 2012; Saban and Sethuraman 2013;
Ehlers 2014; Sonoda et al. 2014; Ahmad 2017).

Some rules allow a single exchange involving many
agents. It is natural and fundamental to consider exchanges
being bilateral deals (swaps), i.e., each exchange of ob-
jects happens only between two agents. A swap between
two agents is allowed when they are mutually beneficial
from the exchange. This natural rule for HOUSING MARKET
has been studied in the literature (Damamme et al. 2015;
Gourvès, Lesca, and Wilczynski 2017).

In some models, it is implicitly assumed that all agents
have a tie with others. However, some agents often do not
know each other and do not have the capacity to exchange
even they can mutually get benefits. So Gourvès, Lesca, and
Wilczynski (2017) studied HOUSING MARKET where the
agents are embedded in a social network to denote the ability
to exchange objects between them. In fact, recently it is a hot
topic to study resources allocation problems over social net-
works and analyze the influences of networks. Abebe, Klein-
berg, and Parkes (2017) and Bei, Qiao, and Zhang (2017) in-
troduced social network of agents into the FAIR DIVISION
problem of cake cutting. Bredereck, Kaczmarczyk, and Nie-
dermeier (2018) and Beynier et al. (2018) also considered
network-based FAIR DIVISION in allocating indivisible re-
sources.

In this paper, we study HOUSING MARKET in a social
network with simple trades between pairs of neighbors in the
network. In this model, there are the same number of agents
and objects and each agent is initially endowed with a sin-
gle object. Each agent has preferences over all objects. The
agents are embedded in a social network which determines
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their ability to exchange their objects. Two agents may swap
their items under two conditions: they are neighbors in the
social network, and they find it mutually profitable (or no
one will become worse under weak preferences). We focus
on OBJECT REACHABILITY under this model: to determine
whether an object is reachable for a given agent from the
initial endowment via swaps. Damamme et al. (2015) firstly
proved that the problem is NP-hard even to decide whether
any one of a subset of objects is reachable for each agent.
Gourvès, Lesca, and Wilczynski (2017) further showed that
OBJECT REACHABILITY is polynomially solvable under
star-structures and NP-complete under tree-structures. For
the network being a path, they solved the special case where
the given agent is an endpoint (a leaf) in the path and left it
unsolved for the general case. All the above results are un-
der strict preferences. In this paper, we will answer this open
problem positively by giving a polynomial-time algorithm
for OBJECT REACHABILITY in a path under strict prefer-
ences, and also prove that OBJECT REACHABILITY in a path
under weak preferences is NP-hard.

Although paths are rather simple graph structures, OB-
JECT REACHABILITY in a path is not easy at all, as
mentioned in (Gourvès, Lesca, and Wilczynski 2017) that
“Despite its apparent simplicity, REACHABLE OBJECT
(OBJECT REACHABILITY) in a path is a challenging open
problem when no restriction on the agent’s location is made.
We believe that this case is at the frontier of tractability.”
Our algorithm involves several techniques and needs to call
solvers for the 2-SAT problem, but it is still interesting.

The following part of the paper is organized as follows.
Section 2 provides some backgrounds. Section 3 tackles the
reachability of an object for an agent in a path-network un-
der strict preferences. Section 4 shows the NP-hardness of
OBJECT REACHABILITY in a path under weak preferences.
The proofs of the lemmas and theorems marked with “?” are
omitted due to the limitation of space, which can be found
in the full version of this paper.

Background
Model. There are a set N = {1, ..., n} of n agents and a
set O = {o1, ..., on} of n objects. An assignment σ is a
mapping fromN toO, where σ(i) is the object held by agent
i in σ. We also use σT (oi) to denote the agent who holds
object oi in σ. Each agent holds exactly one object at all
time. Initially, the agents are endowed with objects, and the
initial endowment is denoted by σ0. We assume w.l.o.g that
σ0(i) = oi for every agent i.

Each agent has preferences regarding objects. A strict
preference is expressed as a full linear order of all objects.
Agent i’s preference is denoted by �i, and oa �i ob indi-
cates the fact that agent i prefers object oa than object ob.
The whole strict preference profile for all agents is repre-
sented by �. For weak preferences, agents are allowed to be
indifferent between objects. For two disjoint subsets of ob-
jects S1 and S2, we use S1 �i S2 to indicate that all objects
in S1 (resp., S2) are indifferent for agent i and agent i prefer
any object in S1 than any object in S2. We use oa �i ob to
denote that agent i likes oa at least as same as ob. Two re-
lations oa �i ob and ob �i oa together imply that oa and

ob are indifferent for agent i. We may use � to denote the
whole weak preference profile for all agents.

Let G = (N,E) be an undirected graph as the social net-
work among agents, where the edges capture the capability
of communication and exchange between two agents. An in-
stance of HOUSING MARKET is a tuple (N,O,�, G, σ0) or
(N,O,�, G, σ0) according to the preferences being strict or
weak.

Dynamics. The approach we take in this paper is dynamic,
and we focus on individually rational trades between two
agents. A trade is individual rational if each participant re-
ceives an object at least as good as the one currently held,
i.e., for two agents i and j and an assignment σ, the trade
between i and j on σ is individual rational if σ(j) �i σ(i)
and σ(i) �j σ(j).

We require that every trade is performed between neigh-
bors in the social network G. Individual rational trades de-
fined according to G are called swaps. A swap is an ex-
change, where two participants have the capability to com-
municate.

A sequence of swaps can be represented as a sequence
of assignments (σ0, σ1, σ2, ..., σt) such that for any i ∈
{1, ..., t}, σi results from a swap from σi−1. An assign-
ment σ′ is reachable if there exists a sequence of swaps
(σ0, σ1, σ2, ..., σt) such that σt = σ′. An object o ∈ O is
reachable for an agent i ∈ N if there is a sequence of swaps
(σ0, σ1, σ2, ..., σt) such that σt(i) = o.

Problems. We consider the problem of checking whether an
object is reachable for an agent from the initial endowment
via swaps.

OBJECT REACHABILITY
Instance: (N,O,�, G, σ0), an agent k ∈ N , and an object
ol ∈ O.
Question: Whether is object ol reachable for agent k?

When the preferences are strict, we call the problem
STRICT OBJECT REACHABILITY. When the preferences
are weak, we call the problem WEAK OBJECT REACHA-
BILITY. When the social network is a path P , we call the
problem OBJECT REACHABILITY in a path. For OBJECT
REACHABILITY in a path, an instance will be denoted by
I = (N,O,�, P, σ0, k ∈ N, ol ∈ O), where we assume
w.l.o.g that l < k. For path structures, we always assume
w.l.o.g that the agents are listed as 1, 2, . . . , n on a line
from left to right with an edge between any two consecutive
agents. Below is an example for OBJECT REACHABILITY
in a path.
Example 1. There are four agents. The path structure, pref-
erence profile and a sequence of swaps are given below.

P : 1 2 3 4 1 : o2 � o1 � o3 � o4
σ0 : o1 o2 o3 o4 2 : o4 � o3 � o1 � o2
σ1 : o2 o1 o3 o4 3 : o1 � o4 � o3 � o2
σ2 : o2 o3 o1 o4 4 : o3 � o1 � o2 � o4

The initial endowments for agents are denoted by squares
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within the preferences. After a swap between agents 1 and 2
from σ0 we get σ1 and after a swap between agents 2 and 3
from σ1 we get σ2. The object o1 is reachable for agent 3.

STRICT OBJECT REACHABILITY in a Path
STRICT OBJECT REACHABILITY is known to be NP-
complete when the network is a tree and polynomially
solvable when the network is a star (Gourvès, Lesca, and
Wilczynski 2017). It is left unsolved whether the problem
with the network being a path is NP-hard or not. We reveal
some properties of STRICT OBJECT REACHABILITY under
the path structure and design a polynomial time algorithm
for it. In the remaining part of this section, we assume that
the preferences are strict and the network is a path.

Recall that the problem is to check whether an object ol
is reachable for an agent k with l < k. The main idea of
our algorithm is as follows. First, we show that the instance
is equivalent to the instance after deleting all agents (and
the corresponding endowed objects) on the left of agent l.
Thus, we can assume the problem is to check whether ob-
ject o1 is reachable for an agent k. Second, we prove that if
o1 is reachable for agent k then there is an object on′ with
n′ ≥ k that should be moved to agent k − 1 in the final
assignment and we can ignore all agents and objects on the
right of agent n′. We guess n′ by letting it be each possible
value between k and n and get at most n candidate instances.
These instances are called neat (o1, on′ , k)-CONSTRAINED
instances. A neat (o1, on′ , k)-CONSTRAINED instance con-
tains only n′ agents and it is to check whether there is
a reachable assignment σ′, called compatible assignment,
such that σ′(k) = o1 and σ′(k − 1) = on′ . Third, we are
going to find compatible assignments. In a neat (o1, on′ , k)-
CONSTRAINED instance, in every compatible assignment
each object oi will be moved to either the left or the right
of its original position in the path. We prove that for each
direction, there is at most one possible position il (or ir
for the right direction) for each object oi. We can compute
il and ir directly in polynomial time. Since there are still
two possible final positions for each object, we do not get
a feasible assignment yet. Fourth, we reduce the subprob-
lem to 2-SAT and determine which of il and ir should be
chose for each agent i by solving a 2-SAT instance. We show
that each feasible assignment obtained in this step is corre-
sponding to a reachable assignment for the neat (o1, on′ , k)-
CONSTRAINED instance. Finally, we can solve the original
problem in polynomial time, because the original instance is
a yes-instance if and only if at least one of the candidate neat
(o1, on′ , k)-CONSTRAINED instances is a yes-instance.

In fact, when the preferences are strict, we have the fol-
lowing observations and lemmas.
Observation 1. Given a sequence of swaps (σ0, σ1, . . . , σt)
and an agent j ∈ N . For any i ∈ {0, 1, . . . , t − 1}, it holds
either σi+1(j) = σi(j) or σi+1(j) �j σi(j).

It implies the following lemma.
Lemma 1. Given a sequence of swaps (σ0, σ1, . . . , σt). For
any two integers i < j in {0, 1, . . . , t} and any agent q ∈
N , if σi(q) = σj(q), then σd(q) = σi(q) for any integer
i ≤ d ≤ j.

Lemma 1 also says that an object will not ‘visit’ an agent
twice. This property is widely used in similar allocation
problems under strict preferences.

Next, we analyze properties under the constraint that the
social network is a path. In a swap, the moving of an object
is on the right direction if it is moved from agent i to agent
i + 1, and the moving of an object is on the left direction
if it is moved from agent i to agent i − 1. In each swap,
one object is moved on the right direction and one object
is moved on the left direction. We study the tracks of the
objects in a feasible assignment sequence.

Lemma 2. ? For a sequence of swaps (σ0, σ1, . . . , σt), if
σT
t (oi) = j for an object oi, then there are exactly |j − i|

swaps includes oi. Furthermore, all the |j− i| movings of oi
are on the right direction if i < j, and all the |j− i| movings
of oi are on the left direction if i > j.

Lemma 3. ? Let (σ0, σ1, . . . , σt) be a sequence of swaps,
and oa and ob be two objects with a < b. Let a′ = σT

t (oa)
and b′ = σT

t (ob). If a′ ≤ a or b′ ≥ b, then a′ < b′.

Lemma 1 shows that any object can only move on one
direction. Lemma 3 shows that when an object moves on the
right direction, all objects initially allocated on the left of it
can not move to the right of it at any time; when an object
moves on the left direction, all objects initially allocated on
the right of it can not move to the left of it at any time.

In fact, if we want to move an object ol to an agent k with
k > l, we may not need to move any object on the left of ol,
i.e., objects ol′ with l′ < l. Equipped with Lemma 3, we can
prove

Lemma 4. ? If object ol is reachable for agent k, then there
is a feasible assignment sequence (σ0, σ1, . . . , σt) such that
σT
t (ol) = k, and σt(i) = σ0(i) for all i < l if l ≤ k and for

all i > l if l ≥ k.

For an instance I = (N,O,�, P, σ0, k, ol) of STRICT
OBJECT REACHABILITY in a path with l < k, let
I ′ = (N ′, O′,�′, P ′, σ′0, k, ol) denote the instance obtained
from I by deleting agents {1, 2, . . . , l − 1} and objects
{o1, o2, . . . , ol−1}. In other words, we let N ′ = {l, l +
1, . . . , n}, O′ = {ol, ol+1, . . . , on}, and �′, P ′ and σ′0 be
the corresponding subsets of �, P and σ0.

Lemma 5. Object ol is reachable for agent k in the instance
I if and only if object ol is reachable for agent k in the in-
stance I ′.

By Lemma 5, we can always assume that the instance
of STRICT OBJECT REACHABILITY in a path is to check
whether the object o1 is reachable for an agent k.

Assume that object o1 is reachable for agent k. For a se-
quence of swaps (σ0, σ1, . . . , σt) such that σt(o1) = k, there
are exactly k − 1 swaps including o1 which are moving o1
on the right direction according to Lemma 2. The last swap
including o1 will be happened between agent k−1 and agent
k. Let on′ denote the other object included in the last swap.
In other words, after the last swap, agent k−1 will get the ob-
ject on′ and agent k will get the object o1. Note that the mov-
ing of on′ in this swap is in the left direction. By Lemma 2,
we know that all movings of on′ in the sequence of swaps
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are in the left direction. Therefore, we have the following
observation.

Observation 2. It holds that n′ ≥ k.

Our idea is to transform our problem to the following con-
strained problem: to determine whether there is a reachable
assignment σ such that σ(k − 1) = on′ and σ(k) = o1,
where n′ ≥ k. We do not know the exact value of n′. So
we search by letting n′ be each value in {k, k + 1, . . . , n}.
This will only increase the running time bound by a factor of
n. We denote the above constrained problem by (o1, on′ , k)-
CONSTRAINED problem.

Lemma 6. An instance I = (N,O,�, P, σ0, k, o1) is yes
if and only if at least one of the (o1, on′ , k)-CONSTRAINED
instances for n′ ∈ {k, k + 1, . . . , n} is yes.

For an (o1, on′ , k)-CONSTRAINED instance I , we
use I−n′ to denote the instance obtained from I by
deleting agents {n′ + 1, n′ + 2, . . . , n} and objects
{on′+1, on′+2, . . . , on}.
Lemma 7. ? An (o1, on′ , k)-CONSTRAINED instance I is
yes if and only if the instance I−n′ is yes.

By Lemma 7, we can ignore all agents on the right of n′
in an (o1, on′ , k)-CONSTRAINED instance. An (o1, on′ , k)-
CONSTRAINED instance is called neat if n′ is the last agent.
We may simply consider neat (o1, on′ , k)-CONSTRAINED
instances only. For any two integers a and b, we use [a, b]
to denote the set of integers between a and b (including a
and b).

Lemma 8. ? Let (σ0, σ1, . . . , σt) be a sequence of swaps,
and oa and ob be two objects with a < b. Let a′ = σT

t (oa),
b′ = σT

t (ob) and Q = [a, a′] ∩ [b, b′]. Assume that Q 6= ∅.
(a) If a′ > a and b′ > b, it holds that oa �q ob for all q ∈ Q.
(b) If a′ < a and b′ < b, it holds that ob �q oa for all q ∈ Q.

See Figure 1 for an illustration for Lemma 8(a).

1 . . . a . . . b . . . q . . . a′ . . . b′ . . . n

Q

oa �q ob

oa ob

Figure 1: An illustration for Lemma 8(a)

Lemma 9. ? Let (σ0, σ1, . . . , σt) be a sequence of swaps
for a neat (o1, on′ , k)-CONSTRAINED instance such that
σT
t (o1) = k and σT

t (on′) = k − 1, and oa and ob be two
objects with a < b. Let a′ = σT

t (oa) and b′ = σT
t (ob). As-

sume that a′ > a, b′ < b and Q = [a, a′] ∩ [b, b′] 6= ∅. Let
Q′ = [a+ 1, a′] ∩ [b, b′].
(a) There is a swap including oa and ob which happens be-
tween agent c− 1 and c, where c = a′ + b′ − k + 1 ∈ Q′.
(b) It holds that ob �q oa for all max(a, b′) ≤ q < c, and
oa �q ob for all c ≤ q ≤ min(a′, b).

See Figure 2 for an illustration for Lemma 9.

1 . . . a . . . b′ . . . c − 1 c . . . a′ . . . b . . . n′
q

ob �q oa

q

oa �q ob

oa ob

Figure 2: An illustration for Lemma 9

Given a neat (o1, on′ , k)-CONSTRAINED instance and an
assignment σt such that σT

t (o1) = k and σT
t (on′) = k − 1.

We show some conditions for σt to be a feasible assign-
ment. For any two objects oa and ob, we let a′ = σT

t (oa)
and b′ = σT

t (ob). We say oa and ob are intersected if
Q = [a, a′]∩ [b, b′] is not an empty set. There are three kinds
of intersections, which are corresponding to Lemma 8(a),
Lemma 8(b) and Lemma 9. We say a pair of objects oa and
ob (a < b) are compatible in assignment σt if there are ei-
ther not intersected or intersected and satisfying one of the
follows:
1. when a′ > a and b′ > b, it holds that a′ < b′ (corre-
sponding to Lemma 3) and oa �q ob for all agents q ∈ Q
(corresponding to Lemma 8(a));
2. when a′ < a and b′ < b, it holds that a′ < b′ (corre-
sponding to Lemma 3) and ob �q oa for all agents q ∈ Q
(corresponding to Lemma 8(b));
3. when a′ > a and b′ < b, it holds that c = a′+b′−k+1 ∈
Q′ = Q \ {a}, ob �q oa for all max(a, b′) ≤ q < c, and
oa �q ob for all c ≤ q ≤ min(a′, b) (corresponding to
Lemma 9).
An assignment σ is compatible if it holds σ(i) 6= oi for any
agent i and any pair of objects in it are compatible.

Lemma 3, Lemma 8 and Lemma 9 directly imply that
Lemma 10. If σt is a reachable assignment for a neat
(o1, on′ , k)-CONSTRAINED instance such that σT

t (o1) = k
and σT

t (on′) = k − 1, then σt is compatible.
Lemma 11. ? Let σt be a compatible assignment for a neat
(o1, on′ , k)-CONSTRAINED instance such that σT

t (o1) = k
and σT

t (on′) = k − 1. For any two objects ox−1 and ox, if
σT
t (ox−1) > x− 1 and σT

t (ox) < x, then the swap between
agents x − 1 and x in σ0 is feasible. Let σ1 denote the as-
signment after the swap between x− 1 and x in σ0. Then σt
is still compatible by taking σ1 as the initial endowment.1

Based on Lemma 11 we will prove the following lemma.
Lemma 12. ? Let σt be an assignment for a neat
(o1, on′ , k)-CONSTRAINED instance such that σT

t (o1) = k
and σT

t (on′) = k−1. If σt is compatible, then σt is a reach-
able assignment.

By Lemma 12, to solve a neat (o1, on′ , k)-CONSTRAINED
instance, we only need to find a compatible assignment.

1If the swap is happened between agents 1 and 2, then object o1
will be moved to agent 2 in σ1 and we will may not be able to get
an (o1, on′ , k)-CONSTRAINED instance by letting σ1 be the initial
endowment. For this case, we will delete agent 1 and object σ1(1)
to keep object o1 in the first agent. More details will be given in the
full version.
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Computing Compatible Assignments
In a compatible assignment, object o1 will be assigned to
agent k and object on′ will be assigned to agent k − 1. We
consider other objects oi for i ∈ {2, 3, . . . , n′−1}. In a com-
patible assignment, object oi will not be assigned to agent i
since each agent will attend in at least one swap including
object o1 or on′ . There are two possible cases: oi is assigned
to agent i′ such that i′ < i; oi is assigned to agent i′ such that
i′ > i. We say that oi is moved to the left side for the for-
mer case and moved to the right side for the latter case. We
will show that for each direction, there is only one possible
position for each object oi in a compatible assignment.

First, we consider i ∈ {2, 3, . . . , k − 1}. Assume that ob-
ject oi is moved to the left side in a compatible assignment.
Thus, o1 and oi are intersected and the intersection is of the
case in Lemma 9. We find the index i′ such that i′ ≤ i,
oi �i′−1 o1 and o1 �j oi for each j ∈ {i′, i′ + 1, . . . , i}.
We can see that i′ is the only possible agent for object oi
to make o1 and oi are compatible if oi is moved to the left
side. We use il to denote this agent if it exists for i. Assume
that object oi is moved to the right side in a compatible as-
signment. Since o1 will be moved to agent k and oi will be
moved to the right side, by Lemma 3 we know that oi will be
moved to the right of o1, i.e., an agent i′′ with i′′ > k. Thus,
oi and on′ are intersected and the intersection is of the case
in Lemma 9. We find the index i′ such that i′ > k, oi �i′ on′

and on′ �j oi for each j ∈ {k − 1, k, . . . , i′ − 1}. We can
see that i′ is the only possible agent for object oi to make
on′ and oi are compatible if oi is moved to the right side. We
use ir to denote this agent if it exists for i.

Second, we consider i ∈ {k, k + 1, . . . , n′ − 1}. In fact,
the structure of neat (o1, on′ , k)-CONSTRAINED instances
is symmetrical. We can rename the agents on the path from
left to right as {n′, n′ − 1, . . . , 1} instead of {1, 2, . . . , n′}
and then this case becomes the above case. We can com-
pute il and ir for each i ∈ {k, k + 1, . . . , n′ − 1} in a
similar way. Therefore, we can compute il and ir for all
i ∈ {2, 3, . . . , n′ − 1} if they exist.

If none of il and ir exists for some i, then this instance is
a no-instance. If only one of il and ir exists, then object oi
must be assigned to this agent in any compatible assignment.
The hardest case is that both of il and ir exist, where we
may not know which agent the object will be assigned to
in the compatible assignment. For this case, we will rely on
algorithms for 2-SAT to find possible solutions.

For each agent j, we will use Rj to store all possible ob-
jects that may be assigned to agent j in a compatible as-
signment. We use the following procedure to maintain Rj .
Initially, we let Rk−1 = {on′}, Rk = {o1}, and Ri = ∅ for
all other agent i. Then for each i ∈ {2, 3, . . . , n′ − 1}, we
compute il and ir and add oi into Ril and Rir . After this,
we can do the following to make the size of each Rj at most
2. While there is a set Rj0 becoming an empty set, stop and
report the instance is a no-instance; while there is a set Rj0
containing only one object oi0 and the object oi0 appears in
two sets Rj0 and Rj′0

, delete oi0 from Rj′0
.

The correctness of the third step is based on the fact that
agent j0 should get one object. If there is only one candidate
object oi0 for agent j0, then oi0 can only be assigned to agent

j0, no possible to agent j′0.
We also analyze the running time of the above procedure

to computeRj . For each object oi, we can compute il and ir
in O(n). Therefore, we use O(n2) time to set the values for
all sets Rj in the first two steps. To update Ri, we may exe-
cute at most n iterations in the third step and each iteration
can be executed in O(n). Therefore, the procedure running
times in O(n2) time.

Lemma 13. ? After the above procedure, either the instance
is a no-instance or it holds that 1 ≤ |Rj | ≤ 2 for each
j ∈ {1, 2, . . . , n′}.

For a set Rj containing only one object oi, we know that
the object oi should be assigned to agent j in any compatible
assignment. For setsRj containing two objects, we still need
to design which object is assigned to this agent such that we
can get a compatible assignment.

We will reduce the remaining problem to 2-SAT. The in-
stance contains n′ variables {x1, x2, . . . , xn′} correspond-
ing to the n′ objects. When xi = 1, it means that the ob-
ject oi moves on the right direction, i.e, we will assign it to
the agent ir in the compatible assignment. When xi = 0, it
means that the object oi moves on the left direction and we
will assign it to the agent il in the compatible assignment.
We have two kinds of clauses, called agent clauses and com-
patible clauses.

For each set Rj , we associate |Rj | literals with it. If there
is an object oi such that il = j, we associate literal xi with
Rj ; if there is an object oi such that ir = j, we associate lit-
eral xi with Rj . For each set Rj of size 1 (let the associated
literal be `j), we construct one clause containing only one
literal cj : `j . For each set Rj of size 2 (let the associated
literals be `1j and `2j ), we construct two clauses cj1 : `1j ∨ `1j
and cj2 : `1j ∨ `2j . These clauses are called agent clauses.
The agent clauses are to guarantee that exactly one object is
assigned to each agent.

For each pair of sets Rj and Ri, we construct several
clauses according to the definition of compatibility. For any
two objects oj′ ∈ Rj (the corresponding literal associated
to Rj is `j) and oi′ ∈ Ri (the corresponding literal associ-
ated to Ri is `i), we say that `j and `i are compatible if oj′
and oi′ are compatible when oj′ is assigned to agent j and
oi′ is assigned to agent i in the assignment. If `j and `i are
not compatible, then either oj′ cannot be assigned to agent
j or oi′ cannot be assigned to agent i in any compatible as-
signment. So we construct one compatible clause: `j ∨ `i
for each pair of incompatible pair `j and `i. Since each set
contains at most two objects, for each pair of sets Rj and
Ri, we will create at most 2 × 2 = 4 clauses. In fact, when
there are four clauses for a pair, the instance will become a
no-instance, since no matter what objects assigned to agents
j and i, there is no compatible assignment. In the following
example, we will illustrate the construct of agent clauses and
compatible clauses.

We can see that each clause contains at most two literals
and then the instance is a 2-SAT instance. The construction
of 2-SAT instances implies that

Lemma 14. The 2-SAT instance has a feasible assign-
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ment if and only if the corresponding neat (o1, on′ , k)-
CONSTRAINED instance has a compatible assignment.

The main steps of the whole algorithm to solve STRICT
OBJECT REACHABILITY in a path are listed in Algorithm 1.
The correctness of the algorithm follows from Lemma 5,
Lemma 6, Lemma 7 and Lemma 14. Next, we analyze the
running time bound of it. The dominating part of the run-
ning time is taken by the computation for neat (o1, on′ , k)-
CONSTRAINED instances. Next, we consider the running
time used for solving each neat (o1, on′ , k)-CONSTRAINED
instance. By the above analysis, we use O(n2) time to com-
pute the final values for all sets Rj . To construct 2-SAT
instance, we construct at most 2n agent clauses in O(n)
time and construct at most 4

(
n
2

)
compatible clauses, each

of which will take O(n) time to check the compatibility. So
the 2-SAT instance can be constructed in O(n3) time. We
use theO(n+m)-time algorithm for 2-SAT (Aspvall, Plass,
and Tarjan 1979) to solve our instance, where m = O(n2).
There are at most n neat (o1, on′ , k)-CONSTRAINED in-
stances. In total, we use O(n4) time.

Theorem 1. STRICT OBJECT REACHABILITY in a path
can be solved in O(n4) time.

Algorithm 1: Main steps to solve STRICT OBJECT
REACHABILITY in a path
Input: An instance (N,O,�, P, σ, k ∈ N, o1 ∈ O)
Output: To determine whether o1 is reachable for k

1 for k ≤ n′ ≤ n do
2 Construct the neat (o1, on′ , k)-CONSTRAINED

instance by deleting agent i and object oi for all
n′ < i ≤ n;

3 Compute ir and il for all 1 ≤ i ≤ n′ if it exist
according to Lemma 9;

4 Construct the set Rj of all possible objects that may
be assigned to each agent j according to the result
in the above step, where Rk−1 = {on′} and
Rk = {o1};

5 Iteratively update Rj according to the procedure
before Lemma 13;

6 Construct a 2-SAT instance as follows: construct a
variable for each object, construct agent clauses
according to Rj , and construct compatible clauses
for all incompatible pairs;

7 Determine whether the 2-SAT instance is
satisfiable;

8 if the 2-SAT instance is yes then
9 return yes;

10 return no.

We give an example to show the steps to compute a com-
patible assignment for a neat (o1, on′ , k)-CONSTRAINED in-
stance.

Example 2. Consider a neat (o1, on′ , k)-CONSTRAINED
instance with n′ = 8 and k = 5 as the top right figure.
We compute ir and il for all 1 ≤ i ≤ n′ by the above pro-

1

2

3

4

5

6

7

8

1 : o2 � o8 � o7 � o1
2 : o5 � o3 � o4 � o1 � o8 � o2
3 : o6 � o4 � o1 � o8 � o5 � o3
4 : o8 � o1 � o6 � o3 � o2 � o7 � o5 � o4
5 : o1 � o8 � o3 � o7 � o6 � o4 � o2 � o5
6 : o3 � o2 � o5 � o8 � o4 � o6
7 : o4 � o6 � o2 � o8 � o1 � o3 � o7
8 : o7 � o3 � o5 � o4 � o1 � o8

cedure, the values of which are listed in the top right table.

agent i 1 2 3 4 5 6 7 8
il - 1 2 3 2 3 - 4
ir 5 6 6 7 6 7 8 -

We construct Rj for each agent j according to this table,
and then update them as doing in the procedure. After the
update, it holds that 1 ≤ |Rj | ≤ 2 for all 1 ≤ j ≤ n′. We
reduce the remaining problem to 2-SAT. The agent clauses
for each set Rj are given in the last column of the table.

Set Initial Updated Agent clauses
R1 {o2} {o2} x2
R2 {o3, o5} {o3, o5} x3 ∨ x5, x3 ∨ x5
R3 {o4, o6} {o4, o6} x4 ∨ x6, x4 ∨ x6
R4 {o8} {o8} x8
R5 {o1} {o1} x1
R6 {o2, o3, o5} {o3, o5} x3 ∨ x5, x3 ∨ x5
R7 {o4, o6} {o4, o6} x4 ∨ x6, x4 ∨ x6
R8 {o7} {o7} x7

Next, we construct compatible clauses for all incompat-
ible pairs. We check all pairs of objects and find that there
are only two incompatible cases: o4 and o5 are incompatible
if o4 and o5 are moved to agent 3 and agent 2, respectively;
o4 and o5 are incompatible if o4 and o5 are moved to agent
7 and agent 6, respectively. The compatible clauses are

x4 ∨ x5 and x4 ∨ x5.
By using the O(n + m) time algorithm for 2-SAT (As-

pvall, Plass, and Tarjan 1979), we get a feasible variables
assignment (1, 0, 0, 0, 1, 1, 1, 0) for the 2-SAT instance. The
corresponding swap sequence constructed via variables as-
signment above is given below.

Remark: Although Step 4 of our algorithm will compute
possible values il and ir for each i, it does not mean that ob-
ject oi must be reachable for il or ir. In the above example,
object o2 is not reachable for agent 2r = 6 since agent 3
prefers its initial object o3 to o2 and then o2 cannot go to the
right direction. In our algorithm, the compatible clauses can
avoid assigning an object to an unreachable value il or ir. In
the above example, if object o2 goes to agent 6, then some
object oi with i > 2 will go to agent 1 or 2 and we will get
an incompatible pair o2 and oi.
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σ0 : o1 o2 o3 o4 o5 o6 o7 o8
σ1 : o2 o1 o3 o4 o5 o6 o7 o8
σ2 : o2 o3 o1 o4 o5 o6 o7 o8
σ3 : o2 o3 o4 o1 o5 o6 o7 o8
σ4 : o2 o3 o4 o1 o5 o6 o8 o7
σ5 : o2 o3 o4 o1 o5 o8 o6 o7
σ6 : o2 o3 o4 o1 o8 o5 o6 o7
σ7 : o2 o3 o4 o8 o1 o5 o6 o7

P : 1 2 3 4 5 6 7 8

WEAK OBJECT REACHABILITY in a Path

We have proved that STRICT OBJECT REACHABILITY in a
path is polynomially solvable. Next, we show that WEAK
OBJECT REACHABILITY in a path is NP-hard. One of the
most important properties is that Lemma 1 will not hold for
WEAK OBJECT REACHABILITY and an object may ‘visit’
an agent more than one time. Our proof is a modification of
the reduction in (Gourvès, Lesca, and Wilczynski 2017) to
prove the NP-hardness of STRICT OBJECT REACHABILITY
in a tree.

Theorem 2. WEAK OBJECT REACHABILITY is NP-hard
even when the network is a path.

We give a reduction from the known NP-complete prob-
lem 2P1N-SAT (Yoshinaka 2005). In a 2P1N-SAT instance,
we are given a set V = {v1, v2, . . . , vn} of variables and a
set C = {C1, C2, . . . , Cm} of clauses over V such that ev-
ery variable occurs 3 times in C with 2 positive literals and 1
negative literal. The question is to check whether there is an
variable assignment satisfying C. For a 2P1N-SAT instance
ISAT , we construct an instance IWOR of WEAK OBJECT
REACHABILITY on a path such that ISAT is a yes-instance
if and only if IWOR is a yes-instance.

The instance IWOR contains 6n +m + 1 agents and ob-
jects, which are constructed as follows. There is an agent
named T . For each clause Ci (i ∈ {1, . . . ,m}), we intro-
duce an agent also named Ci. For each variable vi, we add
six agents, named as X

ni

i , X
pi

i , X
qi
i , A

3
i , A

2
i and A1

i . They
form a path of length 5 in the order as showed below. We call
the path a block and denote it by Bi. The names of the six
agents have certain meaning: X

ni

i means that the negative
literal of vi appears in the clause Cni

; Xpi

i and Xqi
i mean

that the positive literals of vi appear in the two clauses Cpi

and Cqi ; A
3
i , A

2
i and A1

i are three auxiliary agents.

X
ni
i X pi

i X qi
i A3

i A2
i A1

i Bi

The whole path is connected in the order showed below.

Bn
. . . B1 Cm

. . . C1 T

In the initial assignment σ0, object t is assigned to agent
T , object ci is assigned to agent Ci for i ∈ {1, 2, . . . ,m},
object aji is assigned to agent Aj

i for each i ∈ {1, 2, . . . , n}
and j ∈ {1, 2, 3}, and oni

i (resp., opi

i and oqii ) is assigned to
agent X

ni

i (resp., Xpi

i and Xqi
i ) for each i ∈ {1, 2, . . . , n}.

Next, we define the preference profile �. We only show
the objects that each agent prefers at least as its initial one
and all other objects can be put behind its initial endowment
in any order. The initial endowment is denoted by a square
in the preference. Let Li be the set of the objects associated
with the literals in clauseCi, i.e., Li is the set of objects ona

a ,
opb

b and oqcc with na = i, pb = i or qc = i. For each variable
vi, we define a set of objects Wi = {c1, . . . , cm} ∪ {onj

j :

j > i} ∪ {opj

j : j 6= i} ∪ {oqjj : j > i} ∪ {alj : j < i, l =

1, 2, 3}. We are ready to give the preferences for the agents.
First, we consider the preferences for T and Ci. The fol-

lowing preferences ensure that when Ci holds an object in
Li for each i ∈ {1, . . . ,m}, object t is reachable for agent
Cm via a sequence of m swaps between Ci and Ci−1 for
i = 1, . . . ,m, where C0 = T .
T : L1 � t ;
Ci : Li+1 � t � Li � c1 � Li−1 � . . . � ci−1 �
L1 � ci , for all 1 ≤ i ≤ m− 1 ;
Cm : t � Lm � c1 � Lm−1 � . . . � cm−1 � L1 � cm .

Next, we consider the preferences for the agents in each
block Bi. The following preferences ensure that at most one
of oni

i and {opi

i , o
qi
i } can be moved to the right of the block,

which will indicate the corresponding variable is either true
or false. If oni

i is moved to the right of the block, we will as-
sign the corresponding variable false; if some of {opi

i , o
qi
i }

is moved to the right of the block, we will assign the cor-
responding variable true. We use the preference of A3

i to
control this. Furthermore, we use A1

i , A2
i and A3

i to (tem-
porarily) hold oni

i (or opi

i and oqii ) if they do not need to be
moved to the right of the block.
X

ni

i :Wi ∪ {a1i , a2i , a3i , opi

i , o
qi
i } � oni

i ,

Xqi
i :Wi ∪ {a1i , a2i , a3i , oni

i , o
pi

i } � oqii ,

Xpi

i :Wi ∪ {a1i , a2i , a3i , oqii , oni
i } � opi

i ,

A1
i :Wi ∪ { a1i , a2i , a3i , opi

i , o
qi
i , o

ni
i } ,

A2
i :Wi ∪ {a1i , a2i , a3i , opi

i , o
qi
i , o

ni
i } ,

A3
i :Wi∪{a1i , a2i , opi

i , o
qi
i } � oni

i � a3i , for all 1 ≤ i ≤ n.

The instance IWOR is to determine whether object t is
reachable for agent Cm.

Lemma 15. A 2P1N-SAT instance ISAT is yes if and only
if the corresponding instance IWOR of WEAK OBJECT
REACHABILITY in a path is yes.

Proof Sketch. If t is reachable for cm, there are m swaps
including t which happen between Ci and Ci+1 for i ∈
{0, 1, . . . ,m − 1}, where C0 = T . Note that the swap be-
tween Ci and Ci+1 (where Ci holds the object t) can happen
if and only if Ci+1 holds an object a ∈ Li+1. We can let the
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literal corresponding to the object a ∈ Li+1 to be true for all
agents Ci to get a satisfying assignment for ISAT because
the construction of each block Bi does not allow both oni

i
and one of opi

i and oqii moving to the right of the block ac-
cording to the construction of the block Bi the preference of
A3

i .
On the other hand, if there is a satisfied assignment τ for

ISAT , we can construct a reachable assignment for IWOR.
For each variable vi, if it is true in τ , we move opi

i and oqii
to agents A3

i and A2
i ; if it is false in τ , we move oni

i to agent
A2

i . These objects are called true objects. All these happen
within each block. After this procedure, we move true ob-
jects ona

a , opb

b and oqcc to agent Cj with j = na, j = pb or
j = qc one by one in an order where Cj with smaller j first
gets its object in Lj . During this procedure, once another
true object is moved out of its position A3

i or A2
i (this may

happen when the true object is on the moving path of an-
other true object to Cj), we will simply move it back by one
swap. So in each iteration only one true object is moved out
of its current position A3

i or A2
i and it is moved to its final

position Cj directly.

Conclusion
In this paper, we mainly investigate OBJECT REACHABIL-
ITY that asks whether an object is reachable for a given
agent. We show that when the network is a path, WEAK
OBJECT REACHABILITY is NP-hard but STRICT OBJECT
REACHABILITY is polynomially solvable. In the literature,
more problems under the HOUSING MARKET model with
a different objective have been investigated, such as the
reachability of a whole assignment, finding Pareto efficient
assignments and so on (Gourvès, Lesca, and Wilczynski
2017). Some of our results can be extended to these prob-
lems with some modifications. We will give the details in
the full version of this paper.
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