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Abstract
We consider a firm that sells products that arrive over time to
a buyer. We study this problem under a notion we call posi-
tive commitment, where the seller is allowed to make binding
positive promises to the buyer about items arriving in the fu-
ture, but is not allowed to commit not to make further offers to
the buyer in the future. We model this problem as a dynamic
game where the seller chooses a mechanism at each period
subject to a sequential rationality constraint, and characterize
the perfect Bayesian equilibrium of this dynamic game. We
prove the equilibrium is efficient and that the seller’s revenue
is a function of the buyer’s ex ante utility under a no commit-
ment model. In particular, all goods are sold in advance to the
buyer at what we call the positive commitment price.

Introduction
Motivation. Consider a setting with a seller (she) and a
buyer (he) interacting over time. In each period, the seller
obtains one new product she can sell to the buyer. The prod-
ucts are heterogeneous and the buyer learns his valuation
for a given product just before the transaction takes place.
What kind of marketplace should the seller set up to sell her
products to the buyer over time? Should the seller sell the
products in advance? If so, for how much?

Solving this problem is crucial to the design of certain
marketplaces such as the large and fast growing market for
online advertisement. Online ads arrive in the form of a
stream of impressions (or user views) that can be sold to
advertisers. Impressions are highly differentiated products
whose value to advertisers depend on many pieces of in-
formation, from the webpage being viewed to the user’s IP
address and cookie data. Online ads are currently sold via
highly fragmented ecosystem. One part of this ecosystem
consists of real-time bidding, where individual impressions
are sold milliseconds before they are delivered. Online ads
are also sold via contracts, where a seller agrees in advance
to deliver a specific number of impressions to a buyer over
a given time horizon for a pre-specified price. In our work,
we aim to understand if there is a fundamental reason be-
hind this kind of fragmented market design, and if so, what
should be the relationship between prices in the real-time
market and the pre-sale contract market.
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Selling with or without commitment power. Consider the
seller’s problem. The seller would like to design a revenue-
maximizing marketplace for selling her products to the
buyer. If she is familiar with the classical mechanism de-
sign literature, her first instinct might be to sell the stream of
products via a sequence of optimal prices, where prices are
chosen according to Myerson (Myerson 1981). This market
design would closely mimic the real-time auctions that are
currently in use for selling online ad impressions. For the
case of a single buyer, which is the focus of our paper, the
optimal auction reduces to a posted pricing scheme. There-
fore, a seller well-versed in the classical mechanism design
literature would probably choose to simply post items for
sale as they arrive and offer them to the buyer at the revenue-
maximizing price. If, for example, the buyer valuations are
drawn independently from a uniform distribution over the
[0, 1] interval, the seller would post each item at a price of
1/2 and would sell each item with probability of 50%, lead-
ing to an average per-item revenue of 1/4. In fact, if the
seller has no commitment power, this is indeed the best she
could do. No commitment power means the seller is not able
to make any binding promises about future allocations and
prices.

However, the strategy outlined above is too pessimistic
and, therefore, leaves a significant amount of revenue on the
table. In most real-world situations, the seller has at least
some commitment power which she can use to extract more
revenues. Let’s now assume the seller is well-versed in the
recent literature on dynamic mechanism design. In most of
this literature (see, for example, (Kakade, Lobel, and Naz-
erzadeh 2013) or (Pavan, Segal, and Toikka 2014)), the seller
is assumed to have full commitment power. With full com-
mitment power, the seller’s optimal strategy involves offer-
ing the entire future stream of products to the buyer at a
take-it-or-leave-it price that is equal to the buyer’s expected
value for the entire stream of impressions. In our example
where the buyer valuations are drawn uniformly from [0, 1],
the seller can offer the buyer the entire set of products arriv-
ing after the first period at a price of 1/2 per item. This offer
is made to the buyer before he learns his valuation for any of
the items. In equilibrium, the buyer accepts the offer, lead-
ing to a per-item revenue of 1/2, which is double the rev-
enue from the environment without commitment. Motivated
by this large potential boost in revenues, several recent pa-
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pers have proposed ways to incorporate bundling ideas into
market design. This includes work on dynamic bundling by
(Ashlagi, Daskalakis, and Haghpanah 2016), (Balseiro, Mir-
rokni, and Paes Leme 2018), (Mirrokni et al. 2016a) and
(Mirrokni et al. 2016b) as well as work on preferred deals
by (Mirrokni and Nazerzadeh 2017).

The case for partial commitment power. While the no
commitment assumption is too pessimistic, the full commit-
ment assumption is excessively optimistic. The full commit-
ment model assumes the seller is able to extract the full sur-
plus via a take-it-or-leave-it offer. This equilibrium outcome
crucially depends on what happens if the buyer declines the
offer. In the revenue-maximizing contract, the seller is com-
mitted not to trade with the buyer after her initial offer is
rejected. However, it would be difficult to enforce that com-
mitment. After having her first offer rejected, it would be in
the seller’s interest to make a new offer to the buyer. To be
more precise, after having her offer rejected in the first pe-
riod, the seller would find herself in the second period in an
almost identical position to her initial position: she will have
a stream of products for sale and a potentially willing buyer.
She will be very tempted to make a new offer at that point,
and the buyer could take that into account when making his
initial accept/reject decision.

The story in the paragraph above supports adding some
kind of subgame perfection refinement to our model. With
subgame perfection, both the seller and the buyer will take
their future actions into account when negotiating. However,
merely adding a subgame perfection requirement is equiva-
lent to assuming no commitment. Hence, almost all papers
in the literature either assume no or full commitment.

We argue that not all promises are equally credible. There
are some promises the seller could make that would be easy
to enforce and there are other promises that would not be en-
forceable. In particular, a promise to deliver a unit of inven-
tory in a given period in the future should be easy to enforce
in a court of law. Therefore, a realistic model of commit-
ment should allow sellers to offer future goods to buyers.
Such contracts are routinely signed and enforced in prac-
tice. At the same time, a promise not to trade in the future
with a particular buyer is not particularly credible and un-
likely to be enforceable through the justice system. There
are of course ways the seller could, in theory, enforce such
a contract. For example, the seller could sign a contract with
a charitable organization promising the donate the items to
them if the buyer does not accept the first offer. However,
such contracts are mostly theoretical curiosities and not typ-
ically used in practice. After all, under such a contract, a
minor negotiating mistake could cause the seller to donate
her entire inventory.

Our proposed framework. In this paper, we propose a pos-
itive commitment model that is able to capture this distinc-
tion that is quite important in practice, but is rarely captured
in the academic literature. Under positive commitment, the
seller is able to make credible promises regarding future al-
locations, but is not able to make credible promises regard-
ing future mechanisms that she will make available. Under
this framework, the seller must choose a new mechanism to

offer the buyer at each point in time, and this sequence of
mechanisms must satisfy a sequential rationality condition.
At the same time, the seller’s sequence of mechanisms must
satisfy a dynamic feasibility rule. That is, the seller cannot
resell a unit of inventory that she has previously committed
to allocating to the buyer.

Our main finding is that the seller should price the cur-
rent item and future items at different prices. The current
item should be sold at the standard optimal monopoly price.
Meanwhile, future items should be sold at a different price
that we denote the positive commitment price. The positive
commitment price is strictly less than the buyer’s expected
value, which would be the per-item price under full commit-
ment. This solution mimics the real-world phenomenon of
having two sales channels for selling online ads, one for real-
time auctions and the other involving contracts that guaran-
tee future allocations. The positive commitment price is the
highest price the seller can charge the buyer for an impres-
sion in the contract channel if both players take into account
the fact that impressions that are not pre-sold via contracts
are eventually sold in the real-time exchange.

The idea behind the proof is as follows: suppose we ar-
rive at the last period and that period’s product has not yet
been sold. The seller’s optimal strategy then is to offer the
product to the buyer at the optimal monopoly price. There-
fore, the buyer knows in advance that he has an option to
buy that product at the optimal monopoly price after learn-
ing his valuation for it. Thus, he shouldn’t accept any offer
from the seller for that product that guarantees him less util-
ity than his ex ante expected utility under the optimal price.
The seller must therefore make an offer to the buyer that is
cognizant of his endogenous outside option, which consists
of waiting until the item is offered at the monopoly price. In
our running example of valuations being uniform in [0, 1],
the agent’s ex ante expected utility under static pricing is
1/8. Therefore, the seller must discount her advance offer
from the expected item value of 1/2 by 1/8. Thus, both the
positive commitment price and the seller’s per-item revenue
are 3/8.

In equilibrium, the buyer purchases all the items in the
stream of products at the positive commitment price. This
equilibrium has several appealing properties when compared
to the no commitment and full commitment equilibria. In
contrast with the no commitment solution, the allocation of
items is welfare maximizing. That is, as in the full commit-
ment case, there is no allocation distortion due to informa-
tion rents. At the same time, the seller does not extract 100%
of the surplus, which is a hard-to-believe equilibrium out-
come of the full commitment model. Even though there is
no information-rent-related distortion, the ex-ante expected
value of the information rent plays a significant role in de-
termining how the surplus gets split between the seller and
the buyer.

Most closely related papers. Our positive commitment
framework is inspired by the limited commitment models
of Skreta (Skreta 2006; 2015) and Deb and Said (Deb and
Said 2015).

Skreta (Skreta 2006) considers the interaction between a
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seller and a buyer over a finite horizon. The seller owns one
item. The seller chooses a mechanism in period 1. If the item
is still unallocated at the end of the period, she chooses a new
mechanism in the next period. As in our paper, the seller can-
not commit not to trade with the buyer in the future. Skreta
starts her paper by arguing that the revelation principle does
not hold in an environment without commitment. Regard-
less, she shows that she can still optimize over mechanisms
with arbitrarily large message spaces. Her main result is that
the seller should use a sequence of posted prices. We do not
use Skreta’s technique in our paper, but we do imitate her
in allowing for arbitrarily large message spaces and then re-
constructing a result similar to the revelation principle from
scratch. Skreta (Skreta 2015) is a follow-up paper that con-
siders a multi-buyer problem and finds the sequence of opti-
mal auctions for selling a single item.

Skreta’s result builds on the seminal idea of the Coase
conjecture ((Coase 1972), (Gul, Sonnenschein, and Wilson
1986)). Coase conjectured that a seller with a single durable
good and no commitment power would have to sell at or near
marginal cost, as the seller would in effect compete with a
more informed future version of herself. In our work, a sim-
ilar effect appears where the seller competes with a future
version of herself. However, this dynamic competition be-
tween the seller and her future self are quite different in our
model and in Coase’s. In our model, in contrast to Coase’s,
there is no persistent private information as our goods are
non-durable. Therefore, the future version of the seller does
not possess any information the current seller does not. The
mechanism that Coase elucidated is thus very different from
the one that takes place in our model. What happens in our
setting is that the future seller is in a weaker bargaining po-
sition vis-a-vis the buyer than the present seller. That is, the
seller must compromise today in order to avoid having to
negotiate with the buyer after he learns his private value.
There is also a body of literature on contract renegotiation
that builds on the Coase conjecture framework. The same
distinction to our work applies. In (Hart and Tirole 1988),
the seller is constrained by the fact that her future self will be
more knowledgeable about the buyer than her present self.
Meanwhile, our model has no persistent private information
and the tension emerges from the buyer expecting to gain
private information in the future.

The formulation of our problem as an optimization pro-
gram resembles a Markov Decision Process (MDP) and
therefore our analysis shares similarities with the papers
on dynamic mechanism design for MDPs, e.g. (Parkes,
Yanovsky, and Singh 2005; Mierendorff 2016; Parkes and
Singh 2004). Those papers, however, all assume commit-
ment power from the seller, even though decisions are online
in the sense that they use only present and past data to make
decisions.

Deb and Said (Deb and Said 2015) consider a dynamic
screening problem with limited commitment. Buyers arrive
over two periods and consumption occurs in the second pe-
riod. There are no capacity constraints. As in our work, the
seller can commit to the allocation rule in period 1, but she
cannot commit to the mechanism being offered in period 2.
As in our work, buyers can choose to wait rather than con-

tract immediately upon arrival. Their main finding is that the
equilibrium first-period contract is non-monotone, with the
seller contracting with low and high types immediately, but
deferring contracting with intermediate types until the sec-
ond period.

Implications for contracting under symmetric informa-
tion. A classic result in contract theory is that first-best
can be achieved in contracting problems without informa-
tion asymmetry via a “sell the firm” contract ((Hölmstrom
1979)). That is, the seller’s optimal strategy is to sell her
entire output in advance to the buyer, in exchange for an
upfront payment equal to the expected value of the output.
In the supply chain literature, this kind of contract is called
a coordinating contract ((Cachon and Lariviere 2005)). Our
paper points out that this classic result relies on the buyer not
expecting to gain an informational advantage in the future. If
the buyer expects to gain private information as time elapses,
he could use this fact to gain some bargaining power. In this
case, the seller would not be able to charge more than the
positive commitment price of the output.

Full version. A complete version of our paper containing the
missing proofs as well as a longer discussion of our results
and extensions is available online at (Lobel and Paes Leme
2018).

The Model
We consider a model with one seller and one buyer who in-
teract over T+1 time periods. At each period t = 1, 2, ..., T ,
a new indivisible good becomes available to the seller, which
we refer to as item t. We also allow interaction in period
t = 0, before any item arrives. The seller’s outside value for
all items is normalized to zero. The buyer’s value for item t
is given by vt. We assume that the valuations vt are drawn
i.i.d. from a commonly known distribution F (·) with density
f(·), and denote the expected value of v1 by µ. To simplify
the presentation,1 we assume the valuation distribution satis-
fies the standard regularity assumption that the virtual value
function φ(v) = v − (1 − F (v))/f(v) is a non-decreasing
function (see (Myerson 1981)), an assumption which is sat-
isfied by many of the commonly used distributions, includ-
ing the normal, the lognormal, the uniform and the expo-
nential distributions. We denote by p∗ the seller’s optimal
monopoly price, i.e., φ(p∗) = 0, which we assume to be
unique to avoid multiplicity of equilibria.

We assume the buyer learns his valuation for item t at the
beginning of period t. After period t, item t has no value to
either the seller or the buyer. Both the seller and the buyer
desire to maximize the sum of their utilities over time. The
seller’s utility is simply the expected sum of payments she
obtains from the buyer over the T periods, and the buyer’s
utility is the expected value of the goods allocated to him
minus the payments he makes to the seller. We do not in-

1In the full version we note that we can extend our results to
irregular distributions and even to multi-item problems by borrow-
ing techniques from the literature. We opt however to present our
results assuming regularity in order to simplify the notation and
presentation.
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clude discounting in our model, though discounting would
not significantly alter our results.

No commitment and full commitment. There several dif-
ferent contracting environments we could consider, which
vary in the level of assumed seller commitment power. The
best understood environments are the no commitment and
the full commitment ones. Without commitment power, the
seller’s best strategy is to use the optimal (static) monopoly
price p∗ in each period. In this case, the seller’s expected per-
item revenue is p∗ ·(1−F (p∗)). Under full commitment, the
seller’s optimal strategy would be to offer at period t = 0

a take-it-or-leave-it offer at price E[
∑T
t=1 vt] = µ · T —

see, for example, (Kakade, Lobel, and Nazerzadeh 2013) or
(Pavan, Segal, and Toikka 2014). In equilibrium, the buyer
would accept the offer, leading to a per-item revenue of µ.
The seller’s revenue is significantly greater under full com-
mitment than under no commitment, as she is able to extract
the entire welfare of the system under full commitment.

The seller’s optimal auction design and her ability to
extract revenue thus crucially depend on her commitment
power. How much commitment power does a seller truly
have? In this paper, we argue that the no commitment
power assumption is too pessimistic and the full commit-
ment power assumption is too optimistic. The no commit-
ment power model assumes that sellers cannot make bind-
ing promises to deliver units of inventory in the future. This
is obviously an unrealistic assumption. Essentially all sup-
ply chain contracts used in practice involve promises of fu-
ture delivery of goods, and such contracts are routinely en-
forced through the court system. In contrast, the full commit-
ment power assumption involves the seller making binding
promises that would be hard to enforce in a court of law. In
particular, the full commitment power solution requires the
seller to make a take-it-or-leave-it offer for T items for the
price of µ · T . The leave-it part of the offer is the crucial bit
that would be hard to enforce. Suppose the buyer declines
the offer. The optimal contract then requires the seller not
to try to sell those units anymore. That is, the seller would
to need to sign some sort of enforceable contract that would
prohibit herself from trading with the buyer in the future af-
ter the first offer is rejected.

Positive commitment. We now propose a commitment
framework that we believe is more realistic than the exces-
sively pessimistic no commitment model and the excessively
optimistic full commitment model. Under positive commit-
ment, the seller is able to commit future units of inventory,
but the seller is not able to commit to what other offers she
might make to the buyer in the future.

Without full commitment power, we cannot rely on any of
the standard versions of the revelation principle (see (Myer-
son 1981; 1986)) to simplify our contracting problem. In-
stead, we must allow for general messaging spaces, which
could potentially be larger than the space of valuations. We
must then search for perfect Bayesian equilibria (PBE) of
the resulting game.

Let Xt represent the set of unsold units of inventory at
beginning of time t, with X0 = {1, 2, ..., t} and Xt ⊆
{t, t + 1, ..., T} for all t = 1, ..., T . We will refer to Xt

as the state of the system at period t and to Xt as the set
of possible states at time t. At each period t = 1, ..., T , the
seller will choose a mechanism to offer to the buyer at time t.
The set of available mechanisms at time t is denoted byMt.
A potential mechanism that is offered at time t is a triplet
Mt = (At, yt, rt), where At represents a messaging space,
yt represents an allocation rule and rt represents a payment
rule. Since we are not relying on the revelation principle, the
messaging set At could be an arbitrary set. The only restric-
tion we impose is that it must contain a “no trade” message,
that we represent by a∅ ∈ At. By formally including a “no
trade” message a∅ in our model, we can analyze what hap-
pens after the buyer declines an offer from the seller.

The allocation rule yt : At → 2{t,t+1,...,T} determines
which goods will be allocated to the buyer as a function of
his chosen message at ∈ At. To be feasible, an allocation
rule can only allocate to the buyer goods that the seller still
owns, i.e., yt(at) ⊆ Xt for all at ∈ At. The state transition
dynamics are given by

Xt+1 = Xt \ ({t} ∪ yt(at)) (1)

since item t becomes obsolete at the end of period t and all
units allocated to the buyer at time t are removed from the
system. The function rt : At → R determines the buyer’s
payment to the seller at time t. If the buyer chooses the “no
trade” message a∅ ∈ At in period t, he will not be charged a
payment and no items will be allocated to him in that period,
i.e., rt(a∅) = 0 and yt(a∅) = ∅.

The buyer’s purchase set is the union of all items allocated
by the seller to him, i.e.,P = ∪Tt=1yt(at). The buyer’s utility
is given by the value he earns from the items allocated to him
minus his payments to the seller:

U b =
∑
t∈P

vt −
T∑
t=1

rt(at).

The seller’s utility is given by the sum of payments she re-
ceives from the buyer:

Us =

T∑
t=1

rt(at).

The buyer and the seller’s per-item utilities are equal to
U b/T and Us/T , respectively.

We consider the set of perfect Bayesian equilibria (PBE)
of this game. For most games, defining a PBE requires defin-
ing strategies and beliefs. Because of our assumptions that
valuations are i.i.d. and that the buyer only learns his val-
uation for item t at time t, there is no persistent informa-
tion asymmetry in our model. Therefore, we can define a
PBE in our model solely in terms of the strategies σs and
σb for the seller and the buyer. A strategy of the seller
σs = {σst }t=0,...,T determines which mechanism the seller
should offer at each period t given the state of the system,
i.e., σst : Xt → Mt. A buyer’s strategy σb = {σbt}t=0,...,T

determines the action of the buyer given at period t given
the state of the system Xt ∈ Xt, the seller’s chosen mech-
anism Mt ∈ Mt and his valuation vt ∈ R+, i.e., σbt :
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Xt ×Mt × R+ → At.2 We refer to a pair σ = (σs, σb)
as a strategy profile.

Definition 1. A strategy profile σ constitutes a PBE if it
satisfies sequential rationality. That is, σs maximizes the
seller’s expected utility starting from any period t and state
Xt assuming the buyer will play according to σb. At the
same time, σb maximizes the buyer’s expected utility start-
ing from any period t and triplet (Xt,Mt, vt) assuming the
seller will play according to σs.

We now introduce some additional notation that we will
use to clarify the notion of a PBE in our game. Given a
mechanism Mt chosen by the seller at time t, we define
Ũ b,σt (Xt,Mt, v, a) as the value-to-go of the buyer with val-
uation vt = v given state Xt, assuming he plays action
a ∈ At at time t and both agents play according to σ af-
terwards:

Ũ b,σt (Xt,Mt, vt, a) = vt · |yt(a) ∩ {t}|+
µ · |yt(a) \ {t}| − rt(a) + V b,σt+1 (Xt+1) ,

(2)

whereXt+1 is defined in Eq. (1) and V b,σt (Xt) is the buyer’s
equilibrium value-to-go at time t given state Xt, before
knowing his valuation vt or the seller’s choice of mechanism
Mt:

V b,σt (Xt) = E
[
Ũb,σt (Xt, σ

s
t (Xt), vt, σ

b
t (Xt, σ

s
t (Xt), vt))

]
. (3)

For t > T , V b,σt (·) = 0. Eq. (2) states that the buyer’s value-
to-go Ũ b,σt (Xt,Mt, vt, a) is given by the addition of four
terms: (i) the utility from the allocation of item t at period t,
(ii) the expected utility from the allocation of items t′ > t,
(iii) the negative of the payment to the seller at time t, and
(iv) the expected value-to-go from future interactions after
time t.

Given a mechanism Mt and state Xt, the buyer has no
incentive to deviate from strategy σb at time t if

Ũ b,σt
(
Xt,Mt, v, σ

b
t (Xt,Mt, v)

)
≥ Ũ b,σt (Xt,Mt, v, a)

for all v ∈ R+, a ∈ At. (BICt)

Similarly, we now introduce the seller’s value-to-go at time
t given state Xt under equilibrium σ, V s,σt (Xt). The seller
has no incentive to deviate in period t if his value-to-go is
maximized by his choice of mechanism:

V s,σt (Xt) = sup
Mt∈Mt

E
[
rt(σ

b
t (Xt,Mt, vt)) + V s,σt+1(Xt+1)

]
(4)

s.t. (BICt).

As for the buyer, V s,σt (·) = 0 if t > T . The feasibility
constraints of the mechanism are implicitly included above
through the constraint Mt ∈ Mt. If Eq. (4) is satisfied for
all t = 0, ..., T and Xt ∈ Xt, then σ is a PBE.

2The buyer’s strategy in period t = 0 should not include a val-
uation v0 since there is no item available at time zero. However, in
order to make the notation of the paper consistent over the differ-
ent periods, we add a fake valuation v0 for the non-existent period
zero item. Our results would not change if we formalized period
zero separately without adding v0.

Dynamic Contracting
We now use dynamic mechanism design to study the PBE
of the problem defined in the prior section. The letter Z will
denote the buyer’s ex ante expected utility under the optimal
price in a single-shot problem, i.e.,

Z =

∫ ∞
p∗

(x− p∗)dF (x). (5)

A quantity that emerges as particularly important is the pos-
itive commitment price.
Definition 2. We call p̂ = µ − Z the positive commitment
price.

We now state the main result of our paper.
Theorem 1. Under any PBE, the seller’s utility per-item is
p̂ and the buyer’s per-item utility is Z. Furthermore, for any
t = 1, ..., T , item t is allocated to the buyer before period T .

In the remainder of this section, we will provide the anal-
ysis that proves the theorem above. Our first step is to obtain
a “revelation principle”-type result for our problem.

The revelation principle. The seller’s problem involves the
feasibility constraints — only items still available at state
Xt can be allocated to the buyer — and buyer incentive con-
straints. Let’s now try to simplify the buyer’s incentive con-
straints. In direct revelation mechanisms, we only need to
reason about deviations where buyers with value v act as
if they had a different value. Since here buyers are allowed
to choose any message from At, a buyer could deviate by
choosing a message that is not chosen by any other type.
In the spirit of the revelation principle, we argue that sim-
ply removing from the seller’s mechanism messages that are
not optimal by any buyer type doesn’t alter the equilibrium
and allows us to associate messages with buyer types. This
excludes the “no trade” message a∅, which we must keep
regardless of whether it’s used by any type since the seller
does not have the power to remove the message.

Let At be the set of messages the seller chooses in the
solution above at time t under state Xt. Let Ãt be a subset
of At where only messages that are used by the buyer in
equilibrium are kept, plus the “no trade” message a∅. That
is,

Ãt = {a ∈ A : ∃v ∈ R+ s.t. σbt (Xt,Mt, v) = a} ∪ {a∅}.

Let us create a new mechanism M̃t which is a restricted
version of Mt where only messages in Ãt are allowed. We
now argue that removing the actionsAt\Ãt from the mecha-
nism does not change either the seller’s or the buyer’s value-
to-go functions. The seller clearly does not lose or gain from
having these unused actions available to the buyer at time t.
The argument for the buyer is slightly more subtle. In prin-
ciple, the buyer could gain from having unused actions in
a dynamic game because they serves as threats. However,
for this to be true, the buyer must use the action in some
subgame, perhaps one that is never reached in equilibrium.
However, the actions being removed are never used in any
subgame: we can remove unused actions from the action set
via backwards induction, starting from period T and going
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back all the way to period 0. Therefore, the new mechanism
will generate the exact same value-to-go for both the seller
and the buyer.

In sum, without loss of generality, we can consider only
“direct mechanisms” where the buyer either reports his type
or declines to trade, i.e.,At = R+∪{a∅} for all t = 0, ..., T .
We use “direct mechanism” in quotes because of the addi-
tion of an extra message in the game beyond the classical
reporting of types, the message a∅.

Simplifying the formulation. We now use the revelation
principle argument above to simplify our problem formu-
lation. Consider any PBE σ. For any pair of periods t ≤ r,
state Xt ∈ Xt and buyer’s value v ∈ R+, we let qσt,r(Xt, v)
represent whether item r is allocated at period t to the buyer
given state Xt and vt = v under the equilibrium σ. The al-
location qσt,r(Xt, v) will be subject to the natural feasibility
constraints (Ft) that only items still available in period t can
be allocated:
qσt,r(Xt, v) ∈ {0, 1} for all r ∈ Xt, v ∈ R+;

qσt,r(Xt, v) = 0 for all r /∈ Xt, v ∈ R+.
(Ft)

Similarly, for any t, we let pσt (Xt, v) represent the period
t payment to seller given state Xt and buyer’s value vt = v
under the equilibrium σ. Based on Eq. (1), we define the
state transition function X̂σ

t+1(Xt, v) as the period t+1 state
given the period t state Xt and the buyer’s value vt = v,
under the equilibrium σ.

Using the revelation principle argument above, we can
simplify the notation for the buyer’s value-to-go. We let
U b,σt (Xt,Mt, v, z) be the value-to-go of the buyer at time
t given state Xt and mechanism Mt assuming his true value
is vt = v but that he acts as if his true value were z — that
is, plays action σbt (Xt,Mt, z) — assuming that all future
actions of both the seller and the buyer will conform to the
equilibrium σ. That is,

Ub,σt (Xt,Mt, v, z) = v · qσt,t(Xt, z) + µ
∑

r∈Xt\{t}

qσt,r(Xt, z)

− pσt (Xt, z) + V b,σt+1

(
X̂σ
t+1(Xt, z)

)
,

(6)

where the value-to-go V b,σt (Xt) can be simplified from Eq.
(3) to

V b,σt (Xt) = Evt [U
b,σ
t (Xt, σ

s
t (Xt), vt, vt)].

We can therefore simplify the original incentive con-
straints and replace them with simpler constraints, which we
call (ICt) and (IRt) respectively:

Ub,σt (Xt,Mt, v, v) ≥ Ub,σt (Xt,Mt, v, z) for all v, z ∈ R+

Ub,σt (Xt,Mt, v, v) ≥ V b,σt+1(Xt \ {t}) for all v ∈ R+,

where incentive compatibility (ICt) captures deviations to
other messages that are used by other types and individual
rationality (IRt) captures deviations to the message a∅. If
the buyer chooses a∅, there will be no transfers in period t
and the state of the system in period t+ 1 will be Xt \ {t}.
The seller’s period t problem can thus be simplified from
Eq. (4) to:

V s,σt (Xt) = supEvt
[
pσt (Xt, vt) + V s,σt+1(X̂

σ
t+1(Xt, vt))

]
(7)

s.t. (Ft), (ICt), (IRt).

Analyzing the seller’s problem. We now proceed to an-

alyze the seller’s period t problem, as given in Eq. (7). In
order to bring the structure of the problem closer to a stan-
dard mechanism design formulation, we create the notion
of a fake payment p̃σt (Xt, v). The fake payment p̃σt (Xt, v)
will include not only the true payment pσt (Xt, v), but also
all other terms in the buyer utility that do not depend on the
true value vt. That is,

p̃σt (Xt, z) = pσt (Xt, z)− µ
∑

r∈Xt\{t}

qσt,r(Xt, z)

− V b,σt+1

(
X̂σ
t+1(Xt, z)

)
.

Replacing these right-hand side payments into the buyer’s
value-to-go (Eq. (6)), we get:

U b,σt (Xt,Mt, v, z) = v · qσt,t(Xt, z)− p̃σt (Xt, z).

The (ICt) constraints from problem (7) can therefore be
rewritten as

v·qσt,t(Xt, v)−p̃σt (Xt, v) ≥ v·qσt,t(Xt, z)−p̃σt (Xt, z),∀v, z.

The equation above is a very standard incentive compat-
ibility constraint. We can therefore use the standard tech-
nique from Myerson (Myerson 1981) and replace it with a
monotonicity constraint on the allocation qσt,t(Xt, ·) and ob-
tain the standard characterization of the buyer’s utility as a
function of the integral of the allocation:

Ub,σt (Xt,Mt, v, v) = Ub,σt (Xt,Mt, 0, 0) +

∫ v

0

qσt,t(Xt, x)dx. (8)

Applying the standard Myersonian transformation, we can
eliminate the (ICt) and (IRt) constraints obtaining the fol-
lowing simplified problem (the details are omitted due to
space constraints and the fact that the transformation is stan-
dard):

V s,σt (Xt) = supEvt

[
vt · qσt,t(Xt, vt)− (9)∫ vt

0
qσt,t(Xt, x)dx−

V b,σt+1(Xt \ {t}) + µ
∑
r∈Xt\{t} q

σ
t,r(Xt, vt)+

V b,σt+1

(
X̂σ
t+1(Xt, vt)

)
+ V s,σt+1

(
X̂σ
t+1(Xt, vt)

)]
s.t. (Ft), qσt,t(Xt, ·) is a nondecreasing function.

The problem above can be decomposed into two indepen-
dent optimization problems, a present problem WP,σ

t (Xt)

and a future problem WF,σ
t (Xt), minus a constant term

V b,σt+1(Xt \ {t}). This occurs because the first two terms in
the objective depend only on the present item, the third term
is a constant that does not depend on any allocation deci-
sions and the last three terms depend only on future items.
Furthermore, there are no constraints connecting the inter-
period allocation decisions. In particular,

V s,σt (Xt) =WP,σ
t (Xt)+W

F,σ
t (Xt)−V b,σt+1(Xt\{t}) (10)
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where

WP,σ
t (Xt) = supqσt,t(·)Evt

[
vt · qσt,t(Xt, vt) (11)

−
∫ vt

0

qσt,t(Xt, x)dx

]
s.t. qσt,t(Xt, ·) is a nondecreasing function,

qσt,t(Xt, v) ∈ {0, 1} if t ∈ Xt, v ∈ R+,

qσt,t(Xt, v) = 0 if t /∈ Xt, v ∈ R+.

and

WF,σ
t (Xt) = supEvt

[
µ

∑
r∈Xt\{t}

qσt,r(Xt, vt)

+ V b,σt+1

(
X̂σ
t+1(Xt, vt)

)
+ V s,σt+1

(
X̂σ
t+1(Xt, vt)

)]
s.t. qσt,r(Xt, v) ∈ {0, 1} ∀r ∈ Xt \ {t}, v ∈ R+,

qσt,r(Xt, v) = 0 ∀r ∈ Xt \ {t}, v ∈ R+.

We can solve both of these optimization problems. We
first consider the present problem. When t /∈ Xt, the only
feasible answer is qσt,t(Xt, v) = 0 for all v. When t ∈ Xt,
we can consider the relaxation where qσt,t(Xt, v) ∈ [0, 1] for
all v. This problem is identical to the single-shot (Myerson
1981) problem with a single buyer. Since we assumed virtual
values are non-decreasing, the optimal answer is to allocate
item t to the buyer if, and only if, vt ≥ p∗. Note that this
solution is integral, and thus feasible for the present problem
WP,σ
t (Xt). Therefore,

WP,σ
t (Xt) = p∗ · (1− F (p∗)) · I{t ∈ Xt}, (12)

where I{·} denotes an indicator function.
We now turn to the future problem WF,σ

t (Xt), which we
can solve by using an almost trivial bound. The objective
function of WF,σ

t (Xt) depends only on the value of the al-
location of future items. Therefore, it cannot exceed the ex-
pected buyer’s value of all future items µ·|Xt\{t}|, yielding
the following bound:

µ
∑

r∈Xt\{t}

qσt,r(Xt, v) + V b,σt+1

(
X̂σ
t+1(Xt, v)

)
+

V s,σt+1

(
X̂σ
t+1(Xt, v)

)
≤ µ · |Xt \ {t}|.

This bound is achievable by assigning all items to the buyer
right away: qσt,r(Xt, v) = 1 for all v and all r ∈ Xt \ {t}.
Thus,

WF,σ
t (Xt) = µ · |Xt \ {t}|. (13)

We have now determined that there exist a PBE where the
present item is allocated if vt ≥ p∗ and all future items are
allocated to the buyer. This PBE is not unique, as we dis-
cuss later. However, by combining Eqs. (10), (12) and (13),
we have established that for all PBE, the seller’s value-to-go
satisfies for all t and all Xt ∈ Xt:

V s,σt (Xt) = p∗(1− F (p∗))I{t ∈ Xt}+ µ|Xt \ {t}|
− V b,σt+1(Xt \ {t}).

(14)

Computing the value-to-go functions. We now use Eq.
(14) to recursively determine the buyer’s and the seller’s
value-to-go functions.

Recall that Z denotes the buyer’s ex ante expected utility
under the optimal price in a single-shot game (see Eq. (5)).
We now prove by backward induction that V b,σt (Xt) = Z ·
|Xt| for any t, Xt and any PBE σ. Let’s consider period
T . If XT = ∅, then V b,σT (XT ) = 0. If XT = {T}, then
we are faced with a standard Myerson problem in period T .
The buyer’s expected value-to-go is therefore his expected
utility under Myerson: V b,σT (XT ) = Z. The base case is
thus proved.

We now assume the inductive hypothesis is true for period
t + 1 and will prove it implies the hypothesis is also true
for period t. The inductive hypothesis says that V b,σt+1(Xt \
{t}) = Z · |Xt \ {t}|. Plugging this into Eq. (8), we obtain

V s,σt (Xt) =p
∗ · (1− F (p∗)) · I{t ∈ Xt}+ µ · |Xt \ {t}|
− Z · |Xt \ {t}|.

(15)
We also know that any PBE must assign the present item ac-
cording to Myerson and all future items must be eventually
allocated to the buyer. Therefore, the sum of the seller’s and
the buyer’s value-to-go functions must satisfy

V s,σt (Xt) + V b,σt (Xt) = (p∗ · (1− F (p∗) + Z) · I{t ∈ Xt}
+ µ · |Xt \ {t}|.

(16)

Subtracting Eq. (15) from Eq. (16), we obtain

V b,σt (Xt) = Z · I{t ∈ Xt}+ Z · |Xt \ {t}| = Z · |Xt|,

completing our proof.
Plugging the buyer’s value-to-go function into the seller’s

value-to-go function from Eq. (14), we obtain

V s,σt (Xt) = p∗(1−F (p∗))I{t ∈ Xt}+(µ−Z)|Xt \ {t}|.

Therefore, the buyer’s starting value-to-go is V b,σ0 (X1) =
Z · T and the seller’s starting value-to-go is V s,σ0 (X1) =
(µ− Z) · T , proving Theorem 1.

The Equilibrium Outcome
Market design. The prior section establishes the key prop-
erties of any PBE of our dynamic game. Under any PBE, all
items are allocated to the buyer at the positive commitment
price p̂ in advance of the items becoming available, and the
allocation is socially efficient.

Our analysis actually specifies that the seller should have
two different sales channels: one for present items and a dif-
ferent one for future items. The present one, if available, is
always offered to the buyer at price p∗, while future items
are offered at the lower price p̂. This decomposition into two
different sales channels is matched by what we observe in
practice in the online advertising business, with the market
being divided into an ahead-of-time contract channel and a
real-time bidding channel.

Multiplicity of equilibria and upfront payments. Our
game has a multiplicity of PBE. There exists a PBE, which
we will label the upfront PBE, where all goods t =

2107



1, 2, ..., T are allocated at period zero. There exists another
equilibrium where the t+1 good is always allocated at time
t. We call this second equilibrium the day-before PBE.

These equilibria are not identical. In the upfront PBE, a
large payment is made upfront in return for T items. In the
day-before PBE, the seller only charges the buyer for one
good in advance. It, therefore, does not rely on large pay-
ments. Regardless, all PBE lead to the same ex post alloca-
tion and the same sum of payments from the buyer to the
seller.

The Equilibrium Outcome
Market design. The prior section establishes the key prop-
erties of any PBE of our dynamic game. Under any PBE, all
items are allocated to the buyer at the positive commitment
price p̂ in advance of the items becoming available, and the
allocation is socially efficient.

Our analysis actually specifies that the seller should have
two different sales channels: one for present items and a dif-
ferent one for future items. The present one, if available, is
always offered to the buyer at price p∗, while future items
are offered at the lower price p̂. This decomposition into two
different sales channels is matched by what we observe in
practice in the online advertising business, with the market
being divided into an ahead-of-time contract channel and a
real-time bidding channel.

Multiplicity of equilibria and upfront payments. Our
game has a multiplicity of PBE. There exists a PBE, which
we will label the upfront PBE, where all goods t =
1, 2, ..., T are allocated at period zero. There exists another
equilibrium where the t+1 good is always allocated at time
t. We call this second equilibrium the day-before PBE.

These equilibria are not identical. In the upfront PBE, a
large payment is made upfront in return for T items. In the
day-before PBE, the seller only charges the buyer for one
good in advance. It, therefore, does not rely on large pay-
ments. Regardless, all PBE lead to the same ex post alloca-
tion and the same sum of payments from the buyer to the
seller.
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