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Abstract

We consider a fair division setting in which m indivisible
items are to be allocated among n agents, where the agents
have additive utilities and the agents’ utilities for individual
items are independently sampled from a distribution. Previ-
ous work has shown that an envy-free allocation is likely to
exist when m = Ω(n logn) but not when m = n+o(n), and
left open the question of determining where the phase transi-
tion from non-existence to existence occurs. We show that,
surprisingly, there is in fact no universal point of transition—
instead, the transition is governed by the divisibility relation
between m and n. On the one hand, if m is divisible by n,
an envy-free allocation exists with high probability as long as
m ≥ 2n. On the other hand, if m is not “almost” divisible
by n, an envy-free allocation is unlikely to exist even when
m = Θ(n logn/ log log n).

1 Introduction
Resource allocation is a fundamental task that occurs in a
great number of everyday situations, from allocating school
supplies to children and course slots in universities to stu-
dents, to allocating machine processing time to users and
kidneys to kidney transplant patients. One of the principal
concerns when allocating resources to interested agents is
fairness: we want all agents to feel that they receive a fair
share of the resources. There is a rich and beautiful theory
of fair division that goes back several decades and has been
studied in mathematics, economics, and more recently in
computer science (Brams and Taylor, 1996; Moulin, 2003).

In order to reason about fairness, we must define when an
allocation is considered to be “fair”. One of the most promi-
nent fairness notions is envy-freeness, which means that ev-
ery agent likes her allocated portion at least as much as that
of any other agent (Foley, 1967; Varian, 1974). While an
envy-free allocation can always be obtained when we allo-
cate divisible goods such as land or machine processing time
(Stromquist, 1980), this is not the case when it comes to al-
locating indivisible goods like jewelry and artworks. Indeed,
if a single bracelet or painting is to be divided between two
agents, then no matter how the division is performed, the
agent who does not receive the item will be left envying the
other agent.
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Given that the existence of envy-free allocations cannot
be guaranteed in general for indivisible goods, an important
question is therefore when such allocations exist. Dickerson
et al. (2014) investigated this question under a simple model
where the agents have additive utilities and their utilities for
individual items are drawn at random from probability distri-
butions. If the number of items,m, is less than the number of
agents, n, no envy-free allocation exists since any allocation
necessarily leaves some agent empty-handed and envious.
Dickerson et al. showed that even when the number of items
slightly exceeds the number of agents—m = n + o(n)—
an envy-free allocation is still unlikely to exist. However, as
soon as the number of items is larger than the number of
agents by a logarithmic factor—m = Ω(n log n)—an envy-
free allocation exists with high probability, and can further-
more be obtained by simply giving each item to the agent
with the highest utility for it. Dickerson et al. also found the
phase transition from non-existence to existence to be quite
sharp in computer experiments, and left open the question of
determining where this transition occurs. Is the logarithmic
factor in the upper bound necessary, or do we already have
existence when, say, m = 1.001n?

In this paper, we show that, surprisingly, there is in fact no
universal point of transition between non-existence and ex-
istence. Instead, the transition is governed by the divisibility
relation between m and n. On the one hand, if m is divisible
by n, we show that an envy-free allocation exists with high
probability as long as m ≥ 2n (Theorem 3.1). Our result
improves upon the aforementioned m = Ω(n log n) upper
bound and moreover completely closes the gap for the case
of divisibility, since Dickerson et al.’s lower bound already
implies that the same result does not hold when m = n.1
On the other hand, if m is not “almost” divisible by n, in
the sense that the remainder of the division is between nε
and n − nε for some constant ε ∈ (0, 1), we show that
an envy-free allocation is unlikely to exist as long as m =
O(n log n/ log log n) (Theorem 4.1). This comes to within a
Θ(log log n) factor of matching their upper bound. Both our
existence and non-existence results rely on several new key
ideas. In particular, for the existence result we need a com-

1We do note, however, that Dickerson et al.’s upper bound holds
under a weaker assumption on the distributions. For example, it
does not assume that the utilities are drawn from the same distribu-
tion for all agents and items.
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pletely different algorithm, since the welfare-maximizing al-
gorithm used to achieve existence for m = Ω(n log n) can-
not yield any improvement of this bound (Proposition 3.2).

1.1 Related Work
Besides the work of Dickerson et al. (2014) that we men-
tioned, several other works have investigated the asymp-
totic existence and non-existence of fair allocations for var-
ious fairness notions. Suksompong (2016) considered pro-
portional allocations—allocations in which every agent re-
ceives at least 1/n of her value for the whole set of items—
and showed that such allocations exist with high probability
if m is a multiple of n or m = ω(n). Kurokawa, Procaccia,
and Wang (2016) showed that an allocation that satisfies the
maximin share criterion is likely to exist as long as either
m or n goes to infinity.2 As in our work, both Kurokawa,
Procaccia, and Wang (2016) and Suksompong (2016) used
techniques from the theory of matchings in random graphs
to establish the existence of fair allocations. Amanatidis et
al. (2017) also addressed the existence of allocations satis-
fying the maximin share criterion. Finally, Manurangsi and
Suksompong (2017) considered the setting where goods are
allocated to groups of agents and generalized Dickerson et
al. (2014)’s results on envy-freeness to that setting.

Since envy-free allocations cannot always be obtained
even in the simplest setting with two agents and one item,
a recent line of work has focused on relaxations of envy-
freeness with the goal of recovering the guaranteed exis-
tence. These relaxations include envy-freeness up to one
good—any envy that an agent has towards another agent can
be eliminated by removing some item from the latter agent’s
bundle—and envy-freeness up to any good—any such envy
can be eliminated by removing any item from the latter
agent’s bundle. It has been shown that these relaxations do
provide existence guarantees in a number of settings (Lip-
ton et al., 2004; Caragiannis et al., 2016; Conitzer, Freeman,
and Shah, 2017; Amanatidis, Birmpas, and Markakis, 2018;
Barman, Krisnamurthy, and Vaish, 2018; Biswas and Bar-
man, 2018; Plaut and Roughgarden, 2018).

2 Preliminaries
A set M = [m] of indivisible items is to be allocated to a
set N = [n] of agents, where we use [k] to denote the set
{1, 2, . . . , k}. Each agent i has a nonnegative utility ui(j)
for item j. We assume that the utility ui(j) lies in [0, 1];
this does not introduce a loss of generality since we can
scale down all utilities by their maximum. The utilities of
the agents are additive, i.e., ui(M ′) =

∑
j∈M ′ ui(j) for

any M ′ ⊆ M . The additivity assumption is made in several
works on fair division and, in particular, in all of the works
on the asymptotic existence of fair allocations mentioned in
Section 1.1.

A bundle refers to a subset of M . An allocation is a parti-
tion of M into n bundles (M1,M2, . . . ,Mn), where bundle

2We refer to their paper for the definition, but remark here that
both proportionality and the maximin share criterion are weaker
than envy-freeness when utilities are additive.

Mi is allocated to agent i. An allocation is said to be envy-
free for agent i if ui(Mi) ≥ ui(Mj) for any j ∈ N , and
envy-free if it is envy-free for every agent i ∈ N .

For agents i ∈ N and items j ∈M , the utilities ui(j) are
drawn independently from a distribution U . A distribution is
said to be non-atomic if it does not put positive probability
on any single point. The condition that we will impose on
U for our results is that it “behaves like a polynomial close
to 1” in the sense that the function g(α) = Pru∼U [u ≥
1−α] is bounded above and below by a polynomial. This is
formalized in the following definition.

Definition 2.1. Let θ, q be any positive real numbers. A
probability distribution U on [0, 1] is said to be (θ, q)-
polynomially bounded below (resp. above) at 1 if for every
α ∈ (0, 1], we have Pru∼U [u > 1 − α] ≥ θ · αq (resp.
Pru∼U [u > 1− α] ≤ θ · αq).

A probability distribution U is said to be polynomially
bounded at 1 if there exist constants θ, θ, q > 0 such that
U is (θ, q)-polynomially bounded below at 1 and (θ, q)-
polynomially bounded above at 1.

We assume in Section 3 that U is polynomially bounded
at 1 and in Section 4 that U is polynomially bounded be-
low at 1. To illustrate the generality of this definition, con-
sider any non-atomic continuous distribution U whose prob-
ability density function fU is bounded below (resp. above)
around 1, i.e., there exist ε, β > 0 such that fU (x) ≥ β (resp.
fU (x) ≤ β) for all x ≥ 1− ε. One can check that U is poly-
nomially bounded below (resp. above) at 1 with parameters
θ = ε · β (resp. θ = max{β, 1/ε}) and q = 1. This imme-
diately implies that the uniform distribution on [0, 1] and a
normal distribution (with any mean and variance) truncated
at 0 and 1 are polynomially bounded at 1, as both have prob-
ability density functions that are bounded both above and
below in [0, 1].

For completeness, let us also provide examples of distri-
butions that are not polynomially bounded at 1. The first ex-
ample is when Pru∼U [u = 1] > 0. In this case, clearly
the distribution is not polynomially bounded above at 1. An-
other example is if we take any U such that Pru∼U [u ≥
1 − 1/2i] = 1/2i

2

for all integer i ≥ 0. It is not hard to see
that this distribution is not polynomially bounded below at 1.

Indeed, for any fixed q > 0, we have limi→∞
(1/2i

2
)

(1/2i)q = 0,
which means that there is no θ > 0 such that Pru∼U [u ≥
1− α] ≥ θ · αq for all α ∈ (0, 1].

Finally, a statement is said to hold with high probability if
the probability that it holds approaches 1 as n→∞.

3 Existence
In this section, we investigate the existence front of envy-
free allocations. We first show that the welfare-maximizing
algorithm of Dickerson et al. (2014) cannot yield any im-
provement of the m = Ω(n log n) bound. We then prove
the main existence result of this paper, which holds for any
m ≥ 2n that is a multiple of n:

Theorem 3.1. Let r ≥ 2 be an integer, and suppose that
m = rn. Assume that U is polynomially bounded at 1. With
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high probability, there exists an envy-free allocation. More-
over, there is a polynomial-time algorithm that computes
such an allocation.

A bonus of our algorithm is that it returns a balanced al-
location, i.e., one that gives every agent the same number
of items. This may be desirable in situations where capacity
constraints are involved, for example if we divide artworks
between museums or players between sports teams.

3.1 The Limit of the Welfare-Maximizing
Algorithm

Recall the main existence result of Dickerson et al. (2014):
when m = Ω(n log n), the welfare-maximizing algorithm,
which allocates each item to the agent who values it most,
is likely to produce an envy-free allocation. We observe
that this bound is tight up to a constant factor—for m =
n log n − ω(n) items, the welfare-maximizing allocation is
unlikely to be envy-free. An implication of this observation
is that the welfare-maximizing algorithm fails to be envy-
free in the case where m = rn, for any positive integer
r ≤ log n − ω(1). By contrast, the algorithm that we will
present finds an envy-free allocation with high probability
for any integer r ≥ 2.

Proposition 3.2. Let m = n log n−ω(n), and suppose that
U is non-atomic. Then, with high probability, the welfare-
maximizing allocation is not envy-free.

Proof. The proposition follows from a classical result on the
coupon collector’s problem. In this problem, there is an urn
of n coupons. Each turn, a coupon is drawn uniformly at
random from the urn and immediately returned to the urn.
Erdős and Rényi (1961) proved that with high probability,
after n log n−ω(n) turns, some coupon has not been drawn.

The connection between the coupon collector’s problem
and our setting is fairly simple. First, the non-atomic as-
sumption on the distribution implies that, almost surely, all
items yield positive utility to every agent, and every item has
only one agent who values it most. As a result, the welfare-
maximizing allocation assigns each item to each agent with
probability 1/n. If we view each agent as a coupon in the
coupon collector’s problem, Erdős and Rényi’s result im-
plies that with high probability, some agent does not receive
any item in this allocation. From the positive utility observa-
tion, the allocation cannot be envy-free.

3.2 Warm-Up: A Simplified Algorithm for r ≥ 3

The remainder of Section 3 is devoted to proving Theo-
rem 3.1; we assume throughout that m = rn for some in-
teger r ≥ 2. As Dickerson et al. (2014) already showed
that the theorem holds for r = Ω(log n), it suffices for us
to establish the statement for r = O(log n). Nevertheless,
we will prove the statement for r ≤ en

0.1

, which is much
stronger; while this is not necessary, we do so to demon-
strate that our algorithm and its analysis are robust and ap-
ply even when the number of items is significantly larger
than the number of agents.

Before we proceed to the actual algorithm, let us provide
the intuition behind the algorithm by describing a simpler

algorithm that works in all cases except when r = 2. For
the sake of exposition, we shall restrict ourselves to the case
where the distribution U is the uniform distribution on [0, 1]
and r > 2 is a constant (i.e., does not grow with n). We shall
also sometimes be informal here; all proofs will be formal-
ized in the rest of Section 3.

The simplified algorithm tries to find an allocation that
satisfies the following two properties: (i) each agent receives
exactly r items, and (ii) each agent has utility at least τ :=
1− 2 log n/n for every item that she receives. If at least one
such allocation exists, the algorithm outputs any of them.
Else, it outputs NULL. Note that determining whether such
an allocation exists and finding one if it exists can be done
in polynomial time by reducing to matching: we create a
bipartite graph (N × [r],M,E), where ((i, `), j) ∈ E if
and only if ui(j) ≥ τ . A desired allocation corresponds to a
perfect matching in this graph.3

For the sake of convenience, we introduce the notion of r-
matching, which allows us to focus on the graph with vertex
set N instead of N × [r]. In an r-matching, each left vertex
can be matched to as many as r right vertices, whereas each
right vertex is still allowed to be matched to at most one left
vertex.

Definition 3.3. An r-matching of a bipartite graph G is a
subgraph of G such that every left vertex has degree at most
r and every right vertex has degree at most 1. An r-matching
is said to be perfect if every left vertex has degree exactly r
and every right vertex has degree exactly 1.

As with normal matchings, a perfect r-matching can be
computed in polynomial time by creating r copies of each
left vertex and finding a perfect matching. With this defini-
tion, our simplified algorithm can be described as follows.

Algorithm 1 Simplified Algorithm for r ≥ 3

1: procedure THRESHOLDMATCHINGτ (N,M, {ui}i∈[n])
2: for i = 1, 2, . . . , n do
3: M≥τ (i)← {j ∈M | ui(j) ≥ τ}
4: Let G≥τ = (N,M,E≥τ ) denote the graph where

(i, j) ∈ E≥τ iff j ∈M≥τ (i).
5: if G≥τ contains a perfect r-matching then
6: return any perfect r-matching of G≥τ
7: else
8: return NULL

We now sketch the proof of correctness of Algorithm 1,
which consists of two parts. Firstly, we argue that with high
probability, the algorithm returns a perfect r-matching in
G≥τ (i.e., does not output NULL). Secondly, we show that
the output allocation is envy-free with high probability.

Existence of a perfect r-matching in G≥τ . For the first
part, we evoke a classical result regarding the existence of
a perfect matching in bipartite random graphs. Recall that

3We write (U, V,E) to denote a bipartite graph with the set of
vertices U and V in the partition, which we refer to as the set of
left vertices and right vertices respectively, and the set of edges E.
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for any positive integers a, b and any p ∈ [0, 1], a bipar-
tite graph sampled from the Erdős-Rényi random bipartite
graph distribution G(a, b, p) consists of left and right vertex
sets A and B of size a and b respectively, and for any pair
of vertices a ∈ A and b ∈ B, the edge (a, b) occurs with
probability p independently of other pairs of vertices.
Proposition 3.4 (Erdős and Rényi (1964)). Let G be a bi-
partite graph sampled from the Erdős-Rényi random bi-
partite graph distribution G(n, n, p), where p = (log n +
ω(1))/n. Then, with high probability, G contains a perfect
matching.

To show that a perfect r-matching is likely to exist in
G≥τ , we arbitrarily partition the item set M into r parts
M (1), . . . ,M (r), each of size n. We also create a bipartite
graph H(a) for a = 1, 2, . . . , r where the left vertex set is
N , the right vertex set is M (a), and each (i, j) is an edge
iff ui(j) ≥ τ . Now, since τ = 1 − 2 log n/n, for each a
the graph H(a) is distributed according to the Erdős-Rényi
random bipartite graph distribution G(n, n, 2 log n/n). As
a result, Proposition 3.4 implies that H(a) contains a per-
fect matching with high probability. By taking the union of
the perfect matchings in H(1), . . . ,H(r), we conclude that
G≥τ contains a perfect r-matching with high probability.
This completes the first part of the proof sketch.

Envy-freeness of output allocation. Next, we argue that
with high probability, any allocation output by Algorithm 1
is envy-free. Consider any such allocation. Since every agent
receives r items, each of which yields utility at least τ to her,
her total utility is at least r · τ = r− 2r log n/n. It therefore
suffices to show that with high probability, for every i′ 6=
i, the utility of agent i′ for agent i’s bundle Mi is at most
r − 2r log n/n. We will show that with high probability, for
every i′ 6= i, agent i′ values at most r − 1 items in Mi

more than 1 − 2r log n/n. This is sufficient because these
r − 1 items can each contribute utility at most 1 to agent i′,
whereas the remaining item contributes utility at most 1 −
2r log n/n to her. It follows that the utility of agent i′ forMi

does not exceed (r−1)+(1−2r log n/n) = r−2r log n/n.
Fix two distinct i, i′ ∈ [n]. Let Ei,i′ denote the “bad”

event that there exist r items j1, . . . , jr for which ui(jk) ≥ τ
and ui′(jk) ≥ 1 − 2r log n/n for k = 1, 2, . . . , r. Consider
any item j ∈ M . Since we assume that ui(j) and ui′(j) are
drawn independently from the uniform distribution on [0, 1],
the probability that item j satisfies the two inequalities above
for i and i′ is at most 2 logn

n · 2r lognn = 4r log2 n
n2 . Using the

union bound over all subsets of r items, we have

Pr[Ei,i′ ] ≤
(
m

r

)
·
(

4r log2 n

n2

)r
≤
(

4r2 log2 n

n

)r
= o(n−2),

where we use the inequality
(
m
r

)
≤ mr and the assumption

that r ≥ 3 is constant. Applying the union bound again over
all i, i′, the probability that at least one bad event occurs
is o(1). This concludes our proof sketch for the simplified
algorithm.

3.3 The Algorithm
Having described the simplified algorithm, we now proceed
to the actual algorithm. Before we do so, let us note that
Algorithm 1 does not work for r = 2. This is because when
r = 2, there is a constant probability that some pair of agents
have the same two most valued items. In this case, Algo-
rithm 1 could output an allocation that assigns both items to
one of the two agents, which would mean that this agent is
envied by the other agent.

To make Algorithm 1 work for r = 2, recall that the algo-
rithm could fail if it is possible to find r items in the candi-
date item set of agent i (i.e., the set of items for which agent
i has utility at least τ ) that another agent i′ values more than
r · τ in total. The modification to the algorithm is simple:
remove any such problematic items from the candidate set
of i before we try to find a perfect r-matching in the graph.

There are multiple ways to implement this removal step.
The way we use, which we feel is quite natural, is to con-
tinue removing from the candidate set of agent i an item
which agent i′ values the most, until the r items in the can-
didate set of i that are most highly valued by i′ are not valued
more than r · τ in total. The pseudo-code of the algorithm is
presented below as Algorithm 2; here we use sum-topr(S)
to denote the sum of the r largest elements of S for any
multiset of real numbers S (or the sum of all elements if S
contains less than r elements). The set in line 5 of the algo-
rithm is considered as a multiset. The appropriate value of τ
depends on the distribution U and will be specified later.

Algorithm 2 Algorithm for any r ≥ 2

1: procedure THRESHOLDMATCHINGWITHREMOVALτ
(N,M, {ui}i∈[n])

2: for i = 1, 2, . . . , n do
3: M∗≥τ (i)← {j ∈M | ui(j) ≥ τ}
4: for i′ ∈ [n] \ {i} do
5: while sum-topr

(
{ui′(j) | j ∈M∗≥τ (i)}

)
> r · τ do

6: M∗≥τ (i)←M∗≥τ (i) \ arg maxj∈M∗≥τ (i) ui
′(j)

7: Let G∗≥τ = (N,M,E∗≥τ ) denote the graph where
(i, j) ∈ E∗≥τ iff j ∈M∗≥τ (i).

8: if G∗≥τ contains a perfect r-matching then
9: return any perfect r-matching of G∗≥τ

10: else
11: return NULL

The above modification ensures that if Algorithm 2 re-
turns an allocation, it must be envy-free. Indeed, each agent
i has utility at least τ for every item assigned to her in the
r-matching, so her total utility is at least r · τ . On the other
hand, by construction of the graphG∗≥τ , each agent i′ values
the r items assigned to agent i at most r · τ . Thus, the output
allocation must be envy-free.

In order to establish Theorem 3.1, it therefore remains
to show that with an appropriate choice of τ , a perfect r-
matching in G∗≥τ exists with high probability. Recall our
assumption that the distribution U from which the utilities
are drawn is polynomially bounded at 1. Let θ, θ, q > 0 be
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the associated parameters. It suffices to prove the following
lemma:

Lemma 3.5. Set τ := 1−
(

64 logm
θn

)1/q
in Algorithm 2, and

let 2 ≤ r ≤ en
0.1

. Then, with high probability, the graph
G∗≥τ contains a perfect r-matching.

Note that the condition r ≤ en
0.1

implies that τ > 0 for
large enough n.

The proof of Lemma 3.5 consists of two parts. First, in
Section 3.4, we show that only few edges are removed in
line 6 of Algorithm 2; in particular, we show that with high
probability, at most two edges adjacent to any particular ver-
tex are removed. Then, in Section 3.5, we show that the
existence of a perfect r-matching is locally resilient (see,
e.g., (Sudakov and Vu, 2008)) in the following sense: even
if we remove a low-degree subgraph from a random graph
sampled from the Erdős-Rényi random bipartite graph distri-
bution with sufficiently large probability, then the remaining
graph still contains a perfect r-matching with high probabil-
ity. Putting these two parts together yields Lemma 3.5; this
is done in Section 3.6.

Before we proceed to proving Lemma 3.5, we perform
some preliminary calculations. Picking α = 1 − τ in Defi-
nition 2.1, we have Pru∼U [u > τ ] ≥ 64 logm

n . On the other
hand, writing τ ′ := 3τ − 2 and letting α = 1 − τ ′ in Defi-
nition 2.1 yields Pru∼U [u > τ ′] ≤ θ(3(1 − τ))q = C logm

n

for the constant C := 3q · 64θθ .

3.4 Bounding the Number of Edges Removed
Let E≥τ and E∗≥τ denote the set of edges as defined in Al-
gorithm 1 and 2, respectively. The main result of this sub-
section is the following lemma:
Lemma 3.6. With high probability, the graph (N,M,E≥τ \
E∗≥τ ) has maximum degree at most 2.

In addition to the graphs G≥τ and G∗≥τ (as defined in
Algorithm 1 and 2 respectively), we consider the graph
G>τ ′ = (N,M,E>τ ′) which can be defined analogously.
That is, the neighbor set of i ∈ N in G>τ ′ is M>τ ′(i) :=
{j ∈M | ui(j) > τ ′}.

The next proposition states that, for any edge (i, j) that
is removed in line 6 of Algorithm 2, the edge (i, j) must
be part of a complete bipartite subgraph K2,b2r/3c+1 of the
graph G>τ ′ .4 We note that this is similar to the argument for
the simplified algorithm in Section 3.2, which, in the new
language, states that any edge (i, j) that would be removed
in line 6 of Algorithm 2 must be part of a complete bipartite
subgraph K2,r of the graph G>τ ′ , where the threshold τ ′
there is chosen (differently) to be 1− 2r log n/n.
Proposition 3.7. If (i, j) ∈ E≥τ \ E∗≥τ , then there exists i′

such that |M>τ ′(i)∩M>τ ′(i
′)| > 2r/3 and j ∈M>τ ′(i)∩

M>τ ′(i
′).

Proof. First, let us argue that j ∈ M>τ ′(i) ∩ M>τ ′(i
′).

The assumption that (i, j) ∈ E≥τ immediately implies
4The notation Ka,b refers to a complete bipartite graph with left

and right vertex sets of size a and b, respectively.

that j ∈ M>τ ′(i) since τ ′ = 3τ − 2 < τ . Let
i′ ∈ N be the vertex in line 5 of Algorithm 2 that
causes the removal of the edge (i, j). At this line, we
have sum-topr

(
{ui′(j′) | j′ ∈M∗≥τ (i)}

)
> r · τ and j ∈

arg maxj′∈M∗≥τ (i) ui
′(j′). Hence, ui′(j) ≥ (r · τ)/r = τ >

τ ′, and therefore j ∈ M>τ ′(i
′). We have thus shown that

j ∈M>τ ′(i) ∩M>τ ′(i
′).

Next, let y = min{r, |M>τ ′(i) ∩M>τ ′(i
′)|}. The condi-

tion sum-topr
(
{ui′(j′) | j′ ∈M∗≥τ (i)}

)
> r · τ at the time

when the edge (i, j) is removed implies that

r · τ < sum-topr
(
{ui′(j′) | j′ ∈M∗≥τ (i)}

)
≤ sum-topr ({ui′(j′) | j′ ∈M>τ ′(i)})
≤ y · 1 + (r − y) · τ ′

= y + (r − y)(3τ − 2)

= (3− 3τ)y + (3τ − 2)r,

which implies that y > 2r/3, as claimed.

We now use Proposition 3.7 to prove Lemma 3.6. We con-
sider two cases: r ≥ 3 and r = 2.

The Case r ≥ 3. The proof for the case r ≥ 3 is similar to
that of the simplified algorithm (Section 3.2). In particular,
we show that with high probability, no edge is removed in
Algorithm 2. This also means that Algorithms 1 and 2 are
equivalent with high probability.

Proposition 3.8. Let 3 ≤ r ≤ en0.1

. Then, with high proba-
bility, E≥τ = E∗≥τ .

Proof. For convenience, let p>τ ′ := Pru∼U [u > τ ′]. Note
that p>τ ′ ≤ C logm

n ≤ C0/n
0.9 for C0 := 2C, where the

last inequality holds for sufficiently large n. We will argue
that with high probability, there are no distinct i, i′ ∈ N such
that |M>τ ′(i) ∩M>τ ′(i

′)| > 2r/3. Together with Proposi-
tion 3.7, this implies that no edge is removed and therefore
E≥τ = E∗≥τ .

To show this, we use the standard first moment method.
Fix distinct i, i′ ∈ N and a subset S ⊆ M of size x :=
b2r/3c + 1. The probability that S ⊆ M>τ ′(i) ∩M>τ ′(i

′)
is exactly (p>τ ′)

2x. Hence, by taking the union bound over
all choices of i, i′ and S, the probability that |M>τ ′(i) ∩
M>τ ′(i

′)| > 2r/3 for some i, i′ is at most

n2
(
m

x

)
(p>τ ′)

2x ≤ n2
(em
x

)x
(p>τ ′)

2x

(since x ≥ 3) ≤ (n(p>τ ′)
1.2)2

(
em(p>τ ′)

1.2

x

)x
(since x > 2r/3) < (n(p>τ ′)

1.2)2
(
1.5en(p>τ ′)

1.2
)x

(since p>τ ′ ≤
C0

n0.9
) ≤ (C1.2

0 n−0.08)2(1.5eC1.2
0 n−0.08)x

= o(1),

which concludes the proof.
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The Case r = 2. As argued earlier, in the case r = 2,
some edges must be removed in order to guarantee that the
output allocation is envy-free. The following proposition en-
sures that with high probability, for any vertex, at most two
edges adjacent to it are removed in Algorithm 2.

Proposition 3.9. Let r = 2. Then, with high probability, the
graph (N,M,E≥τ \ E∗≥τ ) has maximum degree at most 2.

Proof. Observe that, for r = 2, Proposition 3.7 can be re-
stated as follows: if (i, j) ∈ E≥τ \ E∗≥τ , then there exist
i′ ∈ N and j′ ∈ M such that i, i′, j, j′ form a complete
bipartite graph K2,2 in the graph G>τ ′ .

Now, suppose that some vertex u ∈ N ∪M appears in
at least three edges in E≥τ \ E∗≥τ . The previous paragraph
implies each such edge must be contained in a copy of K2,2

in the graph G>τ ′ . Since the three edges from u are dis-
tinct, not all three of these copies can be identical. As a re-
sult, u must be contained in two different copies of K2,2,
which means that at least one of the graphs shown in Fig-
ure 1 must appear as a subgraph of G>τ ′ . Notice that by
the union bound, for any graph H = (VH , EH), the prob-
ability that it appears as a subgraph of G>τ ′ is at most

(n + m)|VH |(p>τ ′)
|EH | ≤ (3n)|VH |

(
C logm

n

)|EH |
. How-

ever, all graphs H in Figure 1 satisfy |EH | ≥ |VH | + 1.
Hence, the probability that each of them appears as a sub-
graph is at most (C logn)O(1)

n = o(1). Using the union bound,
the probability that at least one of these graphs appears as a
subgraph of G>τ ′ is also o(1). This implies that the proba-
bility that at least one of the vertices is adjacent to more than
two edges in E≥τ \ E∗≥τ is o(1), as desired.

Finally, we note that Propositions 3.8 and 3.9 together im-
ply Lemma 3.6.

3.5 Local Resilience of Perfect r-Matching
In this subsection, we show that in a random bipartite graph
sampled from the Erdős-Rényi random bipartite graph dis-
tribution G(n, rn, p) with sufficiently large p, not only does
a perfect r-matching exist, but the existence is also robust
in the following sense: even if we remove edges from the
graph, as long as not too many edges adjacent to each vertex
are removed, a perfect r-matching still exists. Such “robust-
ness” is known in the literature as local resilience. In par-
ticular, the local resilience of perfect matchings was shown
by Sudakov and Vu (2008). We will extend their proof to
the case of perfect r-matchings. However, we note that our
bound will be slightly weaker than theirs, since our main
goal is to derive a bound that is sufficient for the algorithm
to work and not to find the best possible parameters.

A typical method for establishing the existence of a per-
fect matching, which was used both by Sudakov and Vu
(2008) and by Erdős and Rényi (1964), is to show that the
graph satisfies the condition of Hall’s Marriage Theorem.
For any graph G and any set S of vertices in G, denote by
NG(S) the set of vertices adjacent to at least one vertex in S.

Proposition 3.10 (Hall’s Marriage Theorem). Let G =
(A,B,E) be any bipartite graph such that |A| = |B|. If

|NG(S)| ≥ |S| for all subsets S ⊆ A, then G has a perfect
matching.

Recall thatG = (A,B,E) has a perfect r-matching if and
only if the graph (A× [r], B,E′), where ((a, `), b) ∈ E′ iff
(a, b) ∈ E, has a perfect matching. Hence, Hall’s Marriage
Theorem immediately extends to r-matchings:

Proposition 3.11. Let G = (A,B,E) be any bipartite
graph such that |B| = r|A|. If |NG(S)| ≥ r|S| for all sub-
sets S ⊆ A, then G has a perfect r-matching.

One way to show that the condition of Hall’s Marriage
Theorem is satisfied is to show that there is at least one edge
between any sets S ⊆ A and T ⊆ B of appropriate sizes. To
ensure that the existence of a perfect r-matching is locally
resilient, we need to show not only that one edge exists, but
also that many edges exist. This can be done via standard
concentration bounds. For any graph G and any sets S, T of
vertices in G, denote by EG(S, T ) the set of edges connect-
ing a vertex in S to a vertex in T .

Lemma 3.12. Let G = (A,B,E) be a graph sampled
from the Erdős-Rényi random bipartite graph distribution
G(n,m, p) with p ≥ 64 logm

n . Then, with high probability,
the following holds for all subsets S ⊆ A and T ⊆ B such
that |T | = m− r|S|+ 1:

|EG(S, T )| > (16 logm) ·min{|S|, |T |}. (1)

The proof of Lemma 3.12 can be found in the full version
of this paper (Manurangsi and Suksompong, 2018).

With Lemma 3.12 ready, we now establish the local re-
silience of the existence of perfect r-matchings in random
graphs.

Lemma 3.13. Let G = (A,B,E) be a graph sampled
from the Erdős-Rényi random bipartite graph distribution
G(n,m, p) with p ≥ 64 logm

n . Then, with high probability,
for any subgraph H = (A,B,E′) of G with maximum de-
gree at most 16 logm, the graph G −H = (A,B,E \ E′)
contains a perfect r-matching.

Proof. From Lemma 3.12, with high probability, (1) holds
for all S ⊆ A, T ⊆ B with |T | = m − r|S| + 1. We
claim that this implies that G − H = (A,B,E \ E′) con-
tains a perfect r-matching. Suppose for the sake of contra-
diction that G − H does not contain an r-perfect match-
ing. Proposition 3.11 implies that there exists a set S ⊆ A
such that |NG−H(S)| ≤ r|S| − 1. Let T be any subset of
B\NG−H(S) of sizem−r|S|+1. Since T∩NG−H(S) = ∅,
we have EG−H(S, T ) = ∅. However, by (1), |EG(S, T )| >
(16 logm) ·min{|S|, |T |}. This means that at least one ver-
tex in S ∪ T has degree more than 16 logm in H , which is
a contradiction.

3.6 Putting Things Together
With Lemmas 3.6 and 3.13 in hand, we can (finally) prove
Lemma 3.5.

Proof of Lemma 3.5. First, Lemma 3.6 ensures that with
high probability, for each vertex, at most two edges adjacent
to it are removed from G≥τ in Algorithm 2, where G≥τ is
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u u u

u u

Figure 1: All possible unions of two distinct complete bipartite graphsK2,2 which share at least one vertex u, up to isomorphism.
The shaded vertices constitute one copy of K2,2 whereas the thickened vertices constitute another.

defined as in Algorithm 1. Recall also thatG≥τ is distributed
according to the Erdős-Rényi random bipartite graph dis-
tribution G(n,m, p) with p = Pru∼U [u ≥ τ ] ≥ 64 logm

n .
It therefore follows from Lemma 3.13 that a perfect r-
matching exists in G∗≥τ with high probability.

4 Non-Existence
Our main non-existence result states that envy-free alloca-
tions are unlikely to exist if m = O(n log n/ log log n) is
not “close to” being a multiple of n. This improves upon
the m = n + o(n) lower bound of Dickerson et al. (2014)
and comes to within a Θ(log log n) factor of matching their
upper bound.

Theorem 4.1. For any real numbers θ > 0, ε ∈ (0, 1), and
q ≥ 1, there exists c > 0 depending only on θ, ε, q such that
the following holds: For any positive integer r ≤ c logn

log logn , if
m ∈ [rn+ nε, (r + 1)n− nε] and U is (θ, q)-polynomially
bounded below at 1, then, with high probability, there is no
envy-free allocation.

We remark that since we only require the distribution to
be polynomially bounded below, the assumption q ≥ 1 does
not introduce a loss of generality. Next, we give an overview
of the proof of Theorem 4.1; the full proof can be found in
the full version of this paper (Manurangsi and Suksompong,
2018).

The proof is based on the first moment method; the key
is to show that for any fixed allocation, the probability (over
the random utilities drawn) that it is envy-free is� 1/nm.
Since there are nm possible allocations, the union bound im-
plies that with high probability, no envy-free allocation ex-
ists.

To give an intuition for this bound, let us consider a sim-
plified setting where m = (r + 0.5)n and the distribution
U is uniform on [0, 1]. Intuitively, the “more balanced” the
allocation is, the harder it is to bound the probability that
the allocation is envy-free. Following this intuition, let us
consider the “most balanced” allocation where 0.5n agents
receive r+1 items and the remaining agents receive r items.
The key observation is that, for the allocation to be envy-free
for every agent in the latter group, any such agent must have
utility at most r for the r+1 items in the bundle of any agent
in the first group. For a fixed agent in the second group and
a fixed agent in the first group, this happens with probability

at most 1− 1/(r+ 1)r+1. Indeed, if each of the r+ 1 items
yields utility at least r/(r + 1) to the agent, the requirement
is not satisfied. Now, since there are 0.25n2 such pairs of
agents, the probability that this fixed allocation is envy-free

is at most
(

1− 1
(r+1)r+1

)0.25n2

= exp
(

Θ
(

−n2

(r+1)r+1

))
.

Hence, as long as r � log n/ log log n, this term is at most,
say, exp(−n1.9), which is indeed much smaller than n−m.

The full proof proceeds along the lines of the argument
above, but we need to be more careful as we must also deal
with other “less balanced” allocations.

5 Discussion
In this paper, we study the existence and non-existence of
envy-free allocations and essentially close the gap left open
by Dickerson et al. (2014) with regard to the transition be-
tween the two phases. On the positive side, we show that if
the number of items is a multiple of the number of agents,
an envy-free allocation is likely to exist as long as the for-
mer quantity is at least twice the latter. On the negative side,
we show that if the number of items is not “close to” being
a multiple of the number of agents, an envy-free allocation
is unlikely to exist even when the former quantity exceeds
the latter by almost a logarithmic factor. Both of our results
make use of several new ideas that may be useful for other
problems in fair division.

As we mentioned earlier, all of the works on the asymp-
totic existence of fair allocations thus far have assumed that
agents are endowed with additive utilities. While additivity
provides a reasonable trade-off between simplicity and ex-
pressiveness, it would be interesting to establish analogous
results that hold for more general classes of utilities. Going
beyond additivity introduces several complications; for ex-
ample, the welfare-maximizing allocation is no longer sim-
ply the one that assigns every item to the agent who values
it most, and giving an agent several goods that she values
highly does not guarantee that the agent will also have a cor-
respondingly high value for the whole bundle. Nevertheless,
a starting point may be to prove results for specific distribu-
tions over utilities from a well-structured class such as that
of submodular valuations.

Another possible avenue for future work is to consider
the setting where instead of allocating items to individual
agents, we divide them among groups of agents (Segal-
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Halevi and Nitzan, 2016; Segal-Halevi and Suksompong,
2018; Suksompong, 2018a,b). The agents in each group
share the same set of items but may have different prefer-
ences. This is the case, for example, when dividing house-
hold goods among families or resources between depart-
ments in a university. Manurangsi and Suksompong (2017)
generalized the results of Dickerson et al. (2014) to the
group setting and left a logarithmic gap between existence
and non-existence. We are hopeful that the techniques we
introduce in the present work will help towards closing this
gap as well.
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