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Abstract

We are interested in the setting where a seller sells sequen-
tially arriving items, one per period, via a dynamic auction.
At the beginning of each period, each buyer draws a private
valuation for the item to be sold in that period and this val-
uation is independent across buyers and periods. The auc-
tion can be dynamic in the sense that the auction at period
t can be conditional on the bids in that period and all pre-
vious periods, subject to certain appropriately defined incen-
tive compatible and individually rational conditions. Perhaps
not surprisingly, the revenue optimal dynamic auctions are
computationally hard to find and existing literatures that aim
to approximate the optimal auctions are all based on solving
complex dynamic programs. It remains largely open on the
structural interpretability of the optimal dynamic auctions.
In this paper, we show that any optimal dynamic auction is
a virtual welfare maximizer subject to some monotone al-
location constraints. In particular, the explicit definition of
the virtual value function above arises naturally from the
primal-dual analysis by relaxing the monotone constraints.
We further develop an ironing technique that gets rid of the
monotone allocation constraints. Quite different from Myer-
son’s ironing approach, our technique is more technically in-
volved due to the interdependence of the virtual value func-
tions across buyers. We nevertheless show that ironing can be
done approximately and efficiently, which in turn leads to a
Fully Polynomial Time Approximation Scheme of the opti-
mal dynamic auction.

1 Introduction
Recently, the problem of designing multi-period dynamic
mechanisms has been shown to be both theoretically chal-
lenging and practically important. In particular, when run-
ning a sequence of repeated auctions on online advertising
platforms, using dynamic auctions optimized across differ-
ent time periods could potentially bring significant gains
both in terms of revenue and social welfare. The power of
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dynamic mechanisms has been investigated by a number
of recent papers (Bergemann and Välimäki 2002; Parkes
and Singh 2004; Cavallo 2008; Athey and Segal 2013;
Kakade, Lobel, and Nazerzadeh 2013; Pai and Vohra 2013;
Pavan, Segal, and Toikka 2014; Devanur, Peres, and Sivan
2015; Balseiro, Mirrokni, and Paes Leme 2016; Chawla et
al. 2016; Bergemann, Castro, and Weintraub 2017; Balseiro
et al. 2017; Balseiro, Mirrokni, and Leme 2017; Lobel and
Paes Leme 2017; Shen, Wang, and Zuo 2018; Balseiro et al.
2019). We refer to Bergemann and Said (2011) and Berge-
mann and Välimäki (2017) for comprehensive surveys on
the subject.

In particular, we consider a setting where a seller repeat-
edly interacts with a set of buyers and sells one item per
period. The value of each buyer for the item at each period
are independently drawn from commonly known prior dis-
tributions (no need to be identical) at the beginning of that
period. The seller is allowed to sell the item of each period
not only depending on the bids submitted in the current pe-
riod, but also the histories, i.e., all the bids submitted in past
periods. In the meanwhile, the seller must guarantee the dy-
namic auctions to be ex-post individual rational — the cu-
mulative utility for each buyer is always positive, and dy-
namic incentive compatible — bidding truthfully (i.e., sub-
mitting private values as bids) to the auction is optimal for
each buyer by taking into consideration the effect of current
bids on future outcomes.

Even though dynamic mechanisms can be much more ef-
fective in maximizing revenue and social welfare (Jackson
and Sonnenschein 2007; Papadimitriou et al. 2016), they
have not been widely adopted in practice. The main issue
of implementing dynamic mechanisms in practice is their
high complexity. The complexity induced by the exponen-
tially growing design space makes it difficult to solve or even
to describe such mechanisms.

A series of recent work has made progress to resolve
the complexity issue described above. For example, Ash-
lagi, Daskalakis, and Haghpanah (2016) and Mirrokni et
al. (2018b) show that it is enough for the optimal dynamic
auction to depend on scalar summaries of histories instead of
the full history. However, the approximately optimal mech-
anisms described in these papers are solutions of complex
dynamic programs that are written into a large table. It is
therefore very difficult to understand the structure of these
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mechanisms. It remains open whether there is an intuitive
structural characterization of the optimal dynamic auction.

In this paper, we show that the exact optimal dynamic auc-
tion has a very simple structural interpretation: the optimal
dynamic auction in each period is a second price auction on
a certain appropriately defined virtual value space.1 More
specifically, such virtual values (before ironing23) are quite
similar to Myerson’s virtual value (Myerson 1981), i.e., they
have the form of linear combinations of private values and
Myerson’s virtual values (before ironing). However, just like
Myerson’s auction, to make the virtual welfare4 maximizing
allocation rule monotone, one need to first iron the virtual
values. Unlike the ironing in Myerson’s auction, the ironing
step in our case is interdependent across the values of differ-
ent buyers. In other words, one’s virtual value after ironing
not only depends on his/her own value, but also on other
buyers’ values. Although the ironing step here is not as sim-
ple as the ironing in Myerson’s auction, its computation is
still efficient for constant many buyer cases. Moreover, we
provide a Fully Polynomial Time Approximation Scheme to
compute the virtual values for any period of the dynamic
auction given the histories so far, and such virtual values in-
duce a dynamic auction with revenue arbitrarily close to the
optimal.

Techniques There are two main techniques used in our
analysis for optimal dynamic auctions. The first is the so-
called bank account mechanisms which are a subset of dy-
namic auctions with simple structures and can achieve the
optimal revenue of all the dynamic auctions (Mirrokni et
al. 2016a; 2016b; 2018a; 2018b). Briefly speaking, a bank
account mechanism keeps a state for each buyer as the
summary of the history of each buyer, which is a scalar
called balance. Each period depends on the previous periods
through the vector of buyer balances. With the bank account
framework, the designer only needs to specify single-period
auctions that are single-period incentive compatible together
with a valid balance update policy. In other words, the de-
sign of an entire dynamic auction breaks into the design of
a series of single-period auctions and a balance update pol-
icy. The decomposition greatly simplifies the problem and
enables clean mathematical programs for each period.

The second is a primal-dual analysis and a sensitiv-
ity analysis of the parametric mathematical programs. In
fact, primal-dual analysis is commonly used in economic
studies (Nisan et al. 2007, Chapter 5; Daskalakis, Deckel-
baum, and Tzamos; Cai, Devanur, and Weinberg; Cai and

1A virtual value function is a map from buyer value space to
real numbers. A virtual value is the corresponding real number of
some private value of the buyer.

2Informally, the ironing of a virtual value function is an oper-
ation that maps the virtual value function to another virtual value
function (we call an ironed virtual value function) while preserving
the expectation. For the formal definition, see Definition 3.1.

3Some recent works on virtual value and ironing (Elkind 2007;
Roughgarden and Schrijvers 2016).

4Virtual welfare is the sum of virtual values of the buyers who
get the item. For expected virtual welfare, the expectation is taken
over the randomness from the allocation rules.

Zhao; Daskalakis, Deckelbaum, and Tzamos 2013; 2016;
2017; 2017). In particular, for our problem, we can prove
that these programs are convex and satisfy the Slater’s con-
ditions. Hence the solution is optimal if and only if the KKT
conditions are satisfied. From these conditions, we show that
the auction in each period maximizes some virtual welfare
and we also discover the exact form of the virtual values with
partial relaxation on the monotonicity constraints of alloca-
tion. Furthermore, we show that adding these relaxed con-
straints back to the program indeed corresponds to ironing
the virtual values. As we mentioned previously, the ironing
step here is interdependent across the values of the buyers
and hence different from the ironing step in Myerson’s auc-
tion. To resolve this difficulty, we show a method to algo-
rithmically accomplish the ironing step.

2 Preliminaries
We study a setting where a seller repeatedly interacts with
k buyers selling one item per period over T periods. The
value of each buyer i ∈ [k] for the item in period t ∈ [T ]
is vti ∈ V . If xti ∈ [0, 1] represents the probability that
buyer i is allocated the item in period t, his utility is vti · xti.
Throughout this paper, (i) we use subscripts as the indices
of buyers, bold fonts for vectors of all the buyers (i.e.,
a = (a1, . . . , ak)), and subscript −i for the vector except
the i-th element (i.e., a−i = (a1, . . . , ai−1, ai+1, . . . , ak));
(ii) we use superscripts as the indices of periods and a1..t to
denote the sequence a1, . . . , at.

The values vti are assumed to be drawn from independent
distributions F ti .56 The distributions F ti are assumed to be
common knowledge but the realizations of the random vari-
ables are initially unknown for both the buyers and the de-
signer. At each period, the following events happen:

1. each buyer i learns his value vti ∼ F ti ;

2. each buyer i reports value v̂ti to the designer;

3. the designer implements an outcome xt ∈ [0, 1]k and
charges the buyers pt;

4. each buyer accrues utility uti = vti · xti − pti.
A dynamic mechanism is then described in terms of a pair of
maps for each period, which associate the history of reports
v̂1..t = (v̂1, v̂2, . . . , v̂t) to an outcome xt and payment pt:

Outcome: xt : Vkt → [0, 1]k, Payment: pt : Vkt → Rk.

Finally we define: uti(v
t
i ; v̂

1..t) = vti · xti(v̂
1..t)− pti(v̂

1..t).

2.1 Dynamic Incentive Compatibility
A mechanism is incentive compatible if it provides incen-
tives for buyers to reveal their true types in each iteration.
Such conditions for dynamic mechanisms can be easily de-
fined by backward induction: in the last period, regardless

5In practice, it is still fair to assume that the values of the buyers
(advertisers) are independent conditional on each particular inven-
tory and cookie.

6If the distributions are not independent, then the weak version
of truthfulness still holds: truthful if all other buyers bid truthfully.
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of the history so far and other buyers’ reports, it should be
incentive compatible for each buyer to report his true value:

vTi = argmaxv̂Ti u
T
i (vTi ; v̂1..T ), ∀i, v̂1..T−1, v̂T−i, vTi .

To simplify notations, from now on we will omit the ‘for-
all’ quantification and assume all expressions are quantified
as ‘for-all’ in its free variables. For the next-to-last-period,
it should be incentive compatible for the buyer to report his
true value given that he will report his true value in the fol-
lowing period:

vT−1i = argmaxv̂T−1
i

uT−1i (vT−1i ; v̂1..T−1)

+ EvTi [uTi (vTi ; v̂1..T−1, vTi , v̂
T
−i)].

Proceeding by backward induction, we require that:

vti = argmaxv̂ti u
t
i(v

t
i ; v̂

1..t) + U ti (v̂
1..t
i |v̂1..T−i ) (DIC)

where the second term is the continuation utility, i.e., the
expected utility obtained from the subsequent periods of the
mechanism assuming the buyer reports truthfully:

U ti (v̂
1..t
i |v̂1..T−i ) := E

vt+1..T
i

[
T∑

τ=t+1

uτi (vτi ; v̂1..t, vt+1..τ
i , v̂t+1..τ

−i )

]
A well-known fact in dynamic mechanism design is that
DIC implies that buyer i’s expected overall utility U0

i (v̂1..T−i )
is maximized by reporting truthfully in each period.

2.2 Ex-Post Individual Rationality
Another desirable constraint is ex-post individual rationality
which says that a buyer should derive non-negative utility
from the mechanism for every realization of the values:∑T

t=1 u
t
i(v

t
i ;v

1..t) ≥ 0 (eP-IR)

We focus on the problem of maximizing revenue subject to
DIC, eP-IR, and feasibility constraints:

max REV = E[
∑T
t=1

∑k
i=1 p

t
i(v

1..t)]

s.t. (DIC), (eP-IR), and feasibility:
∑k
i=1 x

t
i(v

1..t) ≤ 1

2.3 Bank Account Mechanisms (BAM)
The space of mechanisms satisfying DIC and eP-IR is very
broad and unstructured. We restrict our attention to a sub-
class of dynamic mechanisms introduced by Mirrokni et
al. (2016a) called bank account mechanisms. The mecha-
nisms are simple, dynamic incentive compatible by design
and have the following notable features:
Lemma 2.1 ((Mirrokni et al. 2018b)). Given any dynamic
mechanism satisfying DIC and eP-IR, there exists a bank ac-
count mechanism with at least the same revenue and welfare.

In particular, for any given setting, there is an optimal
mechanism in the form of a bank account mechanism.

A bank account mechanism keeps a state for each buyer,
which is a scalar called balance. Each period depends on
previous ones through the vector of balances. Another main
feature is that in this framework, the designer needs to spec-
ify single-period auctions that are single-period incentive

compatible together with a valid balance update policy. Once
a valid balance update policy is in place, all the designer
needs to worry about are single-period IC constraints.

A bank account mechanism B is defined in terms of the
following functions for each period:
• A static single-period auction xB,t(vt, b), pB,t(vt, b) pa-

rameterized by a balance vector b ∈ Rk+ that is (single-
period) incentive-compatible for each b, i.e.:

vti · x
B,t
i (vt, b)− pB,ti (vt, b)

≥ vti · x
B,t
i (v̂ti , v

t
−i, b)− p

B,t
i (v̂ti , v

t
−i, b)

(IC)

• Note that we do not require the mechanism to be (single-
period) individually rational, while we require the buyer
utility to be balance independent in expectation, i.e.:

Evti∼F t
i

[
vti · x

B,t
i (vt, b)− pB,ti (vt, b)

]
is a non-negative constant not depending on b

(BI)

• A balance update policy bB,t(vt, b) which maps the pre-
vious balances and the reports to the current balances, sat-
isfying the following balance update conditions:

0 ≤ bB,ti (vt, b) ≤ bi + vti · xB,ti (vt, b)− pB,ti (vt, b) (BU)

Given the balance update functions, we can define bt :
Vt → Rk+ recursively as:

b0 = 0 and b1(v1) = bB,1(v1,0)

and bt(v1..t) = bB,t(vt, bB,t−1(v1..t−1))

which allows us to define a dynamic mechanism in the
standard sense as:

xt(v1..t) = xB,t(vt, bt−1), pt(v1..t) = pB,t(vt, bt−1).

In what follows we will abuse notations by dropping the
superscript B and refer to xt(v1..t) and xt(vt, bt−1) inter-
changeably. One important theorem from previous studies is
that any bank account mechanism satisfies DIC and eP-IR.
Lemma 2.2 ((Mirrokni et al. 2018b)). Any bank account
mechanism satisfying IC, BI, and BU is DIC and eP-IR.

3 The Structure of Optimal BAMs
In this section, we show our first main result that identifies
the underlying structure of the optimal bank account mech-
anism (hence also the optimal dynamic auctions). Interest-
ingly, the dynamic auctions with the structure can be in-
terpreted as an ironed virtual welfare maximizing auction,
where the ironed virtual value is defined as follows.
Definition 3.1 (Ironing). The ironing operation on the vir-
tual value functions of all buyers transfers these virtual
value functions into some other virtual value functions
(called ironed virtual value functions) while preserving the
following properties:
• Monotonicity: The allocation rule maximizes the ironed

virtual welfare is monotone: for each buyer i, the alloca-
tion probability is weakly increasing in vi for fixed v−i.
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• Limited transfer: The expectation of virtual value condi-
tional on each allocation equivalence class is unchanged.
An allocation equivalence class of buyer i with any given
v−i is a maximal subset of his/her private values where
the allocation probability to him/her is constant. The allo-
cation rule here must maximize the ironed virtual welfare.

• First order dominance: The ironed virtual value is first
order dominated by the virtual value before ironing.
Informally, we have the following theorem:

Theorem 3.2 (Informal). Any revenue optimal bank account
mechanism is maximizing some virtual value (after ironing)
for each period.

We will restate the formal version after introducing all
necessary notations (Theorem 3.8) and the specific form of
the virtual value (before ironing) will be provided.

3.1 Formalizing the subprogram for each period
We start with the subproblem of optimizing period t while
all other periods are fixed. In particular, the problem can be
formalized as a convex program.
Lemma 3.3 (Convex program). For each period t, any valid
balance bt, and fixed expected utility for period t, if mech-
anism is fixed for the remaining periods (t + 1 to T ), then
the optimal auction for period t can be solved via a convex
program.

To proof this statement smoothly, we show how to for-
malize the program step by step in the rest of this subsection
rather than putting everything into a single proof environ-
ment. For the ease of presentation, we will hide the super-
script t while focusing on a single period.

Let b be the bank account balance given at the beginning
of this period and

ξi(v−i) := Evi [vi · x(v, b)− p(v, b)] (1)

be the expected utility of buyer i in this period. Note that by
(BI), it is independent of the bank account balance b, while
it could be different for different bids from other buyers, i.e.,
v−i. In fact, the ξ are some parameters we will need to de-
termine later based on the distribution of b induced by the
auctions in each period.

Objective The expected revenue acquired within this pe-
riod can be computed by the expected social welfare minus
the expected utility of all the buyers,

PERIODREV(b, ξ) = Ev [
∑
i(vi · xi(v, b)− ξi(v−i))] .

Besides the expected revenue from the current period, we
also need to include the expected revenue for future peri-
ods in the objective. We then use g(b′|M) to denote the ex-
pected total revenue the seller can collect from all upcoming
periods by following a given bank account mechanism M in
these periods, where b′ is the vector of the bank account bal-
ance at the end of the current period. In fact, b′ = b+∆b(v)
is a function of buyers’ bids v in this period, where ∆b(v)
are the changes in the bank accounts.

Then the expected revenue since current period is,

REV(b, ξ) = Ev

[∑
i(vixi(v, b)− ξi(v−i)) + g(b′|M)

]
.

Constraints Now we proceed to the constraints of the op-
timization. According to Lemma 2.2, the mechanism must
satisfy constraint (IC), (BI), and (BU). Note that (BI) is guar-
anteed by the definition of ξi(v−i), we then formalize con-
straint (IC) and (BU).

For (IC), as we won’t introduce the payment variables, it
is enough to require monotone allocation rules only, i.e.,

(IC) ⇐⇒ xi(v, b) is monotone in vi for fixed v−i. (2)
Since by the Envelope theorem (Rochet 1985),

∂(vi · xi(v, b)− pi(v, b))/∂vi = xi(v, b)

=⇒ ui(v, b) = ui(0, v−i, b) +
∫ vi
0
xi(s, v−i, b)ds.

In other words, with p′i(v, b) := pi(v, b)−pi(0, v−i, b) and
u′i(v, b) := vi · xi(v, b) − p′i(v, b), the utility of buyer i
in this period is fully determined by the allocation function
xi(·, b) and the minimum payment pi(0, v−i, b):
u′i(v, b) = ui(v, b) + pi(0, v−i, b)

= ui(v, b)− ui(0, v−i, b) + 0 · xi(0, v−i, b)
=
∫ vi
0
xi(s, v−i, b)ds.

Recall that for (BU), we require (i) the increase of balance
cannot be more than the utility obtained in the current period
and (ii) the updated balance must be nonnegative. Note that
by the definition of ξi(v−i) (1):
Evi [u′i(v, b)− pi(0, v−i, b)] = Evi [ui(v, b)] = ξi(v−i)

⇐⇒ pi(0, v−i, b) = Evi [u′i(v, b)]− ξi(v−i).
Hence on one hand, for (i) and (ii), we can rewrite it as:

0 ≤ bi + ∆bi(v) ≤ bi + ui(v, b) ⇐⇒
−bi ≤ ∆bi(v) ≤ ui(v, b) = u′i(v, b)− pi(0, v−i, b)

= u′i(v, b)− Evi [u′i(v, b)] + ξi(v−i).

On the other hand, to ensure the set of the possible balance
increment ∆bi(v) satisfying (i) and (ii) is not empty, we
need bi + ui(v, b) ≥ 0. Note that bi is given and ui(v, b)
reaches the minimum when vi = 0, it is equivalent to:

bi + ui(0, v−i, b) = bi − pi(0, v−i, b) ≥ 0

⇐⇒ Evi [u′i(v, b)] ≤ bi + ξi(v−i).

In summary, (BU) is equivalent to the follows:{
Evi [u

′
i(v, b)] ≤ bi + ξi(v−i)

−bi ≤ ∆bi(v) ≤ u′i(v, b)− Evi [u
′
i(v, b)] + ξi(v−i)

(3)

Finally, we need the feasibility constraint of the allocation
rule that the total allocation of each item is no more than 1:∑

i xi(v, b) ≤ 1. (4)
Therefore, combining the objective REV(b, ξ) and the

constraints (2), (3), and (4), for given b and g, the optimiza-
tion program for current period can be written as:
max REV(b, ξ) (5)
subj.t. xi(v) is monotone in vi for any fixed v−i

Evi [u
′
i(v)] ≤ bi + ξi(v−i), ∀i, v−i

− bi ≤ ∆bi(v) ≤ u′i(v)− Evi [u
′
i(v)] + ξi(v−i), ∀i,v∑

i∈[n] xi(v) ≤ 1, ∀v
xi(v) ≥ 0,∆bi(v) ≥ 0, ∀i,v

where we hide the b in the input to xi(v, b) and u′i(v, b) to
emphasize that b is extraneous.
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Simplification We then simplify the optimization program
for optimal bank account mechanisms. One key observation
is that with fixed ξ (for all periods), the optimization with
any finite horizon can be solved via backward induction.

In the program for the last period T , the expected revenue
for the future, gT , is always zero. For any parameter b of the
last period, the optimal value of the program defines a func-
tion with respect to the balance vector b, which, in fact, is the
expected revenue for the last period where the mechanism in
the last period M∗T is optimal (for given b and ξ).

In other words, the optimal solution of the program for pe-
riod T defines the function gT−1(b|M∗T ), where the mecha-
nism for period T is fixed to be optimal. Similarly, the op-
timal mechanism for each period M∗t and the correspond-
ing gt(b|M∗t+1..T ) functions in the program for each period
can be determined by backward induction. From now on, by
omitting the mechanism being conditional on in gt, we mean
the gt function is conditional on the optimal M∗t+1..T , i.e.,

gt(b) := gt(b|M∗t+1..T ) = maxM gt(b|M).

Note that the maximum always exists because the domain of
the mechanisms is compact and the revenue is a continuous
function of the mechanism.
Lemma 3.4. gt(b) is weakly increasing.

Due to limited space, we omit the proof of Lemma 3.4.
Hence we can eliminate variable ∆b(v) from the original
program (5): Since gt(b) is weakly increasing, it is without
loss of generality to enforce

∆bi(v) = u′i(v)− Evi [u′i(v)] + ξi(v−i), ∀i,v.
Meanwhile, by the following Myerson’s lemma, we can

further rewrite Evi [u′i(v)].
Lemma 3.5 ((Myerson 1981)). For any incentive compat-
ible single item auction, the expected payment of buyer i
equals to the expected (Myerson’s) virtual welfare contri-
bution of buyer i:

∀i, v−i, Evi [pi(v)] = Evi [(vi − ϑi(v)) · xi(v)],

where ϑi(v) = vi · (1− Fi(vi))/fi(vi).7

Therefore,8

Evi [u
′
i(v)] = Evi [vi · xi(v)− p′i(v)] (6)

= Evi [vi · xi(v)− (vi − ϑi(v)) · xi(v)] = Evi [ϑi(v) · xi(v)].

Thus, program (5) can be simplified as follows, where
∆bi(v), u′i(v), and ū′i(v−i) are notations, not variables.

max REV(b, ξ) (7)
= Ev [

∑
i(vi · xi(v)− ξi(v−i)) + g(∆b(v) + b)]

subj.t. xi(v) is monotone in vi for fixed v−i
ū′i(v−i) := Evi [u′i(v)] = Evi [ϑi(v)xi(v)]

≤ bi + ξi(v−i), ∀i, v−i
∆bi(v) = u′i(v)− ū′i(v−i) + ξi(v−i), ∀i,v∑

i∈[n] xi(v) ≤ 1, ∀v
xi(v) ≥ 0, ∀i,v

7Fi must be absolutely integrable.
8ϑi(v) is called virtual value for utility and equation (6) is from

(Hartline and Roughgarden 2008, Lemma 2.6).

Convexity We remains to show that the program is con-
vex. In fact, we have the following lemma.

Lemma 3.6. gt(b) is and concave.

We omit the proof of Lemma 3.6 here. Since gt(b) is con-
cave, the objective function (7) is also concave. Meanwhile,
all the constraints are linear, so the program is a convex pro-
gram (note that a standard convex program is minimizing a
convex objective function or maximizing a concave objec-
tive function).

3.2 Duality, virtual values, and ironing
We first consider the optimal solution to the program with
the monotonicity constraint (2) on x(v) relaxed. In fact, in
the full version of this paper, we generalize the analysis to
the original program. Although the optimal solution to the
relaxed program is not a feasible solution, the analysis does
capture the most interesting insight to this problem and pro-
vides the explicit form of the virtual values (before ironing).
In the full version, we show that adding the monotonicity
constraint (2) back to the program corresponds to applying
the ironing operation on the virtual values.

For the following relaxed program, let λi(v−i) be the
Lagrange multiplier of the constraint Evi [ϑi(v)xi(v)] ≤
bi + ξi(v−i) and µ(v) be the Lagrange multiplier of the fea-
sibility constraint (4).

max REV(b, ξ) (8)
subj.t. Evi [ϑi(v)xi(v)] ≤ bi + ξi(v−i), ∀v−i∑

i∈[n] xi(v) ≤ 1, xi(v) ≥ 0, ∀i,v

Then the Lagrange L := L(x(v), λi(v−i), µ(v)) is

L =Ev [
∑
i(vi · xi(v)− ξi(v−i)) + g(∆b(v) + b)]

−
∑
i,v−i

λi(v−i) (Evi [ϑi(v)xi(v)]− bi − ξi(v−i))
−
∑

v µ(v) (
∑
i xi(v)− 1) .

Note that all constraints in program (8) are linear, there-
fore the Slater’s condition is satisfied and the KKT condi-
tions (Boyd and Vandenberghe 2004, Chapter 5) are neces-
sary and sufficient for any optimal solution to (8). In partic-
ular, the explicit form of the virtual values can be derived
from the KKT conditions.

Let gi denote the partial derivative of g with respect to
the i-th dimension, i.e., gi(b) = ∂g(b)/∂bi. Let α and β be
defined as follows,

αi(v) := 1 + gi(∆b(v) + b)

βi(v−i) := λi(v−i)
f(v−i)

+ Evi [gi(∆b(v) + b)].

Lemma 3.7 (Virtual welfare maximizer). Any optimal solu-
tion to (8) must maximize the expected virtual welfare, where
the virtual value function φi(v) is given as follows:

φi(v) = αi(v) · vi − βi(v−i) · ϑi(v).

We refer readers to the full version for the detailed proof.
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Ironing As we mentioned at the beginning of this subsec-
tion, the optimal solution to the original program (7) must
maximize the expected ironed virtual welfare defined ac-
cording to the ironed virtual values φ̃i(v). Moreover, the
ironed virtual value φ̃i(v) is the transformation of φi(v) ac-
cording to the ironing rules (Definition 3.1). We omit the
details of the analysis here and incorporate the conclusion in
the formal version of our first main theorem (Theorem 3.8).
We refer readers to the full version for the complete proof.

3.3 Sensitivity analysis and the optimality across
the periods

So far we have determined the optimal auction for each pe-
riod when the expected buyer utilities of each period ξ are
fixed. Now we show how to optimize the remaining param-
eters ξ through sensitivity analysis. Let R(ξ) denote the op-
timal revenue when the auctions in each period are optimal
for the given ξ. Then we show how to determine the partial
derivatives of R(ξ) via sensitivity analysis and hence enable
the gradient descent algorithm to find the optimal ξ∗. In par-
ticular, R(ξ) is a concave function.9

The standard sensitivity analysis (Boyd and Vanden-
berghe 2004, Chapter 5.6) indicates how much the optimal
objective value of a program will change if some constraints
become slightly looser or tighter. Such quantities usually
have important physical meanings in economic setups. For
example, consider gt(b) = max REVt(b, ξ) (we brought
back the superscript t to distinguish the variables for dif-
ferent periods). By sensitivity analysis,10 we have:

gti(b) = Evt [gt+1
i (∆b(v) + b)] +

∑
vt−i

λti(v
t
−i).

Then gti(b), by definition, is the marginal contribution of
the balance of buyer i in period t to the expected revenue
since the t-th period. Similarly, Evt [gt+1

i (∆b(v)+b)] is the
marginal contribution of bi to the expected revenue since the
(t + 1)-th period. Hence their difference,

∑
vt−i

λti(v
t
−i), is

the marginal contribution of bi to the expected revenue of
the t-th period. In particular, λti(v

t
−i) is the marginal contri-

bution if the values of other buyers are vt−i.
Moreover, we can conclude the concrete form of the par-

tial derivatives of R(ξ) by sensitivity analysis:

∂gt(b)

∂ξti(v
t
−i)

= f t(vt−i)
(
−1 + Evti [gt+1

i (∆b(v) + b)]
)

+ λti(v
t
−i)

= (βti (v
t
−i)− 1)f t(vt−i)

=⇒ ∂R(ξ)

∂ξti(v
t
−i)

=
∂ Eb[gt(b)]
∂ξti(v

t
−i)

= (Eb

[
βti (v

t
−i)
]
− 1)f t(vt−i),

where the expectation taken over b is computed by simulat-
ing the auctions in previous periods. In particular, ξ is se-
lected optimally, if and only if:

Eb

[
βti (v

t
−i)
]

= 1 or ξt(vt−i) = 0, Eb

[
βti (v

t
−i)
]
≤ 1.

9Since by simply taking any convex combination of different ξ
and ξ′, the revenue obtained is also the convex combination of the
revenue resulted by ξ and ξ′.

10If gt is not differentiable at b, the right-hand-side is a subgra-
dient of gt.

3.4 Summary
As a summary, we formally restate Theorem 3.2.
Theorem 3.8 (Formal). A bank account mechanism is opti-
mal if and only if all the following conditions are satisfied:
• it satisfies all the basic constraints, (IC), (BI), (BU) and

the feasibility constraint (4);
• its allocation rule maximizes the ironed virtual welfare,

where the virtual value (before ironing) φ(v) has the fol-
lowing form:

φ(v) = αi(v)vi − βi(v−i)ϑi(v),

which can be seen as the combination of the Myerson’s
virtual value and the private value;

• finally, the expected utility of each period ξ is selected
optimally, i.e.,

Eb

[
βti (v

t
−i)
]

= 1 or ξt(vt−i) = 0, Eb

[
βti (v

t
−i)
]
≤ 1.

4 An Algorithmic Approach to the Structure
So far we showed that the optimal bank account mecha-
nism maximizes the ironed virtual welfare in each period.
Although the explicit form of the virtual values (before iron-
ing) is given in Lemma 3.7 and the ironing rule is given
in Definition 3.1, how to accomplish the ironing operation
is still unknown. One of the major difficulty of the ironing
comes from the fact that one’s virtual value not only depends
on his/her own private value, but also depends on the private
values of other buyers through the term αi(v). In the pres-
ence of such interdependence across different buyers on vir-
tual values, monotone virtual value function does not imply
monotone allocation rules.

In this section, we algorithmically resolve the difficulty of
ironing. In particular, we show a Fully Polynomial Time Ap-
proximation Scheme (FPTAS) that can accomplish the iron-
ing step for any constant many buyer cases and hence com-
pute the ironed virtual values. Moreover, the bank account
mechanism induced by the ironed virtual values computed
is (multiplicatively) (1− ε)-approximately optimal in terms
of revenue.

We also emphasize that the hard core of computing the ex-
act optimal solution is not directly from the ironing step but
the step of approximating the concave functions gt(b). Note
that gt(b) is a continuous function without closed forms and
the main effort of this section is to show that we can arbitrar-
ily approximate gt(b) with piece-wise linear functions and
guarantee that (i) the number of pieces is polynomial in the
input size and (ii) the final result is approximately optimal.

Recall the program (7), in particular, we bring back the
superscripts t to emphasize the periods:

max gt−1(bt) = REV(bt, ξt)

= Evt

[∑
i(v

t
ix
t
i(v

t)− ξti(vt−i)) + gt(∆bt(vt) + bt)
]

subj.t. xti(v
t
i , v

t
−i)− xti(vti

′
, vt−i) ≤ 0, ∀i, vt−i, vti

′
> vti

Evti [uti
′
] = Evti [ϑti(v

t)xti(v
t)] ≤ bti + ξti(v

t
−i), ∀vt−i

∆bti(v
t) = uti

′
(vt)− ūti(vt−i) + ξti(v

t
−i), ∀i,vt∑

i∈[n] x
t
i(v

t) ≤ 1, xti(v
t) ≥ 0, ∀i,vt
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In what follows, we formalize the FPTAS via dynamic
programming to compute the optimal ironed virtual values
for the discrete type case.

Theorem 4.1. The ironed virtual values of the optimal bank
account mechanism can be computed through a dynamic
programming based algorithm.

Moreover, for any ε > 0, there is an FPTAS to achieve an
ε-approximation (multiplicative) of the optimal revenue.

We first outline the main idea of the algorithm: (i) for any
fixed ξ, compute the ironed virtual values of the approxi-
mately optimal bank account mechanism; (ii) compute the
optimal ξ using gradient descent. Since we have shown that
the revenue of the bank account mechanism is a concave
function with respect to ξ, the second step is standard and
can be done with polynomially many queries to the (approx-
imately) optimal revenue as a function of ξ. In what follows,
we will focus on the first step.

To compute the ironed virtual value, we need to solve the
dual program of (7), which, of course, is equivalent to solve
the primal because the strong duality holds. Note that when
ξ and bt are fixed, (7) is a standard convex program with
polynomially many linear constraints. Hence the optimal so-
lution to its dual could be computed efficiently given oracle
accesses to the concave function gt. Then by the definition
of gt−1, the value of the optimal solution is gt−1(bt). There-
fore, the concave function gt can be evaluated recursively
for each t and hence the ironed virtual values of the opti-
mal bank account mechanism can be computed via standard
dynamic programming as well.

However, the computation of the entire dynamic program-
ming is not directly efficient: (i) if each gt is computed re-
cursively upon every query, the depth of the recursion could
be up to T and hence the total number of queries required
would be exponential in T ; (ii) if each gt is computed once
for all possible b so that any further queries of gt can be an-
swered from precalculated values, then the number of input
points where gt need to be computed would be unbounded.

The key step to resolve these issues is to approximate the
concave functions gt(b) by piece-wise linear functions each
with at most polynomially many pieces. In addition, each
of the piece-wise linear functions can be further expressed
as the minimum of a set of affine functions. Hence both the
original convex program (7) at each period t and its dual can
be approximated by a poly-size linear program.

The following lemma ensures that each gt can be well
approximated by a piece-wise linear function.

Lemma 4.2. For all t ∈ [T ], gt can be κ-approximated by
two concave piece-wise linear functions, gt and ḡt:

∀b, gt(b) ≤ gt(b) ≤ ḡt(b) ≤ gt(b) + κmaxb′ g
t(b′).

Moreover, each of gt and ḡt can be written as the minimum
of at most polynomially many pieces.

With such approximations to the concave function gt, we
can approximately solve the convex program (7) by solving
the following linear program, where each occurrence of gt

is replaced by ḡt:
max h̄t−1(bt) := Evt

[∑
i(v

t
i · xti(vt)− ξti(vt−i))

+ḡt(∆bt(vt) + bt)
]

(9)

subj.t. xti(v
t
i , v

t
−i)− xti(vti

′
, vt−i) ≤ 0, ∀i, vt−i, vti

′
> vti

Evti [uti
′
] = Evti [ϑti(v

t)xti(v
t)] ≤ bti + ξti(v

t
−i), ∀vt−i

∆bti(v
t) = uti

′
(vt)− ūti(vt−i) + ξti(v

t
−i), ∀i,vt∑

i∈[n] x
t
i(v

t) ≤ 1, xti(v
t) ≥ 0, ∀i,vt

ḡt(∆bt(vt) + bt)

≤ αl · (∆bt(vt) + bt) + βl, ∀l,vt (10)
As we mentioned previously, in the last constraint (10),

we assume that the function ḡt can be expressed by the min-
imum of a set of affine functions, i.e.,

ḡt(b) = minl∈Lαl · b+ βl.

Here we slightly abuse the notation of ḡt(∆bt(vt) + bt)
as variables in the linear program. Note that having the con-
straints (10) in the linear program (9) suffices to ensure that
the variable values agree with the corresponding function
values. Because on one hand, by the constraints, each vari-
able is no more than the corresponding affine functions; on
the other hand, since the coefficients of these variables are
always positive in the objective, for each of the variables, at
least one of the inequalities in (10) must be binding.

Let h̄t−1(b) denote the optimal value of the linear pro-
gram (9) when bt = b. Similarly, we can define ht−1 by
replacing all ḡt with gt in (9). The following lemma shows
that ht−1 and h̄t−1 are lower and upper bounds of gt−1.
Lemma 4.3. ht−1 and h̄t−1 are concave and for any b,

ht−1(b) ≤ gt−1(b) ≤ h̄t−1(b)

and h̄t−1(b) ≤ ht−1(b) + maxb′(ḡ
t(b′)− gt(b′)).

Proof of Lemma 4.3. Let x∗, x∗, and x̄∗ be the optimal so-
lutions for ht−1(b), gt−1(b), and h̄t−1(b), respectively. De-
note these three programs as P , P , and P̄ , respectively. Note
that x∗ is feasible in P , hence by the optimality of x∗,

P (x∗) ≤ P (x∗),

where P (x) is the objective value of program P on x.
On the other hand, for any x that is feasible to both P and

P , we have,
P (x) ≤ P (x).

Because in the objectives, gt−1 ≤ gt−1. Hence we conclude:

ht−1(b) = P (x∗) ≤ P (x∗) ≤ P (x∗) = gt−1(b).

Similarly, we can prove that gt−1(b) ≤ h̄t−1(b). For the
last inequality, denote δ = maxb′(ḡ

t(b′)−gt(b′)). Note that
for the ḡ variables in x̄∗, if we reduce all of them by δ to get
x̄∗∗, x̄∗∗ must be feasible to P and the objective value is
reduced by at most δ, hence

P (x∗) ≥ P (x̄∗∗) ≥ P̄ (x̄∗)− δ.
In other words,

ht−1(b) ≥ h̄t−1(b)− δ.
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Even through both ht−1 and h̄t−1 are in fact piece-wise
linear functions, but they cannot be directly used for the
computation of period t − 1, because they may have expo-
nentially many pieces. However, since they are concave, we
can apply Lemma 4.2 to get the lower bound of ht−1 and the
upper bound of h̄t−1:

gt−1(b) ≤ ht−1(b) ≤ gt−1(b) ≤ h̄t−1(b) ≤ ḡt−1(b).

Therefore, we can compute g1, . . . , gT and ḡ1, . . . , ḡT

recursively, and then compute the ironed virtual values of
the approximately optimal bank account mechanism for any
fixed ξ. Because ξ can then be optimized by using gradient
descent, we are done with our algorithm.
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