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Abstract

We extend the Top-Trading-Cycles (TTC) mechanism to se-
lect strict core allocations for housing markets with mul-
tiple types of items, where each agent may be endowed
and allocated with multiple items of each type. In doing so,
we advance the state of the art in mechanism design for
housing markets along two dimensions: First, our setting is
more general than multi-type housing markets (Moulin 1995;
Sikdar, Adali, and Xia 2017) and the setting of Fujita et
al. (2015). Further, we introduce housing markets with ac-
ceptable bundles (HMABs) as a more general setting where
each agent may have arbitrary sets of acceptable bundles.
Second, our extension of TTC is strict core selecting under
the weaker restriction on preferences of CMI-trees, which we
introduce as a new domain restriction on preferences that gen-
eralizes commonly-studied languages in previous works.

Introduction
Suppose there are two families: Family 1 owns two houses
and a car, while Family 2 owns a house and two cars. How
should they exchange their possessions when they each wish
to have exactly as many houses and cars as they initially
owned, and have preferences over combinations of houses
and cars? Shapley and Scarf (1974)’s housing markets are
an important model of such exchange economies. In a hous-
ing market, there are multiple agents, each initially endowed
with some indivisible items and preferences over bundles of
items. The goal is to design a mechanism without money to
re-allocate the items.

When each agent is initially endowed with a single item
and agents’ preferences are linear orders over all items,
Gale’s Top-Trading-Cycles (TTC) mechanism (Abdulka-
diroğlu and Sönmez 1999) satisfies many desirable prop-
erties. For example, it satisfies core-selection and strategy-
proofness, and runs in polynomial time. Core-selection re-
quires that the outcome of the mechanism must be in the
core, which is the set of allocations where no group of agents
has an incentive to deviate by reallocating their initial en-
dowments. Strategy-proofness requires that no agent has in-
centive to misreport preferences to obtain a better outcome.

However, when some agents initially own multiple items,
the problem becomes much more challenging as no mecha-
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nism satisfies both core-selection and strategy-proofness in
such cases (Sönmez 1999). There have recently been two
major positive developments on core-selecting mechanisms
under natural assumptions on agents’ preferences with cer-
tain constraints on the final allocation. Fujita et al. (2015)
extend TTC under the assumption of lexicographic prefer-
ences, to the setting where agents are endowed with multi-
ple items, and are allocated exactly as many items as their
initial endowments. Sikdar, Adali, and Xia (2017) extend
TTC to multi-type housing markets (Moulin 1995), where
there are multiple types of items, and each agents’ endow-
ment and allocation consist of one item of each type, under
the assumption that agents’ preferences are represented by
lexicographic extensions of CP-nets. However, (Fujita et al.
2015) do not consider multiple types of items, and lexico-
graphic extensions of CP-nets considered in (Sikdar, Adali,
and Xia 2017) cannot express preferences over bundles con-
sisting multiple items of each type. This leaves the follow-
ing open question: How to redistribute items when there are
multiple types of items and when agents are endowed with
multiple items of each type?

Our Contributions
We improve the state of the art in housing markets where
agents may own multiple items along two dimensions:

Dimension 1: We introduce the setting where agents may
be endowed and allocated with multiple items of each type.
Our setting is more general than previous works (Moulin
1995; Fujita et al. 2015; Sikdar, Adali, and Xia 2017).

Dimension 2: We introduce a new domain restriction
on preferences called conditionally-most-important trees
(CMI-trees). CMI-trees extends several popular languages
studied in previous work (in particular, the preference repre-
sentations assumed in (Fujita et al. 2015) and (Sikdar, Adali,
and Xia 2017)), and represent preferences over bundles con-
sisting of multiple items of each type.

We provide an extension of the TTC mechanism that is strict
core selecting for housing markets where agents may be en-
dowed and allocated with multiple items of each type under
the assumption of CMI-tree preferences.

A housing marketM is a tuple (N , I,O), where N is a
set of n agents, I is a set of indivisible items of p types, and
O gives each agent’s endowment of possibly multiple items
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of each type. The goal is to (re)allocate items to the agents
based on their preferences over bundles of items, such that
each agent is allocated exactly as many items of each type
as their initial endowment.

In a CMI-tree V , each node is labeled with an item, and
each directed edge points to the next most-important item,
conditioned on whether items along the path are allocated
to the agent. Given any partial allocation of items, an agent
either (i) has a unique most important item such that every
extension of the partial allocation which contains this item
is preferred over every extension without this item, or (ii) is
indifferent between all extensions of the partial allocation.
A strict CMI-tree induces a linear order over all bundles.
Strict CMI-trees generalize lexicographic extensions of CP-
net preferences (Sikdar, Adali, and Xia 2017), GLPs (Monte
and Tumennasan 2015), and LP-trees for housing markets
with multiple types. We refer to the discussion on CMI-trees
for more details and relationships with other languages. We
characterize CMI-trees over any set of bundles as linear or-
ders over equivalence classes. Importantly, our results hold
for any preferences represented using any languages that can
be represented as a CMI-tree.

At each round of the TTC algorithm, each remaining
agent points at her (unique) most important item conditioned
on the partial allocation computed so far, and every item
points at its initial owner. The algorithm then implements
all cycles formed in the current round by assigning to agents
involved in a cycle the items they were pointing at.

We prove that for strict CMI-profiles, TTC is strict core
selecting (Theorem 1) for housing markets. Moreover, cy-
cles can be implemented one by one (instead of implement-
ing all cycles in each step) in any order when they are avail-
able (Theorem 2), TTC is non-bossy (Theorem 3), and it
is NP-complete to compute a beneficial manipulation (The-
orem 4). Here, a strict core allocation means that no group
has incentive to deviate and exchange their initial endow-
ments to get a better allocation. Non-bossiness means that
no agent can misreport her preferences to change the alloca-
tion of any other agent without changing her own allocation.

We propose a general framework called housing mar-
kets with acceptable bundles (HMAB) as a further general-
ization of our housing market setting along Dimension 1.
An HMAB is denoted by (M,D), where M is a hous-
ing market, and each agent j ≤ n has a set of acceptable
bundles Dj , and an acceptable allocation is a member of
D = D1 × · · · ×Dn.

Our main result is that Theorems 1–3 extend naturally to
HMABs. For any HMAB (M,D), and any CMI-profile P ,
TTC(P ) is in the weak core if TTC(P ) is an acceptable allo-
cation (every agent is allocated an acceptable bundle) (The-
orem 5), TTC(P ) is in the strict core if TTC(P ) is an ac-
ceptable full allocation (acceptable allocation where every
item is allocated to some agent) (Theorem 6), cycles can be
implemented one by one in any order when they are avail-
able (Theorem 7), and TTC is non-bossy at P (Theorem 8).

Theorems 5–8 discussed above are quite general and pos-
itive. They can be applied to any housing market with any
acceptable bundles under the relatively weak assumption of
CMI-tree preferences.

− First, if we can show that the output of TTC is always
an acceptable (full) allocation, then it immediately implies
that TTC is weak (strict) core-selecting, insensitive to the
order of implementing cycles one by one, and non-bossy.
To give an example of such settings, our setting of hous-
ing markets where agents must be allocated as many items
of each type as their initial endowment is a special case of
HMABs, where agents only accept bundles with exactly as
many items of each type as their initial endowment.
− Second, even for problems for which the output of TTC
is not always an acceptable full allocation, the theorems still
guarantee desirable properties of TTC for “good” instances.

Related Work and Discussions. We are not aware of previ-
ous work that explicitly formulates acceptable bundles as we
do in this paper. Our model is more general than assuming
that all bundles ranked below the agent’s initial endowments
are unacceptable, because we allow an agent to deem her ini-
tial endowment unacceptable. The acceptable bundles can be
seen as soft constraints on the allocation. We do not aim to
design a mechanism that always outputs an acceptable full
allocation. Instead, we prove that TTC has good theoretical
guarantees when the output is an acceptable full allocation.

Our work is related to the literature on matching with
constraints (see (Kojima 2015) for a recent survey), where
there are two sets of agents, and the goal is to find a sta-
ble matching of agents from opposite sides where no pair
of agents has an incentive to deviate. Constraints may be in
the form of agents specifying acceptable matchings, or quo-
tas on how many other agents a given agent can be matched
with (Fragiadakis et al. 2016). In this paper, we are inter-
ested in the resource allocation problem where preferences
are one sided, i.e. agents have preferences over items, and
the solution concept is that of core stability. Our notion of
strict core is a natural extension of the standard strict core
property to housing markets with acceptable bundles.

A natural extension of the standard housing markets set-
ting is that agents own and desire multiple items, possibly
of different types (Moulin 1995; Pápai 2007; Todo, Sun,
and Yokoo 2014; Sonoda et al. 2014; Fujita et al. 2015;
Sun et al. 2015; Sikdar, Adali, and Xia 2017). In a seminar
class, students may want to exchange papers and dates for
presentation (Mackin and Xia 2016); in cloud computing,
agents may want to exchange multiple types of resources
such as CPU, memory, and storage (Ghodsi et al. 2011;
2012); or patients may want to exchange multiple types of
medical resources including surgeons, nurses, rooms, and
equipment (Huh, Liu, and Truong 2013).

Konishi, Quint, and Wako (2001) showed that the core
may be empty when there are multiple types of items, even
when agents’ preferences are additively separable. However,
two lines of work provide core selecting mechanisms under
certain restrictions:
(1) When there is a single type and agents may own multiple
items, the ATTC mechanism by (Fujita et al. 2015) is strict-
core selecting under lexicographic preferences and allocates
exactly as many items as agents’ endowments.

(2) In multi-type housing markets (Moulin 1995), agents
are endowed with, and must be allocated bundles containing

2166



exactly one item per type. (Sun et al. 2015) assume separable
lexicographic preferences with common importance orders.
Under preferences that are represented by lexicographic ex-
tensions of CP-nets (Boutilier et al. 2004) with possibly dif-
ferent importance orders, the MTTC mechanism by (Sikdar,
Adali, and Xia 2017) is strict core-selecting and non-bossy.

Our setting of housing markets combine and generalize
these two settings. Therefore, (Theorems 1– 3) also apply
to every instance of the problems in (Fujita et al. 2015)
and (Sikdar, Adali, and Xia 2017) under CMI-profiles that
are linear orders over acceptable bundles, which is a weaker
assumption than in previous works as we will show later.
Aside from the standard TTC, the MTTC mechanism (Sik-
dar, Adali, and Xia 2017), and ATTC mechanisms (Fujita et
al. 2015) are special cases of our extension of TTC. Theo-
rems 2 and 3 are new to ATTC to the best of our knowledge.
The NP-hardness of computing a beneficial misreport pro-
vides a computational barrier against agents’ strategic be-
havior under TTC, similar to the idea of using computational
complexity to protect elections (Bartholdi, Tovey, and Trick
1989; Conitzer and Walsh 2016).

Our setting is related to the work on housing markets
with indifferences (Quint and Wako 2004; Yilmaz 2009;
Alcalde-Unzu and Molis 2011; Jaramillo and Manjunath
2012; Aziz and de Keijzer 2012; Plaxton 2013; Saban and
Sethuraman 2013) which assume that agents own and accept
a single item and their preferences can be any weak order
over the items. Therefore, their results do not directly apply
to our setting where agents can be allocated multiple items.
On the other hand, our results do not directly apply to the
setting of these works since not all weak orders can be repre-
sented by CMI-trees. Theorems 5-8 hold for any preferences
with indifferences which can be represented by CMI-trees.
Domain Restriction on Preferences. CMI-trees are more
general, and impose a weaker restriction on agents’ prefer-
ences than the assumptions of previous works such as lex-
icographic extensions of CP-nets (Sikdar, Adali, and Xia
2017), LP-trees (Booth et al. 2010), and GLPs (Monte and
Tumennasan 2015). We look at the relationship with other
languages in more detail later.

Preliminaries
A housing market, denoted M, is given by a tuple
(N , I,O), where N = {1, . . . , n} is a set of agents, I is
a set of indivisible items consisting of p ≥ 1 types of items,
and for each j ≤ n, O(j) ⊆ I denotes agents’ initial en-
dowments that are disjoint. For any i ≤ p, the set of items
of type i is denoted by Ti. We refer to any subset of items
I ⊆ I as a bundle. Given any subset I ⊆ I, we use [I]i to
denote the subset of items of type i in I . Each agent desires
to consume exactly as many items of each type as they were
initially endowed. A bundle I ⊆ I is acceptable for agent j,
if for every type i ≤ p, |[I]i| = |[O(j)]i|. A bundle Î extends
a bundle I if Î ⊇ I .

An allocation A is a mapping from N to 2I , such that
for each j ≤ n, A(j) is the bundle allocated to j, and for
any ĵ 6= j, A(ĵ) ∩ A(j) = ∅. When

⋃
j≤nA(j) = I, A

is called a full allocation. Otherwise, it is a partial alloca-

tion. A (partial) allocation Â extends A, if for every j ≤ n,
Â(j) ⊇ A(j). Every (partial) allocation A induces a map-
ping FA : N → 2I , where FA(j) is the set of items that
are forbidden to agent j by A. A partial allocation A is ac-
ceptable given FA if there exists an extension Â of A, such
that for every agent j ≤ n, Â(j) is acceptable to j and
Â(j) ∩ FA(j) = ∅. An item o ∈ I is forbidden to agent
j if there is no acceptable extension Â ofA where o ∈ Â(j).
Otherwise, o is allowable.

Example 1. Consider the housing market with 2 types H =
{1H , 1′H , 2H} and C = {1C , 2C , 2′C}, and 2 agents with
initial endowments O(1) = {1H , 1′H , 1C} and O(2) =
{2H , 2C , 2′C}. Consider the partial allocation A where
A(1) = {2H , 1C} and A(2) = {1H}. For agent 2, the
house 1′H is forbidden because 2 cannot accept another
house, items 2H , 1C are forbidden because they have been
assigned to agent 1, and the items 2C , 2

′
C are allowable.

FA(1) = {1H , 2C , 2′C} and FA(2) = {2H , 1′H , 1C}. A can
be extended by any combination of adding the items 1′H to
A(1), or adding 2C and 2′C to A(2). Every other extension
is unacceptable.

A preference profile P = (Rj)j≤n is a collection of
agents’ preferences, where Rj represents agent j’s prefer-
ences over 2I . Given a housing marketM, a mechanism f
is a function that maps any profile P to a (partial) allocation.
Desirable Properties. We are interested in the following de-
sirable properties. A mechanism f is: (a) strict core select-
ing, if for every profile P , there is no coalition which weakly
blocks f(P ). A coalition of agents S ⊆ N weakly blocks an
allocationA, if there is an acceptable reallocationB of items
initially endowed to agents in S, such that (i) every agent in
S weakly prefers her allocation in B to her allocation in A,
and (ii) some agent in S strictly prefers her allocation in B
to her allocation in A. (b) weak core selecting, if for every
profile P , there is no coalition which strictly blocks f(P ).
A coalition S ⊆ N strictly blocks an allocation A, if there
is an acceptable reallocation B of items initially endowed to
agents in S, such that every agent in S strictly prefers her
allocation in B to her allocation in A. (c) non-bossy, if for
every profile P , no agent can change another agent’s alloca-
tion by misreporting her preferences, without changing her
own allocation.

Conditionally-Most-Important (CMI)
Preferences

Conditionally-Most-Important (CMI) preferences are repre-
sented by a tree defined below.

Definition 1. Given I, a CMI-tree V is a directed rooted
tree, where

• Every node d is labeled with an item label(d) ∈ I.
• Every item appears at most once on every branch.
• Every non-leaf node has either one outgoing edge labeled
{0, 1} or two outgoing edges labeled 0 or 1.

If each node in V only has one outgoing edge, then V is
said to be unconditional. For any node d, let Anc(d) denote
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the set of all ancestor nodes of d. Let PathV (d) denote the
path from root to d. Let Absent(d) (respectively, Present(d))
denote the set of all items labeling Anc(d) with outgoing
edges labeled 0 (respectively, 1) along PathV (d).

Figure 1: A strict CMI-profile with two agents and two types
H = {1H , 1′H , 2H} and C = {1C , 2C , 2′C}. Agent 2’s pref-
erences can be represented by an LP-tree with type labels
for multi-type housing markets (Moulin 1995).

Semantics of CMI-trees. Given a CMI-tree, each node d
has the following meaning: given that the agent is allocated
all items in Present(d) and all of the items in Absent(d) are
forbidden in a given partial allocation, any bundle which
contains the item label(d) is more preferred than any bundle
without label(d). We call item label(d) the agent’s most im-
portant item conditioned on items Present(d) and Absent(d)
being present and absent respectively in the partial alloca-
tion. Comparing a pair of bundles B1, B2 ⊆ I involves
traversing the CMI-tree from the root, following outgoing
edges labeled 0 or 1, depending on whether the item label(d)
labeling the current node d is absent from or present in
both B1 and B2, until a node d∗ is encountered such that
label(d∗) is present in only one of the bundles, which de-
cides the preference relation in favor of the bundle that in-
cludes label(d∗). If no decision node is encountered, the
agent is indifferent between B1 and B2.
Example 2. Consider the CMI-tree preferences of agent 2
in Figure 1. Comparing bundles (1′H2H2C) and (1′H2H1C)
according to agent 2’s preferences is performed by following
edges corresponding to 1H being absent, 2H being present
in both the bundles to reach the node labeled 2C . Now, 2C
is the most important item and decides the pairwise relation-
ship in favor of (1′H2H1C).

A CMI-profile P = (V1, . . . , Vn) is a collection of agents’
preferences where each Vj is agent j’s CMI-tree preferences
over 2I . A CMI-tree is said to be a strict CMI-tree over a set
of bundles B if it induces a linear order over B. Given a
market M, a profile P is a strict CMI-profile if for every
agent j, her preferences represented by Vj is a strict CMI-
tree over 2I .

Given a CMI-tree V representing the preferences of an
agent, and sets I and F representing the sets of items that
are assigned and forbidden to the agent respectively, we
use V |I,F to denote the agent’s most important item, condi-
tioned on I being assigned and items in F being forbidden.
Algorithm 1 computes V |I,F in polynomial time.

Example 3. Consider the CMI-profile in Figure 1, and the
housing market with two agents and partial allocation A
from Example 1. Agent 2’s conditionally most important
item 2C is computed by traversing the CMI-tree represent-
ing agent 2’s preferences as follows. Starting from the root
node labeled 1H , we follow the edge labeled 1 to the node
labeled 1C since 1H is in A(2). Since 1C has been assigned
to agent 1 and is therefore forbidden to agent 2, we follow
the edge labeled 0 to node labeled 2C which is allowable.

Algorithm 1 Most important allowable item V |I,F
1: Input: A CMI-tree V , assigned items I , and

forbidden items F .
2: o∗ ← null
3: Traverse V from the root following outgoing edges la-

beled 0 (resp. 1) from current node d, if the item label(d)
is in F (resp. in I), until a node d∗ is encountered where
item label(d∗) is not forbidden. Set o∗ ← label(d∗). If
no such node is found, do nothing.

4: return o∗

CMI-Trees Generalize Other Languages in
Multi-Type Housing Markets
We start by showing that CMI-trees are a strict generaliza-
tion of two important preference languages: (1) LP-trees
with type labels (Booth et al. 2010) which are given by a
tree V where each node v is labeled with a type type(v),
and a conditional preference table CPT (v), and outgoing
directed edges from each non-leaf node are labeled by the
items of type(v), such that each item in type(v) labels ex-
actly one outgoing edge of v. Each type appears once, and
only once on every branch of V . CPT (v) is composed of
local preferences over items of type(v), conditioned on the
allocation of each of the items of the type corresponding to
the parent node of v in V .
(2) Generalized lexicographic preferences (GLPs) (Monte
and Tumennasan 2015) which are represented by a linear
order η over I. Given any pair ~a,~b ∈ 2I , ~a � ~b if and only
if there is an item o in ~a but not in~b, and all items preferred
to o in η are either in both ~a and~b, or in neither.

Example 4. For multi-type housing markets (Moulin 1995),
agent 2’s preferences in Figure 1 can be represented as an
LP-tree as shown. Agent 1’s preferences in Figure 1 realizes
the GLP with η = [1C � 2′C � 2H � 1H � 2C � 1′H ].

Proposition 1. LP-trees with type labels and GLPs are strict
subsets of strict CMI-trees.

Proof. The proof is available in a full version. It is easy to
check that we can model any GLP or LP-tree with type la-
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bels as a CMI-tree. We provide examples to prove that LP-
trees with type labels and GLPs are a strict subset of CMI-
trees. We then provide examples to show that not every GLP
can be represented by an LP-tree with type labels and vice
versa. Finally, we give an example of a CMI-tree which can
neither be represented by an LP-tree with type labels nor a
GLP.

Relationship with LP-trees with item labels. An LP-tree
with item labels is represented by a tree, where every node
v is labeled by an item item(v), each item is treated as a bi-
nary variable, and the local preferences specify whether it is
preferred that the item labeling the node is present (1 � 0) or
absent (0 � 1) from a bundle. Since each item appears once,
and only once on every branch, this induces a linear order
over 2I , unlike LP-trees with type labels where preferences
over bundles with multiple items of a type may not be well
defined. We say that an LP-tree with item labels is mono-
tonic if for every node v, CPT (v) = 1 � 0, (being assigned
an item is always preferred). Otherwise, it is non-monotonic.

Proposition 2. (1) Strict CMI-trees over 2I are equivalent
to monotonic LP-trees with item labels, and (2) CMI-trees
cannot represent the preferences of any non-monotonic LP-
tree with item labels over 2I .

Figure 2 illustrates the relationship between CMI-trees,
GLPs, LP-trees with type labels, and LP-trees with item la-
bels which is discussed below.

Figure 2: Relationship between popular preference lan-
guages (Propositions 1 and 2).

Properties of CMI-trees. CMI-trees are compact in the
same way that LP-trees are compact. The size of the rep-
resentation and time taken to compute most important items
may depend on the amount of branching in the CMI-tree.
Importantly, they can be compact for special cases such as
when they represent the same preferences as an LP-tree or
GLP. We note that computing the most important item and
deciding pairwise comparisons can be performed with poly-
nomial number of queries for the next conditionally most
important item. This can be done efficiently for the special
cases where CMI-trees are compact. Also, note that TTC
only requires knowledge of agents’ most important items
at each round, instead of requiring agents to formulate and
communicate full preferences a priori.

Our next proposition is that CMI-trees induce a weak or-
der, which is a linear order over a set of equivalence classes,
with no incomparabilities.

Proposition 3. Given any CMI-tree V and any D ⊆ 2I , the
restriction of V to D is a weak order over D.

Not all linear orders or equivalence classes can be repre-
sented by CMI-trees. Consider the example with two houses
1H and 2H . For example, no CMI-tree can represent 1H �
1H2H � 2H over D = {1H , 2H , 1H2H}. The next proposi-
tion states that it is easy to check whether a given linear order
over equivalence classes can be represented by a CMI-tree.
An algorithm and proof are available in the full version.
Proposition 4. Given a partition D = E1 ∪ · · · ∪Ek of 2I ,
and a strict linear order � over the Ei’s, there is a polyno-
mial time algorithm that decides whether � can be repre-
sented by a CMI-tree.

CMI-trees as defined in Definition 1 may not be a com-
pact representation, just like LP-trees (Booth et al. 2010) and
CP-nets (Boutilier et al. 2004) are not necessarily compact
representations. Irrespective of the size of representation, it
is possible that CMI-trees can be compactly represented by a
computable function f that outputs the most important item
given any partial allocation. Our results apply to all compact
languages that are special cases of CMI-trees. Instead of fur-
ther pursuing compact representations, we use CMI-trees as
weak domain constraints in our theorems for TTC.

TTC is Strict Core Selecting Under Strict
CMI-tree Preferences

Algorithm 2 TTC for CMI-profiles.
1: Input:M = (N , I,O) and a strict CMI-profile P .
2: t← 1. For each j ≤ n, At(j) = ∅, FAt(j) = ∅.
3: Initialize forbidden items. For each j ≤ n, each i ≤ p,

add Ti to FAt(j) if j has no endowment of type i.
4: while at least one agent remains do
5: Identify most important item o∗j = Vj |At(j),FAt (j)

using Algorithm 1 for every agent j ∈ N .
6: Build the graph Gt = (N ∪I, E). For every agent j

in N :
6.1 For every item o ∈ O(j) ∩ I, add (o, j) to E.
6.2 If o∗j 6= null, add edge (j, o∗j ) to E.

7: Implement cycles. For each cycle C in Gt, for every
(j, o∗j ) in C, add o∗j toAt(j), remove o∗j from I, make
o∗j forbidden to every other agent, and update FAt(j).

8: For all agents j with no outgoing edge inGt, remove j
from N , remove remaining items in O(j) from I and
make them forbidden to every remaining agent.

9: For every agent j ∈ N , update At+1(j) ← At(j),
FAt+1(j)← FAt(j). Set t← t+ 1.

10: return The allocation A = (At(j))j≤n

At each round of Algorithm 2, we start by identifying the
most important item for every remaining agent using Algo-
rithm 1 by skipping items that are forbidden until a most
important allowable item is found. Every remaining agent
points to their most important allowable item, and each re-
maining item points to its initial owner. Every node in the

2169



Figure 3: A run of TTC for the housing market from Example 1 and preferences in Figure 1.

corresponding graph has an out-degree of exactly 1, so a
cycle is guaranteed to exist. TTC proceeds by implement-
ing all available cycles at each round, by assigning to agents
involved in each cycle, the item they were pointing at, up-
dating the partial allocations, removing the assigned items,
and forbidding them to all other remaining agents. At any
round t of the algorithm, the partial allocation is At, and for
any remaining agent j, Vj |At(j),FAt (j) represents j’s most
important item under consideration. If no most important al-
lowable item can be identified for an agent, she is removed
along with the remaining items from her endowment, which
are made forbidden to every remaining agent.
Example 5. Figure 3 is an example of a run with the CMI-
profile in Figure 1 as input for the housing market from
Example 1. The partial allocations At at the beginning of
the round are shown. Computation of most important items
(darker circle), by following the dashed nodes and edges, are
shown for agent 1 at round 2 and agent 2 at round 3.

Theorem 1. For any housing marketM and any strict CMI-
profile P , TTC(P ) is a strict core allocation, an acceptable
full allocation, and computed in polynomial time.
Proof sketch. The complete proof is available in the full
version.
Claim 1. For any strict CMI-profile P and housing market
M, TTC(P ) is an acceptable full allocation, and computed
in polynomial time.

A proof by induction shows that at the end of every round
t, the (partial) allocationAt is acceptable, and the number of
remaining items of each type is exactly the number of items
to fulfill the demand for the type.

In the interest of space, we provide a proof sketch for only
the base case. At round 1, by the assumption of strict CMI-
tree preferences, every agent has a most important allowable
item, and at Step 6 of round 1, agents only point at an item
of type i if they have demand for items of type i. At least

one cycle must exist, and cycles are disjoint. Then, at the
end of round 1: items assigned in Step 7 are allowable to
agents assigned the items, and that for any type i, the number
of remaining items, and the demand for items of that type
reduce by exactly the number of items of type i assigned
to agents in Step 7. It follows that the number of remaining
items of any type i is exactly the number of items demanded
by the agents, and that A1 is acceptable.

It follows from the structure of housing markets that if
TTC(P ) is acceptable, it is a full allocation, and it is easy to
see that TTC(P ) is computed in polynomial time.

Claim 2. For any strict CMI-profileP and any housing mar-
ketM, TTC(P ) is a strict core allocation.

Suppose for sake of contradiction, that the allocationA =
TTC(P ) does not belong to the strict core. Then, there exists
a coalition S and an acceptable allocationB on S that blocks
A, i.e. that every agent in S weakly prefers B to A, and at
least one agent in S strictly prefers B to A.

Let t∗ be the first round in Algorithm 2 when the par-
tial assignments at the end of the round for agents in S are
not compatible with B, by which we mean that there ex-
ists an agent j ∈ S such that either (i) At∗(j) 6⊆ B(j) (j
gets an item in At∗(j) which she does not get in B(j)), or
(ii) FAt∗ (j) ∩B(j) 6= ∅ (an item in B(j) gets forbidden).

We note that At∗ and FAt∗ are updated only at Steps 7
and 8 of Algorithm 2. We can ignore the case where A is a
partial allocation because an agent was removed in Step 8
due to Claim 1 that Algorithm 2 always outputs acceptable
full allocation for housing markets.
(Case 1) Conflict in Step 7. An item o is assigned to j in
A, but is not assigned to j in B. We will show that this im-
plies that A(j) �j B(j). By definition of Algorithm 2, o is
j’s most important item given At∗ immediately before the
Step 7. By our assumption on t∗, Step 7 is the first time
At∗ is incompatible with B(j). Therefore, right before o is
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assigned to j, B(j) is an acceptable extension of At∗(j).
Therefore, every item in B(j)\At∗(j) is allowable. By def-
inition of CMI-trees, A(j) � B(j), a contradiction to our
assumption that B blocks A.
(Case 2) Removed item in Step 7. An item o is assigned
to j in B, but is assigned to another agent, say ĵ, in At∗ ,
in Step 7. Let C be the cycle that is implemented to assign
o to ĵ. Suppose ĵ ∈ S, o ∈ B(j) implies that o /∈ B(ĵ).
This is equivalent to (Case 1). Suppose ĵ /∈ S. Since o ∈
B(j), there exists an agent j′ ∈ S such that o ∈ O(j′),
and by definition of Algorithm 2, j′ ∈ C. Now, consider the
agents in C. By definition of Algorithm 2, there exists a pair
of agents j′′ and j′′′, and an item o′′′ ∈ O(j′′′) such that
j′′ ∈ S, j′′′ /∈ S, and j′′ points to o′′′ in C. This implies that
o′′′ ∈ A(j′′). Since j′′′ /∈ S, this implies that o′′′ /∈ B(j′′).
Again, this reduces to (Case 1).
(Case 3) Denied item in Step 7. An item o is assigned to
j in B but immediately after Step 7, o is remaining but
forbidden. We will show that B(j) is unacceptable. By our
assumption on the minimality of t∗, B is an acceptable ex-
tension of At∗ , immediately before Step 7. Suppose an item
ô was added to At∗(j) in Step 7. Suppose ô /∈ B(j), this
reduces to (Case 1). Suppose ô ∈ B(j), and o ∈ B(j) gets
forbidden, we must have that B(j) is unacceptable, a con-
tradiction to our assumption that B is acceptable.

�
Our next theorem states that the order of implementing

cycles in the execution of TTC does not matter. We begin by
defining a class of algorithms called TTC∗ for CMI-profiles
similar to (Sikdar, Adali, and Xia 2017). The proof of The-
orem 3 that TTC is non-bossy relies on Theorem 2. Missing
proofs are available in a full version online.
Definition 2. Given a housing marketM and a CMI-profile
P , let TTC∗P denote the set of algorithms, each of which is a
modification of TTC (Algorithm 2), where instead of imple-
menting all cycles in each round, the algorithm implements
exactly one available cycle in each round.

Theorem 2. For any strict CMI-profile P and any housing
marketM, the output of every TTC∗P algorithm is the same
and equals TTC(P ).

Theorem 3. For any strict CMI-profile P and any housing
marketM, TTC is non-bossy at P .

Manipulation of TTC. TTC is not necessarily strategy-
proof under strict CMI-tree preferences, as shown through
an example in the full version. However, as we show sub-
sequently (Theorem 4), computing a beneficial misreport
is NP-complete, for GLPs, LP-trees, and CMI-trees us-
ing a reduction from ATTC-BENEFICIAL-MISREPORT for
ATTC (Fujita et al. 2015) which is NP-complete. The proof
is available in the full version.
Definition 3. (TTC-BENEFICIAL-MISREPORT) Given a
housing market M, a profile P , and an agent j∗, we are
asked if agent j∗ has a misreport V̂j∗ so that TTC(P̂ =

(V̂j∗ , V−j∗))(j
∗) �Vj∗ TTC(P )(j

∗).

Theorem 4. TTC-BENEFICIAL-MISREPORT is NP-
complete under GLP, LP-tree, or CMI preferences.

Housing Markets with Acceptable Bundles
A housing market with acceptable bundles (HMAB), is
given by a tuple (M,D), where M is a housing market,
and D = D1 × · · · × Dn, where for each j ≤ n, let Dj ⊆
2I denote agent j’s acceptable bundles. Given an HMAB
(M,D), a mechanism f is a function that maps agents’ pro-
file P to a (partial) allocation. We extend TTC (Algorithm 2)
naturally to HMABs and general CMI-profiles, and prove
that several desirable properties are retained.

Algorithm 2 is not guaranteed to run in polynomial time
for HMABs in general, since updating the set of forbidden
items in Step 7 can potentially take exponential time for arbi-
trary acceptable bundles. However, given oracle access to a
function g which outputs the set of forbidden items, TTC(P )
can be computed in polynomial time. We note that for hous-
ing markets, the set of forbidden items can always be com-
puted in polynomial time.
Theorem 5. For any HMAB (M,D) and any CMI-profile
P , if TTC(P ) is an acceptable allocation, then it is in the
weak core.

Theorem 6 states that TTC(P ) is a strict core allocation
whenever TTC(P ) is an acceptable full allocation. Theo-
rems 7 and 8 are extensions of Theorems 2 and 3 respec-
tively to HMABs. The proofs of Theorems 6–8 are similar
to the proofs of Theorems 1–3. TTC∗P for HMABs are de-
fined similarly to housing markets.
Theorem 6. For any HMAB (M,D) and any CMI-profile
P , if TTC(P ) is an acceptable full allocation then it is in the
strict core.

Theorem 7. For any HMAB (M,D) and any CMI-profile
P , the output of every TTC∗P algorithm is the same and
equals TTC(P ).

Theorem 8. For any HMAB (M,D), any CMI-profile P ,
TTC is non-bossy at P .

Applications and Future Directions
We extended TTC to HMABs when agents’ preferences are
represented by CMI-trees, and proved that TTC satisfies de-
sirable properties when the output is an acceptable (full) al-
location. We also showed that TTC is strict core selecting
under strict CMI profiles for housing markets where agents
may be endowed and allocated with multiple items of each
type, which combine the settings of previous works. Al-
though TTC may not be strategy-proof, computing a benefi-
cial manipulation is NP-hard. Open questions include char-
acterizations of other properties of the extended TTC under
other types of preferences, and how to choose an acceptable
allocation when the output of TTC is unacceptable.
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