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Abstract

We define and study a general framework for approval-based
budgeting methods and compare certain methods within this
framework by their axiomatic and computational properties.
Furthermore, we visualize their behavior on certain Euclidean
distributions and analyze them experimentally.

Introduction
Participatory budgeting (Cabannes 2004), initiated by the
Brazil workers’ party (Wainwright 2003), is gaining in-
creased attention, and is currently applied on many conti-
nents, including North America (Gilman 2012) and Europe
(e.g., Paris is organizing one of the largest citywide partic-
ipatory budgeting processes1). The general premise of par-
ticipatory budgeting is to let residents of a municipality in-
fluence the way by which their common funds are being
distributed, through a deliberative grassroots process. Con-
cretely, residents are participating in constructing the mu-
nicipal budget, by acting as voters and specifying their pref-
erences over a set of available items; then, an aggregation
mechanism (i.e., a budgeting method) is applied to decide
upon the exact set of items to be funded.

Even though more and more funds are decided through
participatory budgets, not many budgeting methods have
been proposed, and no mathematical frameworks to allow
for a systematic comparison between budgeting methods are
available, rendering their use somewhat ad-hoc. Here we de-
scribe such a general framework for the approval-based set-
ting, in which voters specify subsets of the available items
which they approve of. Corresponding methods within our
framework differentiate in two aspects: (1) The way by
which voter satisfaction from a given set of funded items
is defined, modeled through a satisfaction function; and (2)
The way these satisfaction functions are used.

We consider several concrete methods within our frame-
work, including some which are used in practice and some
which generalize known multiwinner voting rules. To com-
pare these methods, we (1) consider their computational
complexity; (2) define several axioms, relevant to budget-
ing methods, and study how well these axioms are satisfied
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by the methods at hand; and (3) report on three experiments:
In the first two, we visualize the behavior of these methods
on certain Euclidean preferences, by adapting the methodol-
ogy of Elkind et al. (2017a), originally developed for multi-
winner voting rules; we are specifically interested in the be-
havior of these methods with respect to their preference for
choosing either cheap items or expensive ones. In the third
experiment we assess how well our budgeting methods deal
with local and global items.

The main contributions of our work are: (1) a general
framework of approval-based budgeting methods with sev-
eral methods within; (2) several useful axiomatic proper-
ties which are relevant to budgeting methods at large; (3)
an adaptation of the methodology of Elkind et al. (2017a)
to participatory budgeting; and (4) an evaluation of certain
methods within our framework according to their axiomatic,
computational, and visual properties, as well as their ability
to deal with local and global items.

Due to space constraints, some proof details are omitted.

Related Work
Researchers have considered ordinal-based budgeting meth-
ods, in which voters rank budget items (Goel et al. 2015;
Shapiro and Talmon 2017); utility-based budgeting meth-
ods, in which voters have numerical utilities over budget
items (Fluschnik et al. 2017; Benade et al. 2017); and, as
we do, approval-based budgeting methods, in which each
voter approves a set of items (Goel et al. 2015; Goel, Kr-
ishnaswamy, and Sakshuwong 2016; Benade et al. 2017;
Aziz, Lee, and Talmon 2017). Specifically, Goel et al. (2015;
2016) study k-Approval, where each voter approves exactly
k items, and Knapsack voting, where each voter approves
items while respecting the budget limit. As shown below, the
aggregation method used by Goel et al., in which the win-
ning bundle is selected by greedily considering the items in
decreasing number of approvals, fits within our framework.

Benade et al. (2017) consider the implicit utilitarian
model (Caragiannis et al. 2017) and analyze the distortion
achieved by eliciting the preferences of the voters by Knap-
sack voting and by Threshold voting (in which voters are
asked to approve those items which they evaluate above a
given threshold); their distortion-based aggregation methods
do not fit within our framework. Aziz et al. (2017) generalize
multiwinner proportionality axioms to the setting of partic-
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ipatory budgeting. Their budgeting method, which is a gen-
eralization of Phragmén’s sequential method for committee
elections, does not fit within our framework.

As we are interested in axiomatic properties of budget-
ing methods, we mention the work of Shapiro and Tal-
mon (2017), which considers a generalization of the Con-
dorcet principle, the paper of Aziz et al. (2017), which con-
siders axioms of representation, and the papers of Fluschnik
et al. (2017) and Fain et al. (2018), which also consider
representation. Our framework of approval-based budget-
ing methods is a generalization of the framework studied
by Lackner and Skowron (2017), which regards approval-
based multiwinner methods. Our framework, as well as
theirs, might be seen as the approval-based variant of the
framework of committee scoring rules (Elkind et al. 2017b;
Faliszewski et al. 2016b; 2016a). For a general survey of
approval-based voting, we point the reader to the work of
Laslier and Sanver (2010).

Budgeting Methods
Budgeting Scenarios
We consider the following model of participatory budget-
ing. A budgeting scenario E is a tuple E = (A, V, c, `)
where A = {a1, . . . , am} is a set of items, c : A → N
is a cost function, so that the cost of item a ∈ A is c(a),
V = {v1, . . . , vn} is a set of voters, where each voter v ∈ V
specifies her approval set Av ⊆ A, containing those items
which she approves of, and ` ∈ N is a budget limit.

A budgeting methodR is a function which takes a budget-
ing scenario E = (A, V, c, `) and returns a bundle B ⊆ A,
such that the total cost of the items of B respects the bud-
get limit; i.e., slightly abusing notation, it must hold that
c(B) =

∑
b∈B c(b) ≤ `. The winning bundle (i.e., the set of

funded items) for a budgeting scenario E, under a budgeting
method R, is denoted by R(E). With respect to a winning
bundle B, an item is budgeted (or funded) if it is contained
in B. For simplicity, we ignore issues related to tie-breaking,
which can be dealt with using standard techniques.

Satisfaction Functions
Budgeting methods in our framework operate by consider-
ing the satisfaction of the voters from possible bundles. To
measure the satisfaction of a voter from a possible winning
bundle, we use satisfaction functions, defined below.
Definition 1 (Satisfaction function). A satisfaction function
f is a function f : 2A × 2A → N, where A is a set of items.
Given a budgeting scenario with a set of items A, a voter
v ∈ V with her approval set Av , and a bundle B ⊆ A, the
value f(Av, B) is the satisfaction of v from the bundle B.
Example 1. Consider a budgeting scenario with A =
{a, b, c}, a voter v with Av = {a, b}, and a bundle B =
{b, c}. For a satisfaction function f , the value f(Av, B) =
f({a, b}, {b, c}) is the satisfaction of v from the bundle B.

Below we give some satisfaction functions. For a bundle
B and a voter v with her approval set Av , let Bv := Av ∩B.

1. f(Av, B) = |Bv|: The satisfaction of a voter is the num-
ber of funded items she approves of.

2. f(Av, B) =
∑

a∈Bv c(a) = c(Bv): A voter’s satisfaction
is the total cost of her approved items which are funded.
This follows the intuition that there is some positive cor-
relation between the satisfaction of a voter and the funds
spent on items approved be her.

3. f(Av, B) = 1|Bv|>0: A voter has satisfaction 0 if none
of her approved items is funded, and 1 otherwise (i.e., if
at least one of her approved items is funded).

Using Satisfaction Functions
A given satisfaction function can be used in various ways.
We consider the following three approaches.

1. Max rules: For a satisfaction function f , the ruleRm
f se-

lects, as a winning bundle, a bundle which maximizes the
sum of voters’ satisfaction, according to f . Formally,Rm

f

selects argmaxB⊆A
∑

v∈V f(Av, B).

2. Greedy rules: For a satisfaction function f , the rule Rg
f

proceeds in iterations, maintaining a partial bundle B,
where in each iteration it adds an item a to B which maxi-
mizes the value

∑
v∈V f(Av, B∪{a}). Notice that it halts

only when it is not possible to add more items.
3. Proportional greedy rules: The ruleRp

f is similar toRg
f ,

except that in each iteration it adds an item a to B which
maximizes:(∑

v∈V f(Av, B ∪ {a})−
∑

v∈V f(Av, B)
)
/ c(a).

Remark 1. So, while the Max rules optimally maximize
the sum of satisfactions of the voters, the Greedy rules op-
erate by greedily maximizing the sum of satisfactions, with-
out considering the costs of the items, and the Proportional
Greedy rules differ from the Greedy ones in that they oper-
ate by greedily maximizing the sum of “satisfaction divided
by cost” (i.e., they greedily maximize “bang-per-the-buck”).
Example 2. Consider a budgeting scenario with items a2,
a3, a4, a5, and a6, where, for 2 ≤ i ≤ 6, item ai costs
i, budget limit ` = 10, and voters v1 = {a2, a5, a6},
v2 = {a2, a3, a4, a5}, v3 = {a3, a4, a5}, v4 = {a4, a5},
and v5 = {a6}. Then, the winning bundle for this budgeting
scenario underRm

|Bv| is {a2, a3, a5}with total score 8, under
Rg
|Bv| and Rp

|Bv| is {a4, a5} (but Rg
|Bv| selects first a5 and

then a4 whileRp
|Bv| selects a4 and then a5), underRm

1|Bv|>0

is {a4, a6} which gets the highest total satisfaction possible,
underRg

1|Bv|>0
is {a2, a3, a5} (where a5 is selected first and

then perhaps a3 and a2, depending on the tie breaking), un-
der Rp

1|Bv|>0
is {a2, a3, a4} (where first a2 is selected, then

a4, and then perhaps a3, depending on the tie breaking), and
underRm

c(Bv)
,Rg

c(Bv)
andRp

c(Bv)
is {a4, a5}.

Remark 2. The above satisfaction functions and approaches
result in nine budgeting methods which we discuss through-
out the paper. Indeed, studying other functions and ap-
proaches is an immediate future work direction. We chose
those functions and approaches as they are natural, gen-
eralize known multiwinner voting rules, and include some
known budgeting methods: Rm

1|Bv|>0
generalizes approval-

based Chamberlin–Courant (CC) rule (Chamberlin and
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Courant 1983; Procaccia, Rosenschein, and Zohar 2008)
and Rg

1|Bv|>0
generalizes the greedy approximation of this

rule (Lu and Boutilier 2011). Furthermore, Rg
|Bv| is simi-

lar to the popular k-Approval and Knapsack voting (Goel
et al. 2015) (the aggregation method is the same, albeit k-
Approval and Knapsack restrict the voter approval sets; we
do not consider such restrictions in our framework, as we are
interested in the aggregation).

Below, we study the computational and axiomatic proper-
ties of our budgeting methods, and report on simulations.

Budgeting Algorithms
We consider the computational complexity of identifying
winning bundles. First, it follows from the definitions of the
Greedy rules and the Proportional greedy rules that com-
puting their winners, given that the functions used can be
computed efficiently, can be done in polynomial time; this
holds as these rules are defined through efficient iterative
processes. This is not the case for Max rules, which in gen-
eral are NP-hard. (To be concrete, next we consider a spe-
cific Max rule; to be formally correct, we show NP-hardness
for deciding whether a bundle with at least a given total sat-
isfaction, i.e., sum of satisfaction values, exists.)

Observation 1. Given a budgeting scenario and a
bound s, deciding whether a feasible bundle B for which∑

v∈V 1|Bv|>0 ≥ s exists is NP-hard.

Proof. Notice that Rm
1|Bv|>0

generalizes the approval-based
CC rule, which is NP-hard (Procaccia, Rosenschein, and
Zohar 2008). Also, when all items are of unit cost, the prob-
lem is equivalent to Max Cover (Garey and Johnson 1979;
Skowron and Faliszewski 2017).

Next we consider other Max rules. The proof of the next
results follows by the similarity of the problem to the Knap-
sack problem which is solvable in polynomial-time when-
ever one of the dimensions is given in unary.

Proposition 1. Identifying a winning bundle under Rm
|Bv|

can be done in polynomial time.

Proposition 2. Identifying winning bundles under Rm
c(Bv)

can be done in pseudopolynomial time. Further, given a
budgeting scenario and a bound s, deciding whether there
is a feasible bundle B with

∑
v∈V f(Av, B) ≥ s, for

f(Av, B) =
∑

a∈Bv c(a), is weakly NP-hard.

Proof. Weak NP-hardness follows by a straightforward re-
duction from the SUBSET SUM problem (see, e.g., the text
of Garey and Johnson (1979)). Given a Subset Sum instance
with integers X = {x1, . . . , xn}, where the existence of a
subset X ′ ⊆ X with

∑
x∈X′ x = Z is to be decided, we

construct the following budgeting scenario: For each inte-
ger xi, we create a voter vi approving an item ai of cost
c(ai) = xi, and set the limit to be ` = Z. For a yes-instance
of Subset Sum, a winning bundle shall be of total cost Z,
thus weak NP-hardness follows.

The reduction above also hints on the pseudopolynomial-
time algorithm for Rm

c(Bv)
: Apply dynamic programming

similar to that for Subset Sum, by iterating over the items
and remembering the maximum total satisfaction that can
be achieved for each amount of money.

Coping with Intractability
We describe a simple Integer Linear Program (ILP) for Max
rules over satisfaction functions which can be defined us-
ing ILPs; note that all satisfaction functions considered here
(i.e., |Bv|, 1|Bv|>0, and c(Bv)) can be defined using ILPs.
This is useful due to the availability of efficient ILP solvers.
Indeed, the simulations reported below were performed us-
ing the Gurobi ILP solver (Gurobi Optimization 2018) on
such ILP formulations.
Observation 2. Let f be a satisfaction function which can
be formulated using linear constraints. Then, identifying a
winning bundle underRm

f can be done using an ILP.

Next is a general, parameterized complexity result.
Observation 3. For all Max rules, the problem of deciding
whether a winning bundle of total cost at least a given value
is fixed-parameter tractable for the number m of items, but
there are some Max rules for which this problem is hard even
when n = 1, where n is the number of voters.

ForRm
c(Bv)

, which is weakly NP-hard (see Proposition 2)
even when there is only one voter (see the proof of Obser-
vation 3), we have a pseudopolynomial time algorithm (see
the proof of Proposition 2) and an FPTAS, as we show next.
Observation 4. There is an FPTAS forRm

c(Bv)
.

As for Rm
1|Bv|>0

, which is NP-hard (see Observation 1),
there is no approximation algorithm with approximation ra-
tio better than 1−1/e, as it generalizes the multiwinner vot-
ing rule CC for approval elections, which itself is equiva-
lent to the Max Cover problem (Feige 1998; Skowron and
Faliszewski 2017); next we show that it is fixed-parameter
tractable for the number n of the voters.
Proposition 3. Rm

1|Bv|>0
is fixed-parameter tractable for n.

Proof. Guess the partition of the voters with the intended
meaning that each group of voters in the partition is rep-
resented by the same item. For each such group, guess the
number of voters which would be satisfied. Then, go over all
items and pick as representative the cheapest item that makes
exactly this number of voters in this group satisfied.

Budgeting Axioms
In this section we suggest several axiomatic properties
which are relevant to budgeting methods. In particular, we
focus on axioms which relate to the costs of the items. For
each axiom, after providing the definition we check which
of the rules in our framework satisfy it. We stress that we
view axioms as properties and not necessarily as normative
recommendations; thus, while we demonstrate certain situ-
ations in which each of the axioms is desirable, there are
situations in which failing na axiom is not a drawback.

Our first axiom models the very natural expectation that
if within a budgeting scenario we can afford to fund more
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Rm
|Bv| Rg

|Bv| Rp
|Bv| Rm

1|Bv|>0
Rg
1|Bv|>0

Rp
1|Bv|>0

Rm
c(Bv)

Rg
c(Bv)

Rp
c(Bv)

Complexity P P P NP-h P P weak NP-h P P
Inclusion Maximality X X X X X X X X X

Discount Monotonicity X X X X X X x x x
Splitting Monotonicity X X X X X X X x X
Merging Monotonicity x x x X X x X X X

Limit Monotonicity x x x x x x x x x

Table 1: Computational and axiomatic properties of certain approval-based budgeting methods.

x Rm
|Bv| Rg

|Bv| Rp
|Bv| Rm

1|Bv|>0
Rg
1|Bv|>0

Rp
1|Bv|>0

Rm
c(Bv)

Rg
c(Bv)

Rp
c(Bv)

10

30

90

190

Table 2: Results of Experiment 1. Cheap items are on the left, expensive on the right.

items, then we should; i.e., voters might wish to use all the
available funds. Formally, we express it as follows.
Definition 2 (Inclusion Maximality). A budgeting
method R satisfies Inclusion Maximality if for each
budgeting scenario E = (A, V, c, `) and each pair of
feasible bundles B and B′ such that B ⊂ B′ it holds that if
B is winning then also B′ is winning.

Inclusion Maximality seems desirable in all cases of par-
ticipatory budgeting. Yet, a somewhat artificial example
shows that not all rules in our framework satisfy it.
Example 3. Let f(Av, B) = min({c(a) : a ∈ Bv}); that
is, the satisfaction of a voter equals the cost of her cheapest
approved item which is funded. Then, Rm

f does not satisfy
Inclusion Maximality (to see it, consider two items a, b of
cost 1, 2 respectively, one voter approving both a and b, and
a pair of bundles B = {b} and B′ = {b, a}).

Nevertheless, notice that all three satisfaction functions
we consider here (namely f = |Bv|, f = 1|Bv|>0, and f =
c(Bv)) are super-set monotone; that is, for each of them, we
have that f(B′) ≥ f(B) for each B ⊂ B′. Thus, since one
can verify that Max rules are Inclusion Maximal for super-
set monotone satisfaction functions, we have the following.
Corollary 1. Rm

|Bv|, R
m
c(Bv)

, and Rm
1|Bv|>0

, satisfy Inclu-
sion Maximality.

For Greedy rules and Proportional greedy rules, it is never
the case that two feasible bundles B, B′ with B ⊂ B′ are
both winning, so we have the following.

Corollary 2. Rg
|Bv|,R

g
c(Bv)

,Rg
1|Bv|>0

,Rp
|Bv|,R

p
c(Bv)

, and
Rp
1|Bv|>0

, satisfy Inclusion Maximality.

In the next axiom we consider the response of our rules
to increasing the available budget limit. Specifically, we re-
quire that if we increase the limit, then all funded items re-
main funded, provided that no new item becomes affordable
(this last condidtion is quite natural; if there is an item that
all the voters approve, which is above the budget limit before
its extension but is within the limit after the extension, then
it is quite natural that this item might be funded and might
remove many previously funded ones).

Definition 3 (Limit Monotonicity). We say that a budgeting
method R satisfies Limit Monotonicity if for each pair of
budgeting scenarios E = (A, V, c, `), E′ = (A, V, c, ` + 1)
with no item which costs exactly ` + 1, for each a ∈ A, it
holds that a ∈ R(E) =⇒ a ∈ R(E′).

Interestingly, while Limit Monotonicity generalizes the
Committee Monotonicity axiom of multiwinner voting
rules (Elkind et al. 2017b), which is satisfied by many such
rules, Limit Monotinicity is not satisfied by any of the rules
we consider here. This shows that even though the frame-
works of participatory budgeting and multiwinner voting are
strongly related, the fact that the former deals with items of
different costs can lead to significant differences.

Proposition 4. None ofRm
|Bv|,R

m
c(Bv)

, andRm
1|Bv|>0

satis-
fies Limit Monotonicity.
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x Rm
|Bv| Rg

|Bv| Rp
|Bv| Rm

1|Bv|>0
Rg
1|Bv|>0

Rp
1|Bv|>0

Rm
c(Bv)

Rg
c(Bv)

Rp
c(Bv)

0

10

50

70

100

Table 3: Results of Experiment 2. Cheap items are on the left, expensive on the right.

Proof. Below we consider each of the three rules separately.
Rm

1|Bv|>0
: Consider a budgeting scenario E with items a,

b, and c, all of unit cost, and four voters: v1 : {a}; v2 :
{a, b}; v3 : {b, c}; v4 : {c}. Then, with budget limit 1 a
winning bundle might be {b}, while with budget limit 2 the
only winning bundle is {a, c}.
Rm

c(Bv)
: Consider a budgeting scenario E with items a, b, c,

and d, with costs 2, 3, 3, and 5, respectively, and one voter:
v1 : {a, b, c, d}. Then, with budget limit 6 the only winning
bundle is {b, c}, while with budget limit 7 the only winning
bundle is {a, d}.
Rm

|Bv|: Consider a budgeting scenario E with the same
items as above and five voters: v1 : {a, b, c, d}; v2 :
{a, b, c, d}; v3 : {b, c, d}; v4 : {d}; v5 : {d}. Then, with
budget limit 6 the only winning bundle is {b, c}, while with
budget limit 7 the only winning bundle is {a, d}.

Greedy and Proportional greedy rules also fail Limit
Monotonicity. Consider a budgeting scenario with items a, b,
and c, where a has the largest value according to the relevant
satisfaction function; thus, a is selected in the first iteration.
Set the cost of a so that, after selecting it, the remaining bud-
get limit is such that, for the original budget limit `, only b
can be selected, while for the budget limit ` + 1, also c can
be selected. Set the value of c to be higher than that of b.
Thus, b is selected in the first case and c in the second case.

Corollary 3. Rg
|Bv|,R

g
c(Bv)

,Rg
1|Bv|>0

,Rp
|Bv|,R

p
c(Bv)

, and
Rp
1|Bv|>0

, do not satisfy Limit Monotonicity.

As neither of our rules satisfies Limit Monotonicity, it is
natural to wonder if the axiom is truly useful. One argument
in its favor is that it would be surprising for voters to learn
that due to increasing the available funds their approved item

ceases to be funded. Thus if one uses a budgeting method
that fails Limit Monotonicity then one should make sure that
the budget is fixed ahead of voting and is neither increased
nor decreased later (as it leads to suspicion of manipulation).

A budgeting methodR satisfies Discount Monotonicity if
any funded item remains funded when its price decreases.
This is a very desirable property as failing it means that peo-
ple proposing new items for the participatory budget have to
think strategically about the item’s price, instead of trying to
minimize it.

Definition 4 (Discount Monotonicity). A budgeting method
R satisfies Discount Monotonicity if for each budgeting sce-
nario E = (A, V, c, `) and for each b ∈ R(E), it holds
that b ∈ R(E′) for E′ = (A, V, c′, `), where for each item
a ∈ A, we have that c′(a) = c(a) whenever a 6= b, and
c′(b) = c(b)− 1.

Proposition 5. Rm
|Bv|, R

m
1|Bv|>0

, Rg
|Bv|, R

g
1|Bv|>0

, Rp
|Bv|,

andRp
1|Bv|>0

, satisfy Discount Monotonicity, whileRm
c(Bv)

,
Rg

c(Bv)
, andRp

c(Bv)
fail it.

Proof sketch. Intuitively, for f = |Bv| and f = 1|Bv|>0,
decreasing the cost only increases the attractiveness of the
item, while for f = c(Bv), decreasing the cost makes the
item less attractive.

The next two axioms regard the robustness of a voting
rules with respect to the situation of a person proposing a
new item, provided that this new item has some internal
structure and can be presented either as a single one or as
several items (e.g., renovation of a school can either be a sin-
gle project, or several ones, including painting the interior,
painting the exterior, buying new furniture etc.). We consider
splitting and merging items.
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Table 4: Results of Experiment 3. The top, middle, and bot-
tom figure are for ` = 20, 30, and 50, respectively.

Definition 5 (Splitting Monotonicity). A budgeting method
R satisfies Splitting Monotonicity if for each budgeting sce-
nario E = (A, V, c, `), for each a ∈ R(E), and for each
budgeting scenario E′ which is formed by splitting a into
a set of items A′ with c(a) = c(A′), and such that the
voters which approve a in E approve all items of A′ in
E′ and no other voters approve items of A′, it holds that
R(E′) ∩A′ 6= ∅.
Remark 3. Note that in the above definition we assume that
if a voter approves an item, then this voter also approves
all the projects that result from splitting it. While in some
cases this is true (e.g., when the voters recognize that several
items form a larger project), in some others it would be false
(e.g., when voters decide that completing only a part of a
larger project is sufficient and remaining funds should be
used for other purposes). In practice we expect both types of
behavior to occur and it would be natural to study variants

of Splitting Monotonicity that take such more complicated
behaviors into account.

Proposition 6. Rm
|Bv|, R

m
1|Bv|>0

, Rg
|Bv|, R

g
1|Bv|>0

, Rp
|Bv|,

Rp
1|Bv|>0

,Rm
c(Bv)

, andRp
c(Bv)

, satisfy Splitting Monotonic-
ity, whileRg

c(Bv)
does not satisfy Splitting Monotonicity.

Proof sketch. Intuitively, Rg
c(Bv)

does not satisfy Splitting
Monotonicity as the new items’ value is less than the original
item’s value. For other rules, the new items’ value is at least
as the original item’s value, thus at least one is selected.

Definition 6 (Merging Monotonicity). A budgeting
method R satisfies Merging Monotonicity if for each
budgeting scenario E = (V,A, c, `), and for each
A′ ⊆ R(E) such that for each v ∈ V we either have
v ∩ A′ = ∅ or A′ ⊆ Av , it holds that a ∈ R(E′) for
E′ = (A \ A′ ∪ {a}, V ′, c′, `), c′(a) =

∑
a∈A′ c(a), and

each voter v ∈ V for which A′ ⊆ Av in E, approves a
in E′, and no other voter approves a.

Proposition 7. Rm
1|Bv|>0

, Rm
c(Bv)

, Rg
1|Bv|>0

, Rg
c(Bv)

, and
Rp

c(Bv)
, satisfy Merging Monotonicity, while Rp

1|Bv|>0
,

Rm
|Bv|,R

g
|Bv|, andRp

|Bv| fail it.

Proof sketch. Intuitively, for the satisfaction function
f(Av, B) = |Bv|, the value of the original items decreases
but the merged item is as expensive. For f(Av, B) = c(Bv),
the value of the merged item equals the total value of the
merged items. For f(Av, B) = 1|Bv|>0 the fact that all the
original items were funded means that the merged item still
satisfies the same voters.

As in the case of Discount Monotonicity, the main advan-
tage of rules satisfying Splitting and Merging Monotonicity
axioms is that it reduces the need for strategic thinking on
the part of the project proposers.

Experiments on Budgeting Methods
In this section we report on three experiments: Two experi-
ments generalize the technique of Elkind et al. (2017a), used
quite extensively for multiwinner elections (Faliszewski, Sz-
ufa, and Talmon 2018; Aziz et al. 2018; Faliszewski and Tal-
mon 2018), to the setting of approval-based budgeting sce-
narios. One experiment focuses on locality issues, assuming
certain projects are more relevant to certain voters and others
are relevant to all.

In each experiment we consider the 2-dimensional Eu-
clidean domain, where both voters and items correspond to
ideal points on a 2-dimensional plane; for clarity, we set this
2-dimensional plane to be of width 1 and height 1, where
(0, 0), (0, 1), (1, 0), and (1, 1), denote, respectively, the left-
bottom point, the left-top point, the right-bottom point, and
the right-top point. Concretely, each particular simulation
setting consists of: (1) a distribution of the ideal points of
the voters; (2) a distribution of the ideal points of the items;
(3) a distribution of the item costs; (4) a budget limit; and
(5) a threshold function which, based on the positions and
costs, creates approval sets for the voters.
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For the first two experiments, for each particular sim-
ulation setting we generate several corresponding budget-
ing scenarios by sampling from these distributions, compute
the winning bundle in each of them, and aggregate the re-
sults into a 2-dimensional histogram. These histograms are
formed by first partitioning the square from (0, 0) to (1, 1)
into bins (we use 50×50 bins). Then, we draw a pixel in each
of these bins, where the more funds spent on this bin, the
brighter the pixel is drawn. Specifically, denoting the total
funds used by y and the funds used in a certain bin by x, we
normalize these values using the formula arctan(x/0.0005∗y)

π/2 .

Experiment 1 and 2 (depicted in Table 2 and 3, resp.).
We describe Experiment 1 and 2 together, as they share a lot
in common. We have:

1. voters, positioned uniformly on a disc of radius 0.3, cen-
tered at position (0.5, 0.5); we have 50 such voters for
Experiment 1 and 100 for Experiment 2;

2. 50 cheap items, positioned uniformly on a disc of radius
0.2, centered at (0.3, 0.5), and 50 expensive items, po-
sitioned uniformly on a disc of radius 0.2, centered at
(0.7, 0.5);

3. the cheap items cost 10 each, while the expensive items
cost 100 each for Experiment 2, and for Experiment 1, we
use a parameter x for the cost of the expensive items (so
Table 2 shows histograms for various values of x);

4. the budget limit is 1000 for Experiment 1 and 200 for Ex-
periment 2;

5. for Experiment 1: Each voter approves the 10 items which
are the closest to her; for Experiment 2: The approval sets
of the voters are generated with respect to a parameter x,
as follows: for each cheap item, we identify the 5 vot-
ers which are the closest to it, and add the item to their
approval sets; for each expensive item, we identify the x
voters which are the closest to it, and add the item to their
approval sets.

Each histogram is an aggregation of 100 single elections.
Informally speaking, the approval sets in Experiment 1 are
generated “from the point-of-view of the voters”, while in
Experiment 2 they are generated “from the point-of-view of
the items”.

Experiment 3 focuses on the issue of global and local
items: Consider, e.g., a budgeting scenario with some city-
level projects and some neighborhood-level projects. Ide-
ally, we would want some mix of city-level projects and
neighborhood-level projects to be funded. While it is pos-
sible to achieve some mix artificially (e.g., requiring vot-
ers to select both city-level projects and neighborhood-level
projects), here we are interested in finding out the natural
mix that rules in our framework achieve.
Experiment 3 (depicted in Table 4). We have: (1) 20 vot-
ers, positioned uniformly on the whole 1 × 1 square; (2) 5
items, termed global items, which are also positioned uni-
formly on the square; and another 30 items, termed local
items, also positioned uniformly on the square; (3) each
global item and each local item costs 5; (4) we vary the bud-
get limit between 20 and 50; (5) the approval sets of the vot-
ers are populated with respect to a parameter p, as follows:

For each pair of a voter and a global item, we let the voter
approve the global item with some probability p. For each
pair of a voter and a local item, we let the voter approve the
local item if and only if their Euclidean distance is at most
0.2. In Table 4 each datapoint is averaged over 100 repeti-
tions and we consider the average funds spent on local items
as a function of the probability p of approving a global item.

Experimental Results
Next we discuss the results of our experiments, depicted in
Tables 2, 3, and 4.

In Table 2, and focusing on the Max rules, it is visi-
ble that Rm

c(Bv)
prefers expensive items the most, Rm

|Bv|
prefers expensive items the least, while Rm

1|Bv|>0
is some-

how in between. This can be seen specifically by notic-
ing that Rm

|Bv| ceases to select expensive items as soon as
x = 30, Rm

1|Bv|>0
ceases to select expensive items only

when x = 190, while Rm
c(Bv)

keeps on selecting expensive
items even when x = 190. Intuitively, this is so as expensive
items are useful for Rm

c(Bv)
and not useful for Rm

|Bv|; for
Rm
1|Bv|>0

, while the costs of the items are not useful, their
positions are, as the rule’s goal is to satisfy as many voters as
possible. The greedy rules are also somehow in between the
extremes, while, as expected, the proportional greedy rules
prefer cheaper items.

This general behavior is consistent with Experiment 2, as
can be seen in Table 3. Specifically, observe that Rm

c(Bv)

switches to funding only expensive items as soon as x = 10,
while Rm

|Bv| switches to funding only expensive items only
when x = 70; due to the positions of the expensive items,
and due to the fact that they cover different sets of voters,
Rm
1|Bv|>0

interleave cheap items with expensive items (ex-
cept for the corner cases of x = 0 and x = 100).

As for locality issues, the results depicted in Table 4 for
` = 20 demonstrate that Rm

c(Bv)
starts to consider global

items first, with Rm
|Bv| after it, and Rm

1|Bv|>0
being the last

to consider global items. As ` increases, Rm
c(Bv)

and Rm
|Bv|

select more local items whileRm
1|Bv|>0

is not affected.
One particularly interesting observation from our experi-

ments is that the greedy rule used by Goel (2015), Rg
|Bv| in

our language, behaves substantially differently from its Max
variant, Rm

|Bv|. This is quite visible in the first two columns
of Tables 2 and 3. The Max variant gives much more atten-
tion to the cheap items than the greedy one. Thus the choice
between these two rules—already made by many users of
Goel’s work—may have nonnegligible consequences.

Outlook
We have defined a framework for approval-based budget-
ing methods and studied nine rules within it, considered
their computational and axiomatic properties, and reported
on simulations to evaluate them experimentally. Our frame-
work, and the axiomatic properties we consider, can be used
to better evaluate known budgeting methods, as well as pro-
pose new budgeting methods, which might prove to have
better theoretical guarantees and better practical behavior.
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E.g., our results show that, while Rg
|Bv| is used extensively

in practice (see, e.g., Goel et al. 2015), it produces signifi-
cantly different results than the rule which it approximates,
namelyRm

|Bv|.
An immediate future research direction would be to study

more satisfaction functions and ways of using them, which
would correspond to more rules within our framework. Fur-
thermore, defining and studying more axiomatic properties
which are relevant to budgeting methods, as well as perform-
ing more extensive experimental analysis on various budget-
ing methods would help in better understanding these rules.

Another avenue for future research is to seek general re-
sults for rules in the framework, such as identifying classes
of rules within the framework which satisfy certain ax-
iomatic properties, and better understanding which budget-
ing methods reside within the framework and which do not.
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