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Abstract

We propose a new centrality measure, called the Random
Walk Decay centrality. While most centralities in the litera-
ture are based on the notion of shortest paths, this new cen-
trality measure stems from the random walk on the network.
We provide an axiomatic characterization and show that the
new centrality is closely related to PageRank. More in detail,
we show that replacing only one axiom, called Lack of Self-
Impact, with another one, called Edge Swap, results in the
new axiomatization of PageRank. Finally, we argue that Lack
of Self-Impact is desirable in various settings and explain why
violating Edge Swap may be beneficial and may contribute to
promoting diversity in the centrality measure.

Introduction
Centrality measures—methods for identifying the most im-
portant nodes in a network based solely on its topology—
have been extensively studied in the literature on graph the-
ory and network analysis for over 50 years (Newman 2010).
Fueled by the ever-growing availability of relational data, as
well as the access to unprecedented computational power,
centrality measures have become an essential part of every
network analysis toolkit over the past two decades (Free-
man 2008). These measures are increasingly being applied
in numerous subareas of computer science, including the
world-wide web (Page et al. 1999), viral marketing (Hinz
et al. 2011), and energy saving in communication net-
works (Bianzino et al. 2011), just to name a few.

Most standard centrality measures are based on the no-
tion of shortest paths (Freeman 1979). One of the most fun-
damental such measures is Closeness centrality, whereby
the importance of a node is determined based on the in-
verse of the sum of distances from all other nodes in
the graph (Sabidussi 1966). Since this centrality measure
is well-defined only for strongly connected graphs, Jack-
son (2008) proposed an alternative, named Decay centrality,
which works also for disconnected graphs.

These standard centrality measures are based on two sim-
plifying assumptions. Firstly, they assume that the nodes of
the network do not have any weights—an assumption that
does not always hold in practical applications. Secondly,
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they assume that information always travels in a network
through the fastest route(s)—an assumption that requires all
nodes to know the entire topology of the network, which is
rarely the case in real-world networks. In fact, whether one
is modeling the spread of gossip through a social group, the
propagation of viruses through a computer network, or the
way users surf the Internet, such processes tend to spread
more chaotically in practice, e.g., through somewhat random
paths as opposed to shortest paths (Lerman and Ghosh 2010;
Borgatti 2005; Huberman et al. 1998).

To address these limitations, a number of centrality mea-
sures have been developed based on random walks in the
graph. According to this approach, the source of informa-
tion is a node chosen randomly according to a given dis-
tribution of node weights, and the information then propa-
gates through the network by moving along random outgo-
ing edges (Lovász 1993). Perhaps the first and most influen-
tial such centrality measure is PageRank (Page et al. 1999).
Its success has lead to the development of random-walk ver-
sions of various centrality measures, such as Random Walk
Closeness centrality (White and Smyth 2003) and Random
Walk Betweenness centrality (Newman 2005).

Against this background, in this paper we propose a new
centrality measure, called Random Walk Decay, which is a
random-walk version of Decay centrality. To highlight the
similarities and differences between both centralities, we use
an axiomatic approach. Specifically, we show that Random
Walk Decay centrality and Decay centrality both satisfy five
basic properties (called axioms): Locality, Sink Merging, Di-
rected Leaf Proportionality, One-Node Graph and Lack of
Self-Impact. In addition to those five axioms, if the centrality
measure is based on shortest paths (i.e., satisfies the Short-
est Paths Property), we obtain Decay centrality; on the other
hand, if it is based on random walks (i.e., satisfies the Ran-
dom Walk Property), we obtain Random Walk Decay.

Furthermore, using the axiomatic approach, we compare
the Random Walk Decay centrality to PageRank. We show
that replacing only one axiom (Lack of Self-Impact) with
another one (Edge Swap) gives us a new axiomatization of
PageRank. The former axiom, Lack of Self-Impact, states
that “removing your own outgoing edges does not affect
your centrality”; thus, it corresponds to a certain strategy-
proof property satisfied by Random Walk Decay central-
ity. The latter axiom, Edge Swap, states that “if two nodes
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have the same centralities and the same number of outgo-
ing edges, then we can swap one of their edges without af-
fecting their centralities”; thus, violating this axiom allows
Random Walk Decay centrality to promote diversity of in-
coming edges. In result, we argue that Random Walk Decay
centrality has properties violated by PageRank which can be
found desirable in various setting.

Preliminaries
In this section, we introduce basic notations and definitions.

Graphs: In this paper, we consider directed multigraphs.1
A (multi)graph is an ordered pair, G = (V, E), where V is
the set of nodes and E v V × V is the multiset of directed
edges. We will use t and − to denote multiset union and
difference, respectively. For graph G, the sets of nodes and
edges are denoted by V(G) and E(G), respectively.

Furthermore, we associate with each node v a nonnegative
weight, denoted by β(v). For v ∈ V(G) by δv we denote the
particular vector of node weights β such that δv(v) = 1 and
δv(u) = 0 for every u ∈ V(G) \ {v}. The sum of weights of all
nodes in a graph G will be denoted by β(G).

An edge (u, v) is an outgoing edge for the node u and an
incoming edge for node v. If u = v, this edge is called a loop.
The multiset of outgoing edges for v is denoted by Γ+

G(v).
Analogously, the multiset of incoming edges for v is denoted
by Γ−G(v). Moreover, we define Γ±G(v) = Γ+

G(v) t Γ−G(v). A
node without outgoing edges is called a sink. A node without
incoming and outgoing edges is isolated.

A walk, p = (v1, . . . , vk) is an ordered sequence of nodes
such that (vi, vi+1) ∈ E for every i ∈ {1, . . . , k−1}. A (simple)
path is a walk in which all nodes (except possibly the first
and the last one) are distinct. A (simple) cycle is a path such
that v1 = vk. The length of a walk is the length of the se-
quence minus one. If there exists a walk that starts in u and
ends in v, then u is called a predecessor of node v. The set
of all predecessors of node v is denoted by PG(v).

A graph is strongly connected if there exists at least one
path between any two nodes. A graph is (weakly) connected
if there exists at least one path between any two nodes if we
treat it as an undirected graph.

The graph obtained from G with node weights β by merg-
ing node u with node v is denoted by Mu→v(G, β). Formally:

Mu→v(G, β) = (V(G) \ {u}, E(G) − Γ±G(u) t E′, β′),

where E′ =
⊔

(u,w)∈E(G){(v,w)} ∪
⊔

(w,u)∈E(G){(w, v)} and
β′(v) = β(v) + β(u), and β′(w) = β(w) for w ∈ V \ {u, v}.
Also, for graph G and multiset of edges E′, we define
G + E′ = (V(G), E(G)tE′) and G−E′ = (V(G), E(G)−E′).

We say that two graphs, G,G′, overlap on S if V(G) ∩
V(G′) = S . If V(G) ∩ V(G′) = ∅, then G and G′ do not
overlap, and are said to be disjoint. The sum of two graphs
along with their node weights is defined as:

(G, β) + (G′, β′) = ((V(G) ∪ V(G′), E(G) t E(G′)), β′′),

1Multigraphs can be interpreted as edge-weighted graphs where
weights of edges are natural numbers. The results of this paper eas-
ily translate to arbitrary edge-weighted graphs. However, for clarity
of presentation, we limit ourselves to multigraphs.

where β′′(v) = β(v)+β′(v) for v∈V(G)∩V(G′), β′′(v) = β(v)
for v ∈ V(G) \V(G′) and β′′(v) = β′(v) for v ∈ V(G′) \V(G).

Centrality measures: A centrality measure, F, is a function
that assigns to every node, v, in every graph, G, a real value
reflecting the importance of v in G.

Freeman (1979) in his seminal work identified three cen-
trality measures that capture different aspects of a node in
the graph. The most basic one, called the Degree central-
ity, assesses a node by the number of its edges. For directed
graphs, both In- and Out-Degree centralities are considered.
The other two centrality measures focus on the shortest
paths in the graph. Specifically, the Betweenness central-
ity evaluates a node, v, based on the proportion of shortest
paths (between any two other nodes) to which v belongs.
In contrast, the Closeness centrality, originally proposed by
Sabidussi (1966), identifies the nodes that are closest to all
other nodes, and that is by computing the inverse of the sum
of distances to other nodes in the graph:

Cv(G) =
1∑

u∈V(G)\{v} dist(u, v)
,

where dist(u, v) is the distance from u to v defined as the
length of a shortest path from u to v.

The Closeness centrality is well-defined only for strongly
connected graphs. To address this shortcoming, Jack-
son (2008) proposed an alternative, called Decay centrality:

Yv(G) =
∑

u∈V(G)\{v}

adist(u,v),

for a decay parameter a ∈ (0, 1). Here, if we treat a as the
probability of a successful move from one node to another
via an edge, then Decay centrality can be interpreted as the
expected number of nodes that can reach v via shortest paths.

Personalized centrality measures: Most standard central-
ity measures were proposed for graphs without weights of
nodes. However, they can usually be easily adapted to this
richer setting (Koschützki et al. 2005). In this context, we
define the personalized Decay centrality as follows:

Yv(G, β) =
∑

u∈V(G)

β(u) · adist(u,v). (1)

The personalized Decay centrality introduces two modifica-
tions to the original definition. Firstly, the contribution of a
node u to the centrality of v (i.e., adist(u,v)) is now multiplied
by the weight of u. Secondly, we now sum over all nodes
(
∑

u∈V ), rather than over all nodes other than v (
∑

u∈V\{v}). To
understand the rationale behind this latter modification, con-
sider an extreme scenario in which only a single node, say v,
has a positive weight. Here, if we sum over all nodes other
than v, then any node with a connection to v would have a
positive centrality, whereas v itself would have a centrality
equal to zero, as all nodes not connected to v—a rather un-
intuitive outcome in most interpretations of node weights.

An important personalized centrality measure is PageR-
ank (Page et al. 1999). This measure is defined by the fol-
lowing recursive formula:

PRv(G, β) = a ·

 ∑
(u,v)∈Γ−G(v)

PRu(G, β)
|Γ+

G(u)|

 + β(v), (2)
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for a parameter a ∈ (0, 1). Since we assume multiple
edges between two nodes, then node u may appear mul-
tiple times on the right-hand side of the equation. It has
been proven that, for a fixed a, this formula uniquely charac-
terizes a centrality measure (see, e.g., Bianchini, Gori, and
Scarselli 2005).

Random Walk Decay Centrality
In this paper, we propose a new centrality measure that is
based on the notion of a random walk on a graph. The ran-
dom walk is defined in the following way (Lovász 1993):
• at the beginning (at moment t = 0), we choose one node

according to the distribution of node weights;
• in the k-th step (at moment t = k, for k ≥ 1), while in

node u, we choose one of the outgoing edges of u, say
(u, v) ∈ Γ+

G(u), uniformly at random, and move along this
edge to node v.

Formally, the random walk is a sequence of random nodes
w = (w(0),w(1), . . . ) that is a Markov chain, defined through
its initial distribution, i.e.,

PG,β(w(0) = v) = β(v)/β(G),

and a transition matrix M = (pG(u, v))u,v∈V where the proba-
bility of moving from node u to node v, denoted by pG(u, v),
is the number of edges from u to v divided by the number of
all outgoing edges from u:

pG(u, v) = |{(u, v) ∈ Γ+
G(u)}|/|Γ+

G(u)|. (3)

To deal with the fact that sinks would break the infinite
walk, we assume that—besides the nodes of the graph—
there exists one additional “terminal” absorbing state e to
which we move from all sinks in the graph. Formally, we
have pG(u, e) = 1 if u is a sink, pG(u, e) = 0 otherwise, and
pG(e, e) = 1. In result, we can think of the random walk as
the set of all possible infinite walks on the graph, each asso-
ciated with its probability.
Example 1. Consider the random walk on the graph from
Figure 1. The random walk starts in node u or node w, be-
cause these are the only nodes with non-zero weights. From
node u, the walk moves to v with probability 2/3, and stays
in u with probability 1/3. From node w, the walk moves ei-
ther to v or to t, both with probability 1/2. From node v,
the walk always moves to w. Node t is a sink, so from t the
walk moves to the absorbing state e and loops therein. Con-
sequently, the probabilities of the different combinations of
the first four nodes in the walk are as follows:

1/54 (u, u, u, u, . . . ) 1/8 (w, v,w, v, . . . )
1/27 (u, u, u, v, . . . ) 1/8 (w, v,w, t, . . . )
1/9 (u, u, v,w, . . . ) 1/4 (w, t, e, e, . . . )
1/6 (u, v,w, v, . . . )
1/6 (u, v,w, t . . . )
Let us introduce some additional terminology. For node

v ∈ V(G), we will consider the probability that it will be
visited for the k-th time in moment t. We will call it k-th
visiting probability in moment t and denote it by VPv

G,β(t, k):

VPv
G,β(t, k) = PG,β(w(t) = v, |{s ≤ t : w(s) = v}| = k). (4)

u v w t e

Figure 1: A sample graph. The weight of every grey nodes
is 1, while the weight of every white node is 0.

Now, we say that a centrality measure is a random walk cen-
trality if it depends solely on the node’s visiting probabili-
ties.

Random Walk Property (RWP): For every two graphs
G, G′ with node weights β, β′ such that β(G) = β′(G′)
and node v ∈ V(G)∩V(G′), if VPv

G,β(t, k) = VPv
G′,β′ (t, k)

for every t, k ∈ N, then Fv(G, β) = Fv(G′, β′).

Example 2. Consider again the random walk on the graph
from Figure 1. Here, VPv

G,β(t, k) equals:
k \ t 0 1 2 3 4 5 6
1 0 7/12 1/9 1/27 1/81 1/243 1/729
2 0 0 0 7/24 1/18 1/54 1/162
3 0 0 0 0 0 7/48 1/36

In more detail, we clearly have VPv
G,β(t, k) = 0 if t < k.

Furthermore, VPv
G,β(1, 1) = 1/2 · 2/3 + 1/2 · 1/2 which

corresponds to walks (u, v, . . . ) and (w, v, . . . ). Additionally,
VPv

G,β(t, 1) = 1/2 · 1/3t−1 · 2/3 for t > 1 because we have
to start at u and loop for t − 1 times there in order to enter
node v for the first time at moment t > 1. Finally, we have
VPv

G,β(t, k) = 1/2 · VPv
G,β(t − 2, k − 1) for t, k > 1 because

we may only return back to v in two steps, which happens
with probability 1/2.

Random walk centrality measures evaluate the nodes in a
given graph by analyzing different properties of the random
walk. For instance, Random Walk Closeness centrality is de-
fined as the inverse of the expected time needed for the ran-
dom walk to reach a specific node for the first time (White
and Smyth 2003). Formally, for every graph G and every
node v ∈ V(G):

RWCv(G, β) = 1/

 ∞∑
t=0

t · VPv
G,β(t, 1)

 . (5)

The Random Walk Closeness centrality suffers for several
problems of its original—the Closeness centrality. In partic-
ular, if there exists a node with non-zero weight from which
v cannot be reached, then the centrality of v equals zero.

In this paper, we propose the following centrality mea-
sure, which is a translation of the Decay centrality (Jackson
2008) to the random walk model.

Definition 1. Random Walk Decay centrality is a centrality
measure defined for every graph, G, and every node, v ∈
V(G), as:

RWDv(G, β) = β(G) ·
∞∑

t=0

at · VPv
G,β(t, 1), (6)

for a decay parameter a ∈ (0, 1).
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Let us explain this formula. For node v and moment t,
VPv

G,β(t, 1) is the probability that node v will be reached by
the random walk at moment t for the first time. If we assume,
as in the interpretation of the Decay centrality, that each step
succeeds with probability a, then at ·VPv

G,β(t, 1) is the proba-
bility of reaching the node v successfully. This expression is
summed over all possible moments, t ≥ 0. Finally, the whole
expression is multiplied by β(G). This is because each node
u, is a starting point with probability β(u)/β(G). Thus, by
multiplying the sum by β(G), the random walk that starts
from node u is considered with the weight β(u), just as in
the personalized Decay centrality (Eq. (1)). To put it differ-
ently, the Random Walk Decay measures the probability of
reaching a node by the random walk assuming a constant
probability, (1 − a), of breaking the walk.
Example 3. Let us compute the Random Walk Decay cen-
trality for node v in the graph from Figure 1. Based on Ex-
ample 2 we get:

RWDv(G, β) = 2
(

7a
12

+
a2

9
+

a3

27
+ . . .

)
=

21a − 7a2 + 18
6(3 − a)

.

For a = 1/2 we get RWDv(G, β) = 214/105. Similar calcu-
lations show that RWDu(G, β) = 1/2, RWDw(G, β) = 3/5
and RWDt(G, β) = 3/10.

We end this section by discussing PageRank. Recall that
Page et al. (1999) proposed PageRank along with a ran-
dom walk interpretation named the random surfer model.
The Markov chain defined by the random surfer model dif-
fers from that of the random walk. More in details, in the
random surfer model, at each step the surfer stops mov-
ing along edges with some probability, and instead jumps
to a randomly selected node. Nevertheless, in the following
proposition we show that PageRank also satisfies the Ran-
dom Walk Property (RWP), i.e., it can be expressed in terms
of the (standard) random walk on a graph.
Proposition 1. PageRank is equal to

PRv(G, β) = β(G) ·
∞∑

t=0

at ·

∞∑
k=1

VPv
G,β(t, k)

 . (7)

In result, PageRank satisfies Random Walk Property (RWP).

Proof. It suffices to prove that the centrality measure defined
in (7) satisfies the recursive formula from (2). By consider-
ing the nodes from which the random walk can move to node
v, we get:
∞∑

k=1

VPv
G,β(t, k) =

∑
u∈V

∞∑
k=1

pG(u, v) ·VPu
G,β(t− 1, k), for t > 0,

and
∑∞

k=1 VPv
G,β(t, k) = β(v)/β(G) for t = 0. Combining it

with Eq. (7) leads to (2). �

Formula (7) is similar to the formula for the Random Walk
Decay. In a nutshell, the Random Walk Decay takes into
account only the first time the random walk visits a node,
while PageRank takes into account also further times. Thus,
PageRank measures the expected number of times a node is
reached by the random walk assuming a constant probabil-
ity, (1 − a), of breaking the walk.

Axiomatic Characterization
In this section, we axiomatically characterize our new cen-
trality measure—the Random Walk Decay centrality. The
characterization is built in a close relation to the Decay cen-
trality and PageRank.

We begin with axioms satisfied by all three centralities—
the Decay centrality, the Random Walk Decay centrality and
PageRank. Our first axiom, Locality, states that the centrality
of a node depends solely on nodes connected to it. To put it
differently, the centrality of a node does not change if we
add to the graph a second, disjoint graph.

Locality (LOC): For every two disjoint graphs G, G′,
node weights β, β′ and node v ∈ V(G)

Fv((G, β) + (G′, β′)) = Fv(G, β).

This basic axiom was proposed for graphs without weights
by Skibski et al. (2016).

Our second axiom is called Sink Merging. It states that
if we merge two nodes without outgoing edges, i.e., sinks,
without joint predecessors, then the centrality of the result-
ing node will be the sum of the centralities of both sinks;
moreover, the centralities of other nodes will not change.

Sink Merging (SM): For every graph G, node weights
β and sinks u, v ∈ V(G) such that PG(v) ∩ PG(u) = ∅

Fv(Mu→v(G, β)) = Fu(G, β) + Fv(G, β),

and Fw(Mu→v(G, β))= Fw(G, β) for any w∈V(G)\{u, v}.
This axiom is a much weaker version of Merging, proposed
for PageRank by Wąs and Skibski (2018), that considered
merging arbitrary nodes, possibly with outgoing edges.

The third axiom is Directed Leaf Proportionality, which
requires that, if we add an edge from a sink u to an isolated
node v, then the gain in the centrality of v is proportional to
the centrality of u.

Directed Leaf Proportionality (DLP): There exists a
constant, a > 0, such that for every graph G, node
weights β, sink u ∈ V(G) and isolated node v ∈ V(G):

Fv(G + {(u, v)}, β) − Fv(G, β) = a · Fu(G, β).

This axiom is a directed and weighted version of Leaf Pro-
portionality, proposed by Skibski and Sosnowska (2018).

Our fourth axiom, One-Node Graph, is a simple normal-
ization property: if there is only one node in the graph and
its weight equals 1, then its centrality also equals 1.

One-Node Graph (1-NG): For every node v

Fv(({v}, ∅), δv) = 1.

We note that without 1-NG, the remaining axioms implies
that centrality measure is unique up to a scalar multiplica-
tion.

Now, let us introduce the next axiom, Lack of Self-Impact,
which is one of two axioms that distinguishes the Random
Walk Decay centrality and PageRank. This axiom states that
the centrality of a node does not depend on its outgoing
edges. In the next section, we show that this axiom can be
considered as a strategy-proofness condition if nodes were
to choose their own outgoing edges.
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Lack of Self-Impact (LSI): For every graph G, node
weights β and (v, u) ∈ E(G)

Fv(G, β) = Fv(G − {(v, u)}, β).

In the following theorem, we show that the Random Walk
Decay centrality is the only centrality measure that satis-
fies the Random Walk Property and the above five axioms:
Locality, Sink Merging, Directed Leaf Proportionality, One-
Node Graph and Lack of Self-Impact.
Theorem 2. The Random Walk Decay centrality is the
unique centrality measure that satisfies LOC, SM, DLP, 1-
NG, LSI and RWP.

Proof (Sketch). Due to space restrictions, we present only
the sketches of the proofs in the paper.

The main idea of the proof relies on the class of broken
cactus graphs. A graph G is called a (directed) cactus if it
is strongly connected and each edge is part of exactly one
cycle (Palbom 2005). A graph G is called a broken cactus if
there exist two nodes, s, t, called start and end nodes, such
that t is a sink and Mt→s(G, β) is a cactus graph.

Assume that a centrality measure F satisfies LOC, SM,
DLP, 1-NG, LSI and RWP. We begin our proof by showing
that if the graph is a broken cactus such that only its start has
non-zero weight, then the centrality F of its end equals the
Random Walk Decay centrality (up to scalar multiplication).

Claim 1: If centrality measure F satisfies LOC, SM,
DLP and RWP, then there exists α ≥ 0 such that for
every broken cactus G that begins in s and ends in t it
holds that Ft(G, δs) = αRWDt(G, δs).

This claim is proved by observing that every broken cactus
can be obtained from a path by adding cactus graphs that
overlap with the path on a single node.

Next, we show that for every sink we can construct a col-
lection of broken cactus graphs such that the weighted sum
of visiting probabilities of the ends of these graphs equals
the visiting probability of a sink in the original graph.

Claim 2: For every graph G, node weights β and sink
v ∈ V(G), there exists a collection of broken cactus
graphs G1, . . . ,Gn, that start in s1, . . . , sn, respectively,
end in v and pairwise overlap on {v} such that

VPv
G,β(t, k) =

n∑
i=1

ci · VPv
Gi,δsi

(t, k)

for some constants c1, . . . , cn ≥ 0, for every t ≥ 0 and
k ≥ 1.

We prove this claim by induction on the number of incom-
ing edges of nodes that are not sinks and considering graphs
with only one node having a non-zero weight.

Note that Claim 2 is a general property of the random
walk and visiting probabilities, and does not depend on the
axiom nor the centrality measure definitions. However, by
combining it with RWP we get that the centrality of a sink
can be determined from the centralities of the ends of bro-
ken cactus graphs. Hence, Claim 1 and Claim 2 imply that
the centrality of a sink is equal to the Random Walk Decay
centrality (up to scalar multiplication).

Claim 3: If a centrality measure F satisfies LOC, SM,
DLP and RWP, then there exists α ≥ 0 such that for
every graph G, node weights β and sink v ∈ V(G) it
holds that Fv(G, β) = αRWDv(G, β).

Now, consider an arbitrary graph, G, and a node, v ∈ V(G).
From LSI we know that the centrality of node v in graph
G is the same as in the graph G − Γ+

G(v) obtained by re-
moving all outgoing edges of v. In the latter graph, node v
is a sink, hence from Claim 3 and LSI we know that there
exists a constant α such that Fv(G, β) = Fv(G − Γ+

G(v)) =
αRWDv(G, β). Finally, 1-NG implies that α = 1; this con-
cludes the proof of Theorem 2. �

The personalized Decay centrality based on the shortest
paths also satisfies the five axioms stated above—LOC, SM,
DLP, 1-NG and LSI—but violates the Random Walk Prop-
erty. To obtain a unique axiomatic characterization, we in-
troduce the Shortest Paths Property—an axiom that captures
the fact that the centrality is based on distance, i.e., shortest
paths, from other nodes in the graph. Our axiom is a direct
translation of the definition of the class of distance based
centralities by Skibski and Sosnowska (2018) to weighted
and directed graphs.

Shortest Paths Property (SPP): For every two graphs
G, G′, node weights β, β′ such that β(G) = β′(G′) and
node v ∈ V(G) ∩ V(G′), if

|{u ∈ V(G) : dist(u, v) = k, β(u) = α}|

= |{u ∈ V(G′) : dist(u, v) = k, β′(u) = α}|,

for every k ∈ N and α ∈ R, then Fv(G, β) = Fv(G′, β′).

The following theorem shows that replacing the Random
Walk Property with the Shortest Paths Property in the ax-
iomatization of the Random Walk Decay centrality results
in an axiomatization of the personalized Decay centrality. It
is easy to observe that Lack of Self-Impact is implied by the
Shortest Paths Property, so we omit the former axiom from
the axiomatic characterization.

Theorem 3. The personalised Decay centrality is the unique
centrality measure that satisfies LOC, SM, DLP, 1-NG and
SPP.

Proof (Sketch). We will use induction on the number of
edges in graph G. Based on LOC, it suffices to consider only
connected graphs—if graph is not connected, then the cen-
trality of every node is the same as in a connected graph with
the same or less number of edges.

If a connected graph, G, has no edges, then it must have
only one node, and from 1-NG, LOC and SM it can be
shown that Fv(G, β) = β(v) = Yv(G, β). Now assume that
G has at least one edge and for every graph G′ with less
edges it holds that Fv(G′, β) = Yv(G′, β) for every v ∈ V(G′)
and weights β. Fix node v ∈ V(G). We will show that the
centrality of v in G can be computed based on centralities in
graphs with a smaller number of edges; hence it is unique.

First, observe that if there exists a node, u, with more
than one outgoing edge, then at least one of these edges, say
(u,w), can be removed without changing the distance from u
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LOC SM DLP 1-NG SPP RWP LSI ES
Decay + + + + + – + –
RW-Decay + + + + – + + –
PageRank + + + + – + – +

Table 1: Summary of our axiomatic characterizations. The
plus sign (+) indicates that the centrality measure satisfies
the axiom, whereas the minus sign (-) indicates that the cen-
trality measure violates it.

to v; hence, from SSP we get Fv(G, β) = Fv(G − {(u,w)}, β).
Analogously, if v has any outgoing edge, (v,w), then from
SSP deleting it does not affect the centrality of v and we get:
Fv(G, β) = Fv(G − {(v,w)}, β).

It remains to consider a connected graph in which (1) ev-
ery node has at most one outgoing edge; (2) v is a sink. Since
G is connected, v must have at least one incoming edge. We
consider two cases separately:

• If v has exactly one incoming edge, (u, v), then from LOC,
DLP and the fact that u is a sink in graph G − {(u, v)} we
get that Fv(G, β) = a · Fu(G − {(u, v)}, β) + β(v).

• If v has at least k ≥ 2 incoming edges, then—since every
node has at most one outgoing edge—these edges must be
incident to k different nodes. In such a case, graph G can
be decomposed into k graphs, (G1, β1), . . . , (Gk, βk), that
overlap only on node v, each with exactly one incoming
edge to v. These graphs have fewer edges than G, and in
all these graphs, v is a sink. Thus, using SM we get that
Fv(G, β) = Fv(G1, β1) + · · · + Fv(Gk, βk).

This concludes the proof of Theorem 3. �

Finally, let us introduce our last axiom, called Edge Swap.
This axiom states that if two nodes, u, v, have the same cen-
trality and the same number of outgoing edges, then their
edges are interchangeable. More specifically, if we replace
edges (u, u′) and (v, v′) with edges (u, v′) and (v, u′), then the
centralities of all nodes will not change. As we will discuss
in the next section, this axiom forbids the centrality from
promoting the diversity of incoming edges.

Edge Swap (ES): For every graph G node weight β and
nodes u, v ∈ V(G) such that Fu(G, β) = Fv(G, β) and
|Γ+

G(u)| = |Γ+
G(v)|, if (u, u′), (v, v′) ∈ E(G), then the fol-

lowing holds for every w ∈ V(G):

Fw(G − {(u, u′), (v, v′)} + {(u, v′), (v, u′)}, β) = Fw(G, β).

The following theorem states that replacing Lack of Self-
Impact with Edge Swap in the axiomatization of the Ran-
dom Walk Decay centrality results in an axiomatization of
PageRank.

Theorem 4. PageRank is the unique centrality measure that
satisfies LOC, SM, DLP, 1-NG, ES and RWP.

Proof (Sketch). We use induction on the number of cycles
in G. If there are no cycles in G, then the random walk vis-
its each node once. Hence, from RWP, the centrality of any
node, v, is the same as in the graph without outgoing edges
of v and the thesis follows from Claim 3 from the proof of

Theorem 2 and the fact that for every sink the Random Walk
Decay centrality and PageRank are equal.

Now, consider an arbitrary graph G with k cycles and node
weights β. Fix v ∈ V(G) that belongs to some cycle. Let
us construct a new graph G′ = ({v′,w}, {(v′,w), . . . , (v′,w)}),
disjoint with G, where β(v′) = Fv(G) and |E(G′)| = |Γ+

G(v)|.
From LOC we know that Fu(G) = Fu(G + G′) for every u ∈
V(G). Moreover, it can be shown from 1-NG, LOC and SM
that Fv′ (G′) = β(v′) = Fv(G). Thus, nodes v and v′ have the
same centralities in G+G′ and the same number of outgoing
edges. Now, from ES replacing all outgoing edges of v with
all outgoing edges of v′ does not affect the centralities in the
graph. Observe that this operation breaks the cycles that v
belongs to in G. Hence, the obtained graph has less cycles
than G and the thesis follows from the inductive assumption.

�

Table 1 summarizes our axiomatic results. Since SPP im-
plies LSI, based on Theorem 3 we know that there exists no
centrality that satisfies LOC, SM, DLP, 1-NG, SPP and ES.

Comparison with PageRank
Our axiomatic characterizations highlight two differences
between the Random Walk Decay centrality and PageRank.
In this section, we focus on these two differences and show
how they affect the behaviour of these centrality measures.

Strategy-proofness (with respect to outgoing edges)
In many settings, outgoing edges are subject to the node’s
decision or manipulations. Examples include the Twitter so-
cial network (where outgoing edges represent the accounts
that are followed by a user) and the World Wide Web (where
outgoing edges represent the links to other websites). Con-
sequently, Lack of Self-Impact can be considered a property
of strategy-proofness for centrality measures—if outgoing
edges do not affect the centrality of a node, then the node
has no incentive to manipulate its outgoing connections.

Interestingly, PageRank does not satisfy Lack of Self-
Impact. In the following example we show how, by adding
outgoing edges, a node can increase its centrality and posi-
tion in the ranking according to PageRank, but not according
to the Random Walk Decay centrality.

Example 4. Consider graph G from Figure 2. Graph G
consists of two 4-cycles, (u1, u2, u3, u4, u1), (v1, v2, v3, v4, v1).
The two cycles are connected via 3 edges: (v4, u4), (u3, v3),
and (u2, v2). Due to the edges connecting both cycles, the
nodes v2, v3, and v4 are visited more often (and earlier) by
the random walk, and are thus ranked first by both PageRank
and the Random Walk Decay centrality. Node u1, that will be
of our interest, is ranked 5th according to both measures.

Figure 2 also depicts G′, which is obtained from G by
adding the edge (u1, u4). Since this is an outgoing edge for
u1, adding it does not affect the Random Walk Decay cen-
trality of u1. In contrast, this edge has a significant impact
on PageRank of u1. The reason lies in the fact that the ran-
dom walk will now visit u1 much more often—whenever the
random walk reaches node u1, with probability 1/2 it will go
back to u4 from which the only outgoing edge goes to u1. In
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Figure 2: Two graphs considered in Example 4, namely G =
(V, E) and G′ = (V, E′) with unit weights: β(v) = 1 for every
v ∈ V . Graph G′ is obtained from graph G by adding (u1, u4).

result, both u1 and u4 top the ranking according to PageR-
ank. The centralities of all nodes for a = 0.8 are as follows:

node v PRv(G, β) PRv(G′, β) RWDv(G, β) RWDv(G′, β)
v3 6.82 (1st) 6.08 (3rd) 4.67 (1st) 4.36 (1st)
v4 6.45 (2nd) 5.86 (4th) 4.43 (2nd) 4.21 (2nd)
v2 5.80 (3rd) 5.13 (5th) 4.13 (3rd) 3.77 (4th)
u2 4.84 (4th) 3.62 3.75 (4th) 3.02
u1 4.81 (5th) 6.56 (2nd) 3.72 (5th) 3.72 (5th)
u4 4.76 6.95 (1st) 3.68 3.94 (3rd)
v1 3.58 3.35 2.76 2.60
u3 2.94 2.45 2.48 2.17

In Example 4, a node improved its PageRank by adding
an edge to its direct predecessor. In the next section, we will
discuss how incoming edges affect both centrality measures.

Diversity (of incoming edges)
One of the characteristic properties of PageRank is its recur-
sive formula (see (2)), which states that PageRank of a node
depends solely on PageRank of its direct predecessors (or,
more precisely, nodes incident to its incoming edges). Intu-
itively speaking, PageRank of a node does not depend on
the position in the network of its predecessors, but only on
their centrality. In our axiomatic characterization, this prop-
erty is captured by Edge Swap, which implies that an incom-
ing edge from a node with the lowest centrality in a densely
connected part of the graph could be as profitable as an in-
coming edge from a node with the highest centrality in a
different, less densely connected part.

The Random Walk Decay centrality does not satisfy Edge
Swap. In fact, the node can achieve higher centrality if it
has incoming edges from a diverse set of nodes, i.e., com-
ing from different parts of the network. We demonstrate this
point with the following example.

Example 5. Consider graph G from Figure 3. This graph
consists of three more densely connected parts, so called
communities: {u1, u2, u3}, {v1, v2, v3} and {w1,w2,w3,w4}.
These communities are connected through nodes u1, v1,w1
which form a 3-clique. Since w1 belongs to the biggest
community, both its Random Walk Decay centrality and its
PageRank are the highest. The nodes u1 and v1 have the sec-
ond highest values, with symmetrical positions in the graph.

Figure 3 also depicts the graph G′, which is obtained from
G by rewiring the two highlighted (red) edges. Specifically,
the edges (u2, u1) and (v2, v1) are replaced by (u2, v1) and

u3

u2

u1 w1

w2 w4

w3

v1 v3

v2

G

u3

u2

u1 w1

w2 w4

w3

v1 v3

v2

G′

Figure 3: Two graphs considered in Example 5, namely
G = (V, E) and G′ = (V, E′) with unit weights: β(v) = 1 for
every v ∈ V . Graph G′ is obtained from graph G by replacing
edges (u2, u1) and (v2, v1) with edges (u2, v1) and (v2, u1).

(v2, u1); in result, the two new edges connect two commu-
nities. Since u2 and v2 both have two edges and clearly the
same centralities in graph G, from Edge Swap we know that
PageRank of every node in G′ is the same as in G. In con-
trast, the centralities of both nodes u1 and v1 increase ac-
cording to the Random Walk Decay centrality. This is be-
cause, according to this centrality, an edge from a different
community is more profitable than an edge from your own
community. In our example, the random walk that starts from
nodes v2 and v3 reaches node u1 faster in graph G′; the same
holds for node v1. In result, in G′, the Random Walk Decay
centralities of u1 and v1 are higher than the Random Walk
Decay centrality of node w1. The centralities of all nodes for
a = 0.8 are:

node v PRv(G, β) PRv(G′, β) RWDv(G, β) RWDv(G′, β)
w1 7.15 (1st) 7.15 (1st) 4.40 (1st) 4.40 (3rd)
u1 7.06 (2nd) 7.06 (2nd) 4.15 (2nd) 4.46 (1st)
v1 7.06 (2nd) 7.06 (2nd) 4.15 (2nd) 4.46 (1st)
w3 4.33 (4th) 4.33 (4th) 2.62 2.62

w2,w4 4.16 (5th) 4.16 (5th) 2.74 (4th) 2.74
u2, v2 4.02 4.02 2.56 2.85 (4th)
u3, v3 4.02 4.02 2.56 2.70

Example 5 shows that the Random Walk Decay cen-
trality increases when incoming edges become more di-
verse. As such, it avoids putting at the top of the rank-
ing several nodes from the same community, which of-
ten happens in PageRank (Avrachenkov and Litvak 2006;
Zhirov, Zhirov, and Shepelyansky 2010).

Related Work
Our paper belongs to a line of papers that study the ax-
iomatic properties of centrality measures (Boldi and Vigna
2014; Bloch, Jackson, and Tebaldi 2016; Skibski, Michalak,
and Rahwan 2018). In particular, our axiomatization of the
Decay centrality relies on a recent axiomatization for undi-
rected graphs proposed by Skibski and Sosnowska (2018).

To date, the only axiomatized centrality measure based
on the random walk was PageRank. Palacios-Huerta and
Volij (2004) proposed an axiomatization of the simplified
version of PageRank. Altman and Tennenholtz (2005) also
focused on a simplified version of PageRank, but axioma-
tized the ranking, rather than the numerical values. Recently,
Wąs and Skibski (2018) proposed the first axiomatization of
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PageRank in its general form. Our new axiomatization sig-
nificantly differs from all of these axiomatizations.

Conclusions
In this paper, we proposed Random Walk Decay centrality—
a new centrality measure based on the random walk. We pro-
vided an axiomatic characterization using six axioms, and
proved that replacing only one property leads to an axiomati-
zation of the Decay centrality. Furthermore, we showed that
Random Walk Decay works similarly to PageRank, but has
certain properties that can be more desirable in various set-
tings. In our future work, we plan to perform a comparative
experimental analysis of Random Walk Decay and PageR-
ank using real-world networks.
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