
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Distributionally Adversarial Attack

Tianhang Zheng,1 Changyou Chen,1 Kui Ren1,2

1State University of New York at Buffalo
2Zhejiang University

{tzheng4, changyou, kuiren}@buffalo.edu

Abstract

Recent work on adversarial attack has shown that Projected
Gradient Descent (PGD) Adversary is a universal first-order
adversary, and the classifier adversarially trained by PGD is
robust against a wide range of first-order attacks. It is worth
noting that the original objective of an attack/defense model
relies on a data distribution p(x), typically in the form of risk
maximization/minimization, e.g., max/minEp(x)L(x) with
p(x) some unknown data distribution and L(·) a loss func-
tion. However, since PGD generates attack samples indepen-
dently for each data sample based onL(·), the procedure does
not necessarily lead to good generalization in terms of risk
optimization. In this paper, we achieve the goal by propos-
ing distributionally adversarial attack (DAA), a framework to
solve an optimal adversarial-data distribution, a perturbed
distribution that satisfies the L∞ constraint but deviates from
the original data distribution to increase the generalization
risk maximally. Algorithmically, DAA performs optimization
on the space of potential data distributions, which introduces
direct dependency between all data points when generating
adversarial samples. DAA is evaluated by attacking state-
of-the-art defense models, including the adversarially-trained
models provided by MIT MadryLab. Notably, DAA ranks the
first place on MadryLab’s white-box leaderboards, reducing
the accuracy of their secret MNIST model to 88.56% (with
l∞ perturbations of ε = 0.3) and the accuracy of their secret
CIFAR model to 44.71% (with l∞ perturbations of ε = 8.0).
Code for the experiments is released on https://github.com/
tianzheng4/Distributionally-Adversarial-Attack.

Introduction
Recent years have witnessed widespread use of deep neu-
ral networks (DNNs), achieving remarkable performance on
different machine-learning tasks, such as object detection
and recognition (Krizhevsky, Sutskever, and Hinton 2012),
strategy optimization (Silver et al. 2016), and natural lan-
guage processing (Cho et al. 2014). At the same time, DNNs
also have been proved to be vulnerable to adversarial sam-
ples – data that are indistinguishable from natural samples
by human but endow additional maliciously-embedded per-
turbations. Those maliciously perturbed samples can cause
DNNs to make predictions different from the ground truth
with high confidence. Various first-order algorithms have

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

been proposed to generate adversarial samples, such as Fast
Gradient Sign Method (FGSM) (Szegedy et al. 2013), Pro-
jected Gradient Descent (PGD) (Kurakin, Goodfellow, and
Bengio 2016b), and Carlini & Wagner Attacks (CW) (Car-
lini and Wagner 2017).

Among all those first-order attacks, Madry et al. (2017)
suggest that PGD is a universal attack algorithm, and the
classifier adversarially trained by PGD is robust against
a wide range of first-order attacks. Carlini et al. (2017)
strengthen the hypothesis by demonstrating that PGD-
adversarial training provably succeeds at increasing the dis-
tortion required to construct adversarial examples by a fac-
tor of 4.2. Moreover, among all the white-box defenses that
appeared in ICLR-2018 and CVPR-2018, PGD-adversarial
training is the only empirical defense that has not been fur-
ther attacked (Athalye, Carlini, and Wagner 2018; Athalye
and Carlini 2018).

Despite the success of PGD, one notable limitation is
that the adversarial samples are not globally optimal, in the
sense that adversarial samples are generated independently
for each data sample. From a machine-learning perspective,
this lacks a statistical interpretation in terms of risk maxi-
mization, i.e., PGD is not a training procedure, thus the un-
derlying optimization problem is not mathematically clear.
In this paper, we provide a distribution-optimization view of
PGD, and propose distributionally adversarial attack (DAA),
a new concept of adversarial attack that is performed on
the space of probability measures (e.g., unknown data dis-
tributions). In DAA, the problem is formulated as optimiz-
ing an adversarial data distribution (from which adversarial
samples are drawn from) such that the generalization risk
increases maximumly. This generalizes PGD by lifting the
optimization onto the space of probability measures, and
can be interpreted as Wasserstein gradient flows (WGFs),
a framework for distribution optimization which always de-
creases an “energy functional” over time. The energy func-
tional reflexes the data manifold in adversarial attack, and is
designed in correspondence with the original objective of a
DNN. When using testing data to approximate the unknown
data manifold, DAA leads to a variant of the standard PGD
where all adversarial samples are explicitly dependent.

DAA is extensively evaluated on four datasets, including
MNIST, Fashion MNIST (FMNIST), CIFAR10, and Ima-
genet, by attacking their state-of-the-art defense models. We

2253

show that a single run of DAA with 0.3/1.0 l∞ perturba-
tions can reduce the accuracy of MadryLab’s MNIST model
(Madry et al. 2017) to approximately 90.5%, outperform-
ing a single run of PGD that reduces the accuracy to ap-
proximately 92.5%. Furthermore, a single run of DAA with
0.2/1.0 l∞ perturbations reduces the accuracy of our adver-
sarially trained FMNIST model to 67.6%, outperforming a
single run of PGD that reduces the accuracy to 71.5%. Sim-
ilarly, a single run of DAA reduces the accuracy of Madry-
Lab’s CIFAR10 model to 44.98% (8/255 l∞ perturbations)
and the accuracy of the ensemble adversarial trained Ima-
genet model (Kurakin, Goodfellow, and Bengio 2016b) to
16.43% (only 2/255 l∞ perturbations). For DAA with 50
random restarts, it reduces the accuracy of MadryLab’s pub-
lic and secret MNIST model to 88.7% and 88.56%, respec-
tively; whereas DAA with 10 random restarts reduces the
accuracy of MadryLab’s secret CIFAR10 model to 44.71%.
Both settings outperform other attack algorithms listed in
MIT MadryLab’s white-box leaderboards.1

Preliminaries
We introduce necessary background in this section, in-
cluding Wasserstein gradient flows and adversarial at-
tack/defense methods.

Wasserstein Gradient Flows
Wasserstein Metric Space Wasserstein metric is a dis-
tance metric defined between probability measures (distribu-
tions) on the Wasserstein metric space. Formally, let P2(Ω)
denote the collection of all probability measures on Ω ⊂ Rr
with finite 2nd moment. The 2nd-order Wasserstein distance
between two probability measures in P2(Ω) is defined as:

W 2
2 (µ, ν) , inf

γ
{
∫

Ω×Ω

||x−x′ ||22dγ(x,x′) : (1)

γ ∈ Ω(µ, ν)},

where Γ(µ, ν) denotes the collection of all joint probability
measures on Ω×Ω with two marginals equal to µ and ν. One
way to understand the motivation of the above definition is
to consider the optimal transport problem, where one wants
to transform elements in the domain of µ to ν with minimum
cost. The cost to transport x in µ to x′ in ν is quantified by
||x−x′ ||22. If µ is absolutely continuous w.r.t. the Lebesgue
measure, there exists a unique optimal transport plan, i.e., a
mapping T : Rr → Rr, to transform elements in µ to ele-
ments in ν. The Wasserstein distance can be equivalently re-
formulated as: W 2

2 (µ, ν) , infT {
∫

Ω
||x−T (x)||22dµ(x)}.

Wasserstein Gradient Flows The 2nd-order Wasserstein
metric endows P2(Ω) with a Riemannian geometry. Let
{µt}t∈[0,1] be an absolutely continuous curve on this ge-
ometry, with change between µt and µt+h measured by
W 2(µt, µt+h). The change can be reflected by a vector field:
vt(x) , limh→0

T (x)−x
h . This vector field is regarded as the

1https://github.com/MadryLab/mnist challenge; https://github.
com/MadryLab/cifar10 challenge

velocity field of the elements x. Based on the above descrip-
tion, a gradient flow can be defined on P2(Ω) in Lemma 1.
Lemma 1 Let {µt}t∈[0,1] be an absolutely continuous
curve in P2(Ω). Then for a.e. t ∈ [0, 1], the above vector
field vt defines a gradient flow on P2(Ω) as: ∂tµt + ∇ ·
(vtµt) = 0.
Actually, the velocity field v can be derived for optimiza-
tion on an energy functional E : P2(Ω)→ R. In this case, it
can be shown that vt has the form vt = −∇ δE

δµt
(Ambrosio,

Gigli, and Savaré 2008), where δE
δµt

is called the first vari-
ation of E at µt. Thus the gradient flow on P2(Ω) can be
rewritten as:

∂tµt = −∇ · (vtµt) = ∇ · (µt∇
δE

δµt
) (2)

Adversarial Sample
Definition and Notation In this paper, we only study ad-
versarial samples on neural networks used for classifica-
tion, with final layers as softmax activation functions. We
represent such a network as a vector function {Fi(x)}i.
Given an input x, the network predicts its label as ỹ =
argi maxFi(x). A sample x′ is called an adversarial sam-
ple if argi maxF (x′) 6= y, where y is the true label and x′

is close to the original x under a certain distance metric.

Fast Gradient Sign Method (FGSM) Fast Gradient Sign
Method (FGSM) is a single-step adversarial attack proposed
by Szegedy et al. (2013). FGSM performs a single step up-
date on the original sample x along the direction of the gra-
dient of a loss function L(x, y;θ). The loss function is usu-
ally defined as the cross-entropy between the output of a
network and the true label y. Formally, FGSM adversarial
samples are generated as

x′ = clip[0,1]{x+ε · sign(∇xL(x, y;θ)} , (3)

where ε controls the maximum l∞ perturbation of the ad-
versarial samples, and the clip[a,b](x) function forces x to
reside in the range of [a, b].

Projected Gradient Descent (PGD) Projected Gradient
Descent (PGD) is an iterative variant of FGSM. In each iter-
ation, PGD follows the update rule:

x′l+1 = IIclip{FGSM(x′l)} , (4)

where FGSM(x′l) represents an FSGM update of x′l as in
(3), and the outer clip function IIclip keeps x′l+1 within a pre-
defined perturbation range. PGD can also be interpreted as
an iterative algorithm to solve the following problem:

max
x′:||x′−x ||∞<α

L(x′, y;θ). (5)

Madry et al. (2017) observe that the local maxima of the
cross-entropy loss found by PGD with 105 random starts
are distinctive, but all have similar loss values, for both
normally- and adversarially-trained networks. Inspired by
this concentration phenomena, they propose that PGD is
a universal adversary among all the first-order adversaries,
i.e., attacks only rely on first-order information.

2254

Momentum-based Iterative Fast Gradient Sign Method
(MI-FGSM) MI-FGSM is derived from the Iterative
FGSM (Kurakin, Goodfellow, and Bengio 2016a), which in-
tegrates the momentum term into an iterative process to gen-
erate adversarial samples (Dong et al. 2018). Given g0 = 0

and gl+1 = µ · gl +
∇xL(x′

l,y;θ)
||∇xL(x′

l,y;θ)||1 , the iterative version of
MI-FGSM can be expressed as:

x′l+1 = x′l +ε · sign(gl+1). (6)

Based on MI-FGSM, we further derive its PGD variant,
called Momentum PGD, with iterative updates

x′l+1 = x′l + · IIclip{ε · sign(gl+1)}. (7)

Remark 2 Momentum PGD is a stronger attack than MI-
FGSM, since it can proceed for more steps with an appro-
priate step size ε (ε can not be too small, otherwise the ad-
versarial samples are very likely to get trapped in bad lo-
cal maxima). The clip function IIclip ensures the adversarial
samples to have the predefined perturbation size after the
extra iterations.

Adversarial Training
Definition and Notation Adversarial training is a defense
method against adversarial samples first proposed by Good-
fellow, Shlens, and Szegedy (2014). The approach attempts
to improve the robustness of a network by training it to-
gether with adversarial samples. Formally, adversarial train-
ing solves the following min-max problem:

min
θ

max
x′:D(x,x′)<α

L(x′, y;θ) , (8)

where D(x,x′) represents certain distance metric between
x and x′. The inner maximization problem is equivalent to
constructing the strongest adversarial samples. If l∞ dis-
tance is employed as the distance metric D(x,x′), the in-
ner maximization problem is equivalent to the adversar-
ial problem solved by PGD, i.e., (5). The outer minimiza-
tion is the standard training procedure to minimize the loss
of a DNN. Recent work shows that this straightforward
method is one of the most effective defenses against ad-
versarial samples (Madry et al. 2017; Tramèr et al. 2017;
Cai et al. 2018).

PGD Adversarial Training The fact that PGD adversary
is a first-order universal adversary implies that robustness
against PGD should yield robustness against all first-order
adversaries (Madry et al. 2017). Hence, Madry et al. (2017)
propose to adversarially train a robust classifier using PGD
attack. Specifically, in each training iteration, PGD is ap-
plied to generate a minibatch of adversarial samples to up-
date the current network. In the training process, a steady
decrease of the training loss is usually observed, indicating
the effectiveness of this training paradigm. Experiment re-
sults show that PGD adversarial-trained models are robust
against PGD attack as well as another strong attacks such as
theCW∞ attack (Carlini and Wagner 2017). Empirically we
also found that their MNIST and CIFAR-10 models are in-
deed robust to a wide range of existing first-order attacks, in-
cluding DeepFool (Moosavi-Dezfooli, Fawzi, and Frossard

2016), and Jacobian-based Saliency Map Attack (JSMA)
(Papernot et al. 2016), as long as the adversarial perturba-
tions are l∞- bounded.

Ensemble Adversarial Training To scale up adversar-
ial training to ImageNet-scale datasets, Kurakin, Goodfel-
low, and Bengio (2016b) adversarially train a model using a
fast single-step attack method. However, their adversarially-
trained model is vulnerable to multi-step white-box at-
tacks (Kurakin, Goodfellow, and Bengio 2016b). Tramèr et
al. (2017) further demonstrate that the model of Kurakin,
Goodfellow, and Bengio (2016b) is vulnerable to black-
box adversaries (Tramèr et al. 2017). To tackle this prob-
lem, Tramèr et al. (2017) propose a training methodology
that incorporates adversarial samples transferred from other
pre-trained models, called Ensemble Adversarial Training
(EAT) (Tramèr et al. 2017). Intuitively, this approach in-
creases the diversity of adversarial samples used for adver-
sarial training. In their experiments, the models trained by
EAT exhibit robustness against adversarial samples trans-
ferred from other holdout models, using various single-step
and multi-step attacks.

Distributionally Adversarial Attack
We first interpret distributionally adversarial attack as
WGFs, and then propose a specific energy functionals to
construct a WGF for better adversarial-sample generation,
and finally propose particle-approximation methods to solve
the DAA problem, leading to a variant of the standard PGD.

Adversarial Attack as WGFs
For a given DNN, the landscape of a loss function L(x, y;θ)
constitutes a geometry structure indexed by input images
x. From a probability perspective, under regularized condi-
tions, it is natural to define a probability distribution for each
input x based on the loss-function landscape, i.e.,

p(x, y;θ) ∝ exp{−L(x, y;θ)} . (9)

Since y is deterministic given x, we would omit y, and write
p(x, y;θ) as p(x;θ) in the following for simplicity. Based
on this, we explain our intuitions on generalizing adversarial
attack on the space of data distributions in the following.
First note that the objective of an adversarial attack (5) is
equivalently rewritten as:

x′ = arg max
x′:D(x,x′)<α

{L(x′, y;θ)− L(x, y;θ)} , (10)

which describes the increase of a loss with an adversarial
sample. On the space of probability measure, the loss is
instead described by an energy functional E(µ), assuming
the minimum being reached at p(x;θ). Consequently, in-
stead of finding an optimal adversarial sample x′ for each
x, DAA tries to find an optimal adversarial-data distribu-
tion, µ∗, such that µ∗ is close to p(x;θ) but increases E(·)
maximumly, i.e.,

µ∗ = arg max
µ:W2(µ,p(x;θ))<α

{E(µ)− E(p)}

= arg max
µ:W2(µ,p(x;θ))<α

E(µ) . (11)

2255

Theorem 3 The solution µ∗ of (11) is equivalently de-
scribed by the following PDE:

∂tµt = −∇x ·
(
µt∇x

(
δE

δµt
(µt)

))
, (12)

and µ∗ = µt where t = {inf{t′} : µ0(x) =
p(x;θ),W2(µt′(x), p(x;θ)) < α}.

Energy Functional
It is crucial to define an energy functional as it directly
affects adversarial-sample behaviors. Recent studies (Song
et al. 2017; Ma et al. 2018) show that adversarial sam-
ples/subspaces mainly lie in the low probability regions
of the original data distribution, thus we expect adversar-
ial distribution to derivate from the original distribution by
optimization over the energy functional. Besides, the en-
ergy functional should also be simple enough to possess a
unique solution, i.e., it should be convex w.r.t.µ on the space
of probability measures.Therefore, we define a new energy
functional as:

E(µ) =

∫
µ

L(x, y;θ)dµ+ c · KL(µ||p) , (13)

where L(x, y;θ) is the loss of the system; KL(µ||p) is the
KL-divergence between the adversarial distribution µ and
the optimal data distribution p; and c is a hyperparameter
balancing those two terms. Intuitively, maximizing (13) will
increase the individual losses in addition to the deviation be-
tween the adversarial and original distributions. Note the en-
ergy functional (13) is still convex w.r.t.µ, maintaining the
optimality condition and making the problem easier to solve.

Adversarial-Distribution Optimization and
Adversarial-Sample Generation
Note a closed-formed solution of (12) is infeasible given the
energy functional defined by (13). Following standard meth-
ods such as those in (Chen et al. 2018), we adopt particle ap-
proximation to solve (12). The idea is to approximate µ with
a set of M particles {x(i)}Mi=1 as µ ≈ 1

M

∑M
i=1 δx(i) , where

δx is a delta function with a spike at x. Consequently, solv-
ing for the optimal µ corresponds to optimizing the parti-
cles as adversarial samples from the adversarial distribution.
In the following, based on (Chen et al. 2018), we investi-
gate two methods for particle approximation: the Lagrangian
blob method and the discrete-gradient-flow method.

Lagrangian Blob Method The idea is to use particle ap-
proximations directly in the original problem (12). Specif-
ically, define vt , ∇x

(
δE
δµt

(µt)
)

. According to (Carrillo,
Craig, and Patacchini 2017), vt is interpreted as the veloc-
ity function of a particle in the gradient flow. Consequently,
Lagrangian blob methods evolve particles on a grid with a
time-spacing h following the velocity vt (Carrillo, Craig,
and Patacchini 2017). Thus solving the WGF (12) is equiv-
alent to evolving the particles along their velocities as

dx(i) /dt = vt(x
(i)) .

To calculate vt, we substitute the form of E(µ) in (13) into
vt. First note that under the H-Wasserstein distance metric
defined by (Liu et al. 2017), we have

∇x

(
δKL(µt|p)

δµt

)
= Ex̃∼µt [∇x̃[p(x̃)K(x, x̃)]/p(x̃)]

=Ex̃∼µt [K(x, x̃)∇x̃ log p(x̃) +∇x̃K(x, x̃)], (14)

where K(·, ·) is a kernel function such as the RBF kernel.
For the first term on the right of (13), we have

∇x

(
δ
∫
µ
L(x, y;θ)dµ

δµt

)
= ∇xL(x, y;θ). (15)

Combining Eq. 14 and 15, one ends up solving the following
ordinary differential equation:

dx

dt
= ∇xL(x, y;θ)+ (16)

c · Ex̃∼µt [K(x, x̃)∇x̃ log p(x̃) +∇x̃K(x, x̃)].

Considering a discrete approximation of µt with particles,
(16) can be solved numerically as

x
(i)
`+1 = x

(i)
` +εl · {∇x

(i)
`

L(x
(i)
` , y(i);θ) + (17)

c

M

M∑
j=1

[K(x
(i)
` ,x

(j)
`)∇

x
(j)
`

log p(x
(j)
`)+

∇
x
(j)
`

K(x
(i)
` ,x

(j)
`)]},

where, in contrast to the continuous case, we use ` to index
the number of steps for the discretized particles.

Discrete Gradient Flows Discrete-gradient-flow (DGFs)
approximation for (12) consists of a sequence of sub-
optimization problems whose composition approximates µt,
i.e., µt ≈ µ̃L◦· · ·◦µ̃1, whereL = t/h, and µ̃` is the solution
of the following functional optimization problem 2:

µ̃` = arg max
µ∈P2(Rr)

{E(µ)− 1

2h
W 2

2 (µ̃`−1, µ)}. (18)

Again, (18) is solved by particle approximation, with gradi-
ent ascent on the particles. To this end, we need gradients for
the two terms on the RHS of (18). Inspired by (Chen et al.
2018), we decompose the two terms and re-organize terms:

E1 ,
M∑
i=1

(
L(x

(i)
` , y(i);θ)− c log p(x

(i)
`)
)

E2 , Eµ[logµ] +
1

2h
W 2

2 (µ, µ̃`−1) .

The gradient of the first term can be easily calculated as
∂E1

∂ x
(i)
`

= ∇
x
(i)
`

L(x
(i)
` , y(i);θ) + c∇

x
(i)
`

log p(x
(i)
`)

= (1 + c)∇
x
(i)
`

L(x
(i)
` , y(i);θ) . (19)

2Note the difference between (18) and the original DGF for-
mula is to replace the original min to max because the flow direc-
tion is reversed in adversarial-distribution optimization.

2256

For the E2 term, we apply similar idea as (Chen et al. 2018)
by introducing Lagrangian multipliers, resulting in

∂E2

∂ x
(i)
`

≈ c · [
∑
j

2uivj(
dij
λ
−1)e−

dij
λ (x(i)−x

(j)
k−1)], (20)

where λ, ui and vj are Lagrangian multipliers, and dij =

||x(i)−x
(j)
k−1 ||22. For the sake of simplicity, we do not up-

date ui and vj , but instead use a fixed scaling factor γ to
approximate the product uivj .

Adversarial-Sample Generation Once an adversarial
distribution is learned, adversarial samples, e.g. x(i)

` , can
be obtained by drawing samples from it. However, adver-
sarial samples typically follow certain constraints, e.g., l∞
bounded. We propose two adversarial-sample generation
methods based on the particle-optimization formula above,
named DAA-BLOB and DAA-DGF. DAA-BLOB substi-
tutes the gradient used in PGD with the gradient derived in
Eq. 17. Formally, in each iteration, xi is updated by

x
(i)
l+1 = Πclip{x(i)

l +ε · sign(∇xil
L(x

(i)
l , y(i);θ)+ (21)

c

M
[

M∑
j=1

K(x
(i)
l ,x

(j)
l)∇

x
(j)
l

L(x
(j)
l , y(j);θ)+

∇
x
(j)
t
K(x

(i)
l ,x

(j)
l)])}.

By contrast, DAA-DGF substitutes the gradient used in PGD
with a combination of Eq. 19 and Eq. 20. Specifically, in
each iteration, xi is updated by

x
(i)
l+1 =Πclip{x(i)

l +ε · sign(∇
x
(i)
l

L(x
(i)
l , y(i);θ)−

2γc

1 + c
· [

M∑
j=1

(
dij
λ
− 1)e−

dij
λ (x

(i)
l −x

(j)
l)])}.

(22)

Optimization by Data Subsampling In theory, the adver-
sarial distribution µ to be optimized corresponds to a data
manifold. Thus a good discrete approximation to µ is to use
all the testing samples. In practice, however, it is computa-
tionally infeasible to update the particles following (21) or
(22), as the complexity is O(M2) for each particle update.
To mitigate this issue, we propose a subsampling method to
update testing samples in an unbiased and computationally
feasible way: First, testing samples are randomly permuted
and divided into finite number of minibatches; then sam-
ples in each minibatch are updated sequentially for a cer-
tain number of steps. This procedure is iterated for multiple
rounds. The full algorithm is shown in Algorithm 1.

Connection with PGD There are two situations where the
proposed DAA framework reduces to PGD. The first situa-
tion is when c = 0, where the second terms of both (21) and
(22) become 0, making the two gradients degraded to the
gradient used in PGD. The second case is when M = 1,

Algorithm 1 DAA algorithm (untargeted attack)
Require: A classifier with loss function L(xi, yi;θ); test-

ing dataset {xi, yi}Ni=1; minibatch size M ; step size ε;
predefined final perturbation size α; total iterations L;
rounds R; hyperparameter c or 2γc

1+c ;
Random Start: xi0 = xi +γi (γi ∼ U(−α, α))
No Random Start: xi0 = xi

for r = 0 to R− 1 do
Randomly permutate the testing samples
for k = 0 to L/R− 1 do
l = rL/R+ k
for j = 0 to N/M − 1 do

Follow Eq. 21 or 22 to update the minibatch
{xil, yil} (i = jM + 1 ∼ (j + 1)M), where
IIclip(·) = clip[0,1](clip[xi−α,xi +α](·)) ([0, 1] is
the pixel value range, maybe [−1, 1] or [0, 255])

end for
end for

end for

meaning that DAA is equivalent to PGD when the data-
manifold is approximated by only one sample. In this case,
the second term of the gradient used in DAA-DGF becomes
0, and the second term of the gradient used in DAA-BLOB
reduces to c·[K(xit,x

i
t)∇xit

L(xit, y
i;θ)+∇xjt

K(xit,x
i
t)] =

c · ∇xit
L(xit, y

i;θ).

Experiment
Setup
Datasets and Related Models The proposed DAA to-
gether with state-of-the-art methods, PGD and Momentum
PGD, are evaluated and compared on four standard datasets,
including MINST, Fashion MNIST (FMNIST), CIFAR10
and ImageNet. For MINST, the attack target is the state-of-
the-art PGD-adversarially-trained MINST model provided
by MIT MadryLab (Madry et al. 2017). The defense ar-
chitecture contains a convolutional neural network (CNN)
with two convolutional layers and a fully connected layer.
For FMNIST, we adversarially train a model by PGD as the
target model. The network architecture consists of four con-
volutional layers and a fully connected layer with batch nor-
malization. For CIFAR10, MadryLab’s PGD adversarially
trained CIFAR10 model is adopted as the target model. The
network architecture is a residual CNN consisting of five
residual units and a fully connected layer. For ImageNet, we
adopt the target model in (Kurakin, Goodfellow, and Bengio
2016c), which is an adversarially trained Inception ResNet-
v2 model. In addition, we also evaluate DAA on a provable
defense model (Wong and Kolter 2018), with code also pro-
vided in the Github link (in abstract)

Implementation Details For all the methods re-
lated to kernel functions, an RBF kernel K(x,x′) =
exp(−‖x−x′ ‖22/h) is adopted. The bandwidth is set
as h = med2/ logM , same as the kernel used in (Liu
and Wang 2016) and (Chen et al. 2018). Here med is the

2257

Figure 1: Comparison between PGD and DAA. DAA tends to generate more structured perturbations.

Table 1: Empirical worst-case accuracy of MIT MadryLab’s secret MNIST model under 200-step attacks with 50 random starts
(0.3/1.0 l∞ perturbations). Loss 1: cross-entropy, Loss 2: CW∞ loss

Rand+FGSM PGD Momentum PGD DAA-BLOB DAA-DGF
Loss 1 Loss 2 Loss 1 Loss 2 Loss 1 Loss 2 Loss 1 Loss 2 Loss 1 Loss 2
93.48% 93.47% 89.49% 89.57% 89.29% 89.36% 88.79% 88.85% 88.92% 89.25%

Figure 2: Averaged classification accuracy of MIT Madry-
Lab’s adversarially trained MNIST model under a single run
of different attacks: cross-entropy (left), CW∞ loss (right)

median of the pairwise distance between particles. The
minibatch size (number of particles) is set to 100 ∼ 200
for computational feasibility. Our specific settings on
hyper-parameters c and 2γc

1+c can be found in our Github
link (in abstract). It is worth noting that the discrepancy
regarding the parameter choices on those datasets is caused
by different pixel ranges and network structures used by
their classifiers. All experiments are conducted on a single
Titan V GPU under a white-box setting, where an adversary
has full access to a target model including model weights.

Adversarial Perturbation Analysis

To intuitively understand the advantage of DAA over PGD,
we plot ten natural samples and their PGD and DAA adver-
sarial samples in Figure 1. For the ten samples, DAA suc-
cessfully attacks the defense model with a 0.3/1.0 l∞ per-
turbation, whereas PGD with 50 random starts cannot. As
shown in Figure 1, the perturbations generated by PGD tend
to scatter throughout the images, whereas those of DAA are
more structuredly focused around the target digits.

Figure 3: Averaged classification accuracy of adversarially
trained FMNIST model under a single run of different at-
tacks: cross-entropy (left), CW∞ loss (right)

Empirical Results
MNIST We plot the averaged classification accuracy of
MadryLab’s adversarially trained MNIST model under a
single run of different attack algorithms in Figure 2. It is
observed that the proposed DAA consistently outperforms
other methods under different levels of l∞ perturbations and
two different losses. To test its statistic significance, we also
conduct paired t-tests between the accuracies reduced by
PGD and DAA with random starts. For DAA-BLOB and
DAA-DGF, the p-values are almost zeros, i.e., 0.0 for DAA-
BLOB and 5e-43 for DAA-DGF in the given decimal degree
accuracy, suggesting that both methods outperform PGD in
a statistical sense. In addition, we show the worst classifica-
tion accuracy of Madry’s adversarially trained model under
PGD, Momentum PGD and DAA with 50 random restarts in
Table 1. It is seen that DAA-BLOB is able to reduce the clas-
sification accuracy to approximately 88.79% (with c = 1.1
and minibatch size of 200), outperforming the attacks listed
in MadryLab’s white-box leaderboard.

FMNIST We next plot the classification accuracy of our
adversarially trained FMNIST model under a single run of

2258

Table 2: Empirical worst-case accuracy of adversarially trained FMNIST model under 100-step attacks with 10 random starts
(0.2/1.0 l∞ perturbations). Loss 1: cross-entropy, Loss 2: CW∞ loss

Rand+FGSM PGD Momentum PGD DAA-BLOB DAA-DGF
Loss 1 Loss 2 Loss 1 Loss 2 Loss 1 Loss 2 Loss 1 Loss 2 Loss 1 Loss 2
77.45% 77.21% 68.54% 68.94% 69.72% 69.51% 65.70% 66.64% 66.04% 66.60%

Table 3: Empirical worst-case accuracy of MIT MadryLab’s adversarially trained CIFAR10 model under a single run of 100-
step attacks without random start (8, 16/255 l∞ perturbations). Loss 1: cross-entropy, Loss 2: CW∞ loss

l∞ Rand+FGSM PGD Momentum PGD DAA-BLOB DAA-DGF
Loss 1 Loss 2 Loss 1 Loss 2 Loss 1 Loss 2 Loss 1 Loss 2 Loss 1 Loss 2

8/255 55.63% 55.05% 45.09% 46.27% 45.86% 46.76% 44.98% 46.30% 45.07% 46.31%
16/255 38.80% 37.78% 14.59% 16.06% 17.73% 18.70% 14.43% 16.05% 14.52% 16.06%

different attack algorithms in Figure 3. Similarly, the pro-
posed DAA-based methods outperform the state-of-the-art
PGD method. The two variants, DAA-BLOB and DAA-
DGF, are comparable. Again, the p-values in the t-tests are
also close to zero, i.e., 0.0 for DAA-BLOB and 3e-27 for
DAA-DGF, indicating significant performance differences
between PGD and the proposed methods. The worst accu-
racy under white-box PGD, Momentum PGD and DAA with
10 random starts are listed in Table 2, suggesting the ad-
vance of the proposed DAA framework over both PGD and
Momentum PGD.

CIFAR10 The classification accuracies of Madry’s adver-
sarially trained model under a single run of PGD, Momen-
tum PGD and DAA without random start are shown in Ta-
ble. 3. As can be seen, the adversarially-trained model only
achieves weak robustness, i.e., a 100-step PGD with 16/255
l∞ perturbations reduces the accuracy to 14.59%, while
DAA only reduces it to 14.43%. We conjecture this is be-
cause the data are too complex and sparse, making the parti-
cle approximation with testing samples in DAA badly repre-
sent the true data manifold. As a result, testing results with
the learned adversarial samples are similar to those of PGD.
This argument is also validated by Recht et al. (2018), which
shows that existing high-accuracy CIFAR10 classifiers does
not generalize well to a truly unseen CIFAR10 testing set.

ImageNet We also evaluated the ensemble adversar-
ial trained Inception ResNet-v2 under 50-step targeted
Rand+FGSM and DAA attacks, using the least likely class
as the target. Our experiments show that Rand+FGSM with
2/255 l∞ perturbations (approximately 0.0157/2.0 l∞ per-
turbations after normalization) can reduce the accuracy of
the Inception model to approximately 70% (Kurakin, Good-
fellow, and Bengio 2016b), while 50-step DAA can dramat-
ically reduce it to 16.43%. This indicates the ensemble ad-
versarial trained ImageNet model is still vulnerable to well-
designed iterative attacks, e.g., our DAA.

Discussion

To our knowledge, there was not a first-order l∞ attack al-
gorithm that can really outperform PGD under the white-
box setting. Even for MI-FGSM, which won the NIP2017
competition under a black-box setting, we found that its
PGD variant, which is stronger than MI-FGSM, cannot
outperform standard PGD under the white-box setting, let
alone MI-FGSM. In this paper, we generalize PGD on the
space of data distributions. Our theoretical derivations and
experiments validate the effectiveness of our framework.
To the best of our knowledge, the proposed DAA frame-
work is the first-and-only first-order l∞ attack algorithm
that can outperform PGD, especially on robust adversari-
ally trained models. To further attack those adversarially-
trained models with small l∞ perturbations, we might have
to involve higher-order information, which is usually very
computationally expensive. In practice, those l∞ adversari-
ally trained models can also be further attacked by perturb-
ing few pixels with large l∞ perturbations, which still yields
small l1 or l2 distance (Sharma and Chen 2018). However,
such a change sometimes even leads to misclassification by
human. Moreover, it is unfair to compare an l1 or l2 attack
with an l∞ attack (PGD) on l∞ adversarially trained models.

Conclusion

We generalize PGD on the space of data distributions, by
learning an adversarial data distribution that maximally in-
creases the generalization risk of a model. To solve the
adversarial-distribution problem, we define a new energy
functional to better reflex the discriminative data manifold
in the WGF framework. When adopting particle approx-
imation, adversarial samples can be generated by solving
the corresponding WGF problems, leading to an algorithm
closely related to the standard PGD method. Extensive eval-
uations show that our distributionally-adversarial attack out-
performs PGD and Momentum PGD, achieving state-of-the-
art attack results on the adversarially trained defense and
provable defense models that demonstrated notable robust-
ness against first-order l∞ attacks.

2259

References
Ambrosio, L.; Gigli, N.; and Savaré, G. 2008. Gradient
flows: in metric spaces and in the space of probability mea-
sures. Springer Science & Business Media.
Athalye, A., and Carlini, N. 2018. On the robustness of the
cvpr 2018 white-box adversarial example defenses. arXiv
preprint arXiv:1804.03286.
Athalye, A.; Carlini, N.; and Wagner, D. 2018. Ob-
fuscated gradients give a false sense of security: Circum-
venting defenses to adversarial examples. arXiv preprint
arXiv:1802.00420.
Cai, Q.-Z.; Du, M.; Liu, C.; and Song, D. 2018. Curriculum
adversarial training. arXiv preprint arXiv:1805.04807.
Carlini, N., and Wagner, D. 2017. Towards evaluating the
robustness of neural networks. In Security and Privacy (SP),
2017 IEEE Symposium on, 39–57. IEEE.
Carlini, N.; Katz, G.; Barrett, C.; and Dill, D. L. 2017.
Ground-truth adversarial examples. CoRR abs/1709.10207.
Carrillo, J. A.; Craig, K.; and Patacchini, F. S. 2017. A blob
method for diffusion. arXiv preprint arXiv:1709.09195.
Chen, C.; Zhang, R.; Wang, W.; Li, B.; and Chen, L.
2018. A unified particle-optimization framework for scal-
able bayesian sampling. arXiv preprint arXiv:1805.11659.
Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.;
Bougares, F.; Schwenk, H.; and Bengio, Y. 2014. Learning
phrase representations using rnn encoder-decoder for statis-
tical machine translation. arXiv preprint arXiv:1406.1078.
Dong, Y.; Liao, F.; Pang, T.; Su, H.; Zhu, J.; Hu, X.; and
Li, J. 2018. Boosting adversarial attacks with momentum.
arXiv preprint.
Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2014. Explain-
ing and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, 1097–1105.
Kurakin, A.; Goodfellow, I.; and Bengio, S. 2016a. Ad-
versarial examples in the physical world. arXiv preprint
arXiv:1607.02533.
Kurakin, A.; Goodfellow, I.; and Bengio, S. 2016b.
Adversarial machine learning at scale. arXiv preprint
arXiv:1611.01236.
Kurakin, A.; Goodfellow, I. J.; and Bengio, S. 2016c. Ad-
versarial machine learning at scale. CoRR abs/1611.01236.
Liu, Q., and Wang, D. 2016. Stein variational gradient
descent: A general purpose bayesian inference algorithm.
2378–2386.
Liu, Y.; Ramachandran, P.; Liu, Q.; and Peng, J. 2017. Stein
variational policy gradient. CoRR abs/1704.02399.
Ma, X.; Li, B.; Wang, Y.; Erfani, S. M.; Wijewickrema, S.;
Houle, M. E.; Schoenebeck, G.; Song, D.; and Bailey, J.
2018. Characterizing adversarial subspaces using local in-
trinsic dimensionality. arXiv preprint arXiv:1801.02613.

Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; and
Vladu, A. 2017. Towards deep learning models resistant
to adversarial attacks. arXiv preprint arXiv:1706.06083.
Moosavi-Dezfooli, S.-M.; Fawzi, A.; and Frossard, P. 2016.
Deepfool: a simple and accurate method to fool deep neural
networks. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2574–2582.
Papernot, N.; McDaniel, P.; Jha, S.; Fredrikson, M.; Celik,
Z. B.; and Swami, A. 2016. The limitations of deep learning
in adversarial settings. In Security and Privacy (EuroS&P),
2016 IEEE European Symposium on, 372–387. IEEE.
Recht, B.; Roelofs, R.; Schmidt, L.; and Shankar, V. 2018.
Do cifar-10 classifiers generalize to cifar-10? arXiv preprint
arXiv:1806.00451.
Sharma, Y., and Chen, P.-Y. 2018. Attacking the madry
defense model with l 1-based adversarial examples. In Proc.
of AAAI.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering
the game of go with deep neural networks and tree search.
nature 529(7587):484–489.
Song, Y.; Kim, T.; Nowozin, S.; Ermon, S.; and Kushman,
N. 2017. Pixeldefend: Leveraging generative models to
understand and defend against adversarial examples. arXiv
preprint arXiv:1710.10766.
Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan,
D.; Goodfellow, I.; and Fergus, R. 2013. Intriguing proper-
ties of neural networks. arXiv preprint arXiv:1312.6199.
Tramèr, F.; Kurakin, A.; Papernot, N.; Goodfellow, I.;
Boneh, D.; and McDaniel, P. 2017. Ensemble ad-
versarial training: Attacks and defenses. arXiv preprint
arXiv:1705.07204.
Wong, E., and Kolter, Z. 2018. Provable defenses against
adversarial examples via the convex outer adversarial poly-
tope. In International Conference on Machine Learning,
5283–5292.

2260

