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Abstract

Population-based evolutionary algorithms usually manage a
large number of individuals to maintain the diversity of the
search, which is complex and time-consuming. In this pa-
per, we propose an evolutionary algorithm using only two
individuals, called master-apprentice evolutionary algorithm
(MAE), for solving the flexible job shop scheduling problem
(FJSP). To ensure the diversity and the quality of the evo-
lution, MAE integrates a tabu search procedure, a recombi-
nation operator based on path relinking using a novel dis-
tance definition, and an effective individual updating strat-
egy, taking into account the multiple complex constraints
of FJSP. Experiments on 313 widely-used public instances
show that MAE improves the previous best known results for
47 instances and matches the best known results on all ex-
cept 3 of the remaining instances while consuming the same
computational time as current state-of-the-art metaheuristics.
MAE additionally establishes solution quality records for 10
hard instances whose previous best values were established
by a well-known industrial solver and a state-of-the-art exact
method.

Introduction
The job shop scheduling problem (JSP) is a strongly NP-
hard problem (Garey, Johnson, and Sethi 1976). In this
problem, there are a set of jobs J = {J1, . . . , Jn} that
must be processed on a set M = {M1, . . . ,Mm} of ma-
chines. Each job Ji, i = 1, . . . , n, consists of ni operations
Oi = {oi1, . . . , oini} that should be sequentially processed.
Besides, each operation oij requires uninterrupted and ex-
clusive use of its assigned machine for its whole processing
time. The flexible job shop scheduling problem (FJSP) is
an extension of JSP by allowing an operation oij to be pro-
cessed on one of a set of candidate machines M(oij) ⊆ M .
The processing time of operation oij on machine Mk ∈
M(oij) is denoted by toijk. The problem is to assign each
operation to a machine and to order the operations on the
machines, such that the maximum completion time of all
jobs (i.e., makespan) is minimized.

Since FJSP was introduced by (Brucker and Schlie 1991),
a large number of methods for solving it have been pro-
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posed in the literature. Among them we cite several ex-
act approaches: A discrete-time integer programming based
on Lagrangian relaxation method proposed by (Thomalla
2005), a mixed-integer linear programming model proposed
by (Özgüven, Özbakr, and Yavuz 2010) with routing and
process plan flexibility, and a mixed-integer linear optimiza-
tion model combined with a branch and bound algorithm
proposed by (Hansmann, Rieger, and Zimmermann 2014).
Other exact methods based on mixed-integer linear pro-
gramming can be found in (Gomes, Barbosa-Pvoa, and No-
vais 2013; Roshanaei, Azab, and Elmaraghy 2013).

For large FJSP instances, various metaheuristic algo-
rithms have been employed. The noteworthy literatures
include: (Brandimarte 1993), (Dauzère-Pérès and Paulli
1997), (Mastrolilli and Gambardella 2000), (Pezzella, Mor-
ganti, and Ciaschetti 2008), (Gao, Sun, and Gen 2008),
(Oddi et al. 2011), (Bożejko, Uchroński, and Wodecki
2010), (Gutiérrez and Garcı́a-Magariño 2011), (Li, Pan, and
Liang 2010), (Wang et al. 2012), (Wang et al. 2013), (Yuan
and Xu 2013a), (González, Vela, and Varela 2013), and
(Gao et al. 2016). Recent approaches include the climb-
ing depth-bounded discrepancy search (CDDS) algorithm
(Hmida, Haouari, and Lopez 2010), hybrid differential evo-
lution algorithm (HDE-N2) (Yuan and Xu 2013b), scatter
search with path relinking (SSPR) (González, Vela, and
Varela 2015), genetic tabu search (HGTS) (Palacios et al.
2015), hybrid genetic algorithm with tabu search (HA) (Li
and Gao 2016), and multi-start multi-level evolutionary lo-
cal search (GRASP-mELS) (Kemmoé-Tchomté, Lamy, and
Tchernev 2017). Although none of these approaches domi-
nates the others in terms of the solution quality and compu-
tational efficiency for all the benchmarks, CDDS, HDE-N2,
SSPR, HGTS, HA, and GRASP-mELS show the best per-
formance among them.

Population-based evolutionary algorithms have good per-
formance for tackling FJSP. However, they suffer from the
drawback of managing a large population to maintain the
diversity of the search (Lahiri and Cebrian 2010). In this pa-
per, we propose an evolutionary algorithm using only two
individuals, called master-apprentice evolutionary (MAE)
algorithm, for solving FJSP, inspired from HEAD (Moalic
and Gondran 2017), the only previous evolutionary algo-
rithm based on two individuals to the best of our knowl-
edge. HEAD is for solving the k-coloring problem. The par-
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ticularity of the k-coloring problem is that its constraints
are very simple, whereas FJSP has multiple complex con-
straints. Consequently, HEAD and MAE have to be very dif-
ferent: HEAD uses the greedy partition crossover to generate
the child solutions, because it works in the space of infea-
sible solutions to search for a feasible k-coloring, whereas
MAE uses a recombination operator based on path relink-
ing with a novel distance definition to generate child solu-
tions, because it works in the space of feasible solutions to
search for an optimal feasible solution. In fact, a crossover
operator often generates infeasible child solutions for FJSP,
and repairing these solutions then results in poor solutions,
whereas a recombination operator based on path relinking
can be more easily controlled to generate feasible child so-
lutions. Besides, the diversity in the search of HEAD is also
maintained by the crossover operator, whereas MAE main-
tains the diversity by directly replacing one individual with
a random feasible solution as soon as the two individuals be-
come close to each other. Similar attempts of two-individual
memetic algorithm hybridized with regular re-initialization
can be found in (Duarte et al. 2005).

The remaining part of this paper is organized as follows:
Section 2 presents the proposed MAE algorithm. Section 3
compares MAE with the state-of-the-art algorithms and ana-
lyzes the key features of MAE to identify its success factors.
Section 4 concludes the paper.

Master-Apprentice Evolutionary Algorithm
The idea of the master-apprentice evolutionary algorithm
originates from social activities where apprentices gain
knowledge from their masters. When two apprentices (indi-
viduals) evolve for a given number of generations (a cycle),
they become masters and share much similarity. Therefore,
when a cycle ends, one apprentice is replaced with the mas-
ter in the previous cycle to continue the evolution, so as to
absorb the essence of the history (the previous cycle). That
is why we call this algorithm master-apprentice evolutionary
algorithm.

Two-individual based evolution mechanism is a unique
feature of MAE. Traditional population-based evolutionary
algorithms usually confront with the drawback of maintain-
ing large population and high consumption of computing re-
sources. By managing two individuals using an effective in-
dividual updating strategy, MAE can achieve a better trade-
off between diversification and search efficiency. In this sec-
tion, we first present the general architecture of MAE and
then present its different components.

Main scheme of MAE
MAE follows the basic framework of the evolutionary al-
gorithms (Lü, Glover, and Hao 2010; Sutton and Neumann
2012; Yu, Yao, and Zhou 2013). Its diagram is depicted in
Fig. 1 and its general architecture is described in Algorithm
1. The algorithm has three main components: The Init()
function to generate a random solution, the tabu search pro-
cedure TS(S) to improve the solution S, and the path relink-
ing based recombination operator to generate two child so-
lutions. The generations are divided into cycles of length p,

p

Figure 1: Diagram of MAE.

where p is an integer parameter. The best solution in the cur-
rent (previous) cycle is stored in S∗

c (S∗
p ). At the beginning,

MAE generates two random solutions S1 and S2. Then, at
each generation, it applies the path relinking based recombi-
nation operator on S1 and S2 to generate two child solutions
S
′

1 and S
′

2, which are then optimized by the tabu search pro-
cedure to become new S1 and S2. If the new S1 or S2 is
better than S∗

c , then S∗
c is updated. At the end of each cycle,

S1 is replaced by the best solution S∗
p found in the previous

cycle, S∗
p is replaced by S∗

c , and S∗
c is set to be a random so-

lution, before starting the next cycle. As soon as S1 is close
to S2, S2 is replaced with a random solution to ensure the
diversity of the search. Finally, the best solution S∗ found
during the search is returned.

Initial solutions and tabu search procedure
As in (González, Vela, and Varela 2015), a solution of FJSP
in MAE takes the form (α, π), where α is a feasible assign-
ment of each operation o to a machineMa ∈M(o), denoted
by α(o) = a, and π is a processing order of the operations
on all machines compatible with the job sequence. At the
beginning, MAE generates random solutions for S1, S2, S∗

c ,
S∗
p and S∗, respectively, using the Init() function, by assign-

ing each operation of each job to each of its candidate ma-
chines with equal probability, respecting all the constraints.

The tabu search procedure TS(S) is called in MAE to in-
tensify the search. It improves the solution S by re-assigning
a critical operation to a different machine and inserting it to
a feasible position, or by changing the position of a criti-
cal operation on the same machine. Note that the operations
in the critical path are called critical operations, and critical
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Algorithm 1 MAE, a two-individual based evolutionary al-
gorithm for FJSP
1: Input: Problem instance
2: Output: The best solution S∗ found
3: gen← 0, S1, S2, S

∗
c , S

∗
p , S

∗ ← Init()
4: while stopping condition is not reached do
5: S

′
1 ← PR(S1, S2), S

′
2 ← PR(S2, S1)

6: S1 ← TS(S
′
1), S2 ← TS(S

′
2)

7: S∗
c ← save best(S1, S2, S

∗
c )

8: S∗ ← save best(S∗
c , S

∗)
9: if gen is equal to an integer parameter p then

10: S1 ← S∗
p , S∗

p ← S∗
c , S∗

c ← Init(), gen← 0

11: end if
12: if S1 ≈ S2 then
13: S2 ← Init()
14: end if
15: gen← gen+ 1

16: end while
17: return S∗

path is the longest path in the disjunctive graph representa-
tion of a schedule. In this paper, the machine re-assignment
is performed on the k-insertion neighborhood (called Nk

here) proposed by (Mastrolilli and Gambardella 2000), and
the position change is performed on the neighborhood called
Nπ and proposed by (González, Vela, and Varela 2015). In
short, MAE repeatedly chooses the best non-tabued move
from Nπ ∪Nk to perform, and the move is prohibited to be
performed again within the tabu tenure, which is similar to
the tabu strategy used in (Peng, Lü, and Cheng 2015).

Path relinking based recombination operator
Traditional path relinking for two individuals S1 and S2 con-
sists in finding individuals T0, T1, T2, . . ., such that T0 =
S1, and Ti+1 is obtained by applying a single move to Ti
and is closer to S2 than Ti. The key issue for applying path
relinking to FJSP is to define the distance between two indi-
viduals.

For example, in the scatter search for FJSP proposed by
(González, Vela, and Varela 2015), a path relinking based
recombination operator is applied on two solutions S1 and
S2 selected from a set called RefSet, using two distances.
The first distance dα is to measure the assignment differ-
ence, which is defined as the number of operations having a
different machine assignment in S1 and S2, and the second
distance dπ is to measure the sequence difference, which is
defined as the number of pairs of operations requiring the
same machine that are processed in different order. Besides,
dα has higher precedence than dπ . In order to obtain Ti+1

from Ti, both distances dα and dπ are considered.
In this paper, we define a unique distance between S1 and

S2 which unifies the assignment difference and sequence
difference as follows. Let MS

o (PSo ) denote the machine
assigned to operation o (the position of o on MS

o ) in so-
lution S, and LSa be the number of operations assigned
to machine a in solution S. If operation o is assigned on

Figure 2: The distance of the operation on the same machine.

Figure 3: The distance of the operation on the different ma-
chine.

the same machine in two solutions S1 and S2, we define
do(S1, S2) = |PS1

o − PS2
o | to be the difference of o be-

tween S1 and S2 (see Fig. 2). Otherwise, o can be moved
to the beginning (end) of MS1

o , and then from the begin-
ning (end) of MS2

o of S1 to the same position as in MS2
o of

S2 (see path1 (path2) in Fig. 3). The minimum one between
path1 and path2 is chosen as the difference of o between S1

and S2, which is do(S1, S2) = min{PS1
o + PS2

o , (LS1

M
S1
o

−
PS1
o )+ (LS2

M
S2
o

−PS2
o )}. Then, the distance between S1 and

S2 is defined as d(S1, S2) =
∑n
i=1

∑m
j=1 doij (S1, S2).

Therefore, in order to obtain Ti+1 from Ti, our path re-
linking applies a single move that changes the position of an
operation on the same machine or re-assigns a different ma-
chine to an operation, such that the resulted solution is feasi-
ble and closer to S2 than Ti. Note that the moved operation
can be non-critical. Our neighborhood is in fact Nπ

g ∪ Nk
g ,

where Nπ
g (Nk

g ) is extended from Nπ (Nk) by including
the moves of non-critical operations resulting in feasible so-
lutions. This path relinking is much simpler thanks to the
unique distance.

Algorithm 2 presents our recombination operator based
on path relinking. The operator uses three parameters α,
β and γ, whose value will be established empirically later.
The path from the initial solution Si to the guiding solu-
tion Sg is built step by step as follows. Let Sc be the cur-
rent solution (Sc is initialized to be Si). First, we construct
the set of feasible solutions N that can be obtained from
Sc by applying a single move (lines 5–13). For each op-
eration o, if o is on different machines in Sc and Sg , let
Nk
g (Sc, o) be the set of feasible solutions obtained from

Sc by moving o to the machine of o in Sg . Otherwise, let
Nπ
g (Sc, o) be the set of feasible solutions obtained from Sc

by changing the position of o on the same machine. Let
Smin be the solution such that do(Smin, Sg) is minimum

2264



Algorithm 2 A path relinking based recombination operator
1: Input: Initial solution Si and guiding solution Sg
2: Output: A reference solution Sr
3: Sc ← Si, PathSet← ∅, N ← ∅
4: while d(Sc, Sg) > α× d(Si, Sg) do
5: for each operation o in Sc do
6: if MSc

o 6=M
Sg
o then

7: Smin ← argmin{do(S, Sg)|S ∈ Nk
g (Sc, o)}

8: N ← N ∪ {Smin}
9: else if MSc

o =M
Sg
o and PSc

o 6= P
Sg
o then

10: Smin ← argmin{do(S, Sg)|S ∈ Nπ
g (Sc, o)}

11: N ← N ∪ {Smin}
12: end if
13: end for
14: for each solution S ∈ N do
15: if d(S, Sg) > d(Sc, Sg) then
16: N ← N \ {S}
17: else
18: estimate makespan obj(S)
19: end if
20: end for
21: for each solution S ∈ N do
22: indexDis(S)← |{T ∈ N |d(T, Sg) < d(S, Sg)}|
23: indexObj(S)← |{T ∈ N |obj(T ) < obj(S)}|
24: end for
25: sort N in increasing order of indexDis(S)+indexObj(S),

breaking ties randomly
26: k ← rand{0, 1, . . . ,min{γ, |N | − 1}}
27: Sc ← N(k); N ← ∅
28: if d(Sc, Sg) < β × d(Si, Sg) then
29: PathSet← PahtSet ∪ {Sc}
30: end if
31: end while
32: Sr = argmin{f(S), S ∈ PathSet}, return Sr

(ties are broken randomly). Then, Smin in Nk
g (Sc, o) or

Nπ
g (Sc, o) is added into N . Second, each solution S such

that d(S, Sg) > d(Sc, Sg) is removed from N , and the
makespan of each remaining solution is estimated (lines 14–
18). Third, for each remaining solution S in N , the number
of solutions closer to Sg (with a better makespan) is com-
puted and is denoted by indexDis(S) (indexObj(S)) (lines
21–24). Note that indexDis(S) and indexObj(S) represent
here two measures of quality for S. Fourth, we sort N in
the increasing order of indexDis(S) + indexObj(S) and ran-
domly choose one of the first γ solutions to be the next Sc
along the path, and store it in PathSet if its distance to Sg
is smaller than β × d(Si, Sg) (lines 25–30). These steps re-
peats until d(Sc, Sg) is no longer larger than α × d(Si, Sg)
(line 4). Finally, the best solution in PathSet is returned as
the reference solution (line 32).

It is obvious that the maximum size of set N is no where
no is the number of all the operations in all the jobs, i.e.,
no =

∑n
j=1 nj . The worst time complexity of lines 5-13 is

O(n2o). Lines 21-25 are actually sorting the solutions of set
N , where the time complexity is O(|N | log |N |). Therefore,
the worst time complexity of Algorithm 2 is O(n3o).

Computational Results
Experimental protocol and benchmarks
Our MAE algorithm is implemented in C++ and runs on an
Intel Xeon E5-2697 processor with 2.60 GHz CPU and 2 GB
RAM. In our experiments, we set p, α, β, γ to 10, 0.4, 0.6,
and 5, respectively. Two solutions are considered to be close
and one of them is to be replaced with a random solution
when the number of operations that have different machine
assignments or different positions on the same machine is
less than 10% of the total number of operations in all jobs.
The maximum number of iterations of the tabu search pro-
cedure is 10000. These parameter values are determined by
extensive preliminary experiments.

We evaluate the performance of MAE on four bench-
marks widely used in the literature: DPdata (Dauzère-Pérès
and Paulli 1997), BCdata (Barnes and Chambers 1998),
BRdata (Brandimarte 1993), and HUdata (Hurink, Jurisch,
and Thole 1994), having 313 instances in total with differ-
ent sizes and flexibilities. MAE is applied on each instance
with 20 independent runs. Following the common practice
in the field, we use the following values to compare dif-
ferent methods: The average relative percentage deviation
RPD of objectives over the 20 runs defined as RPD =
100 × (f − LB)/LB, where f is the makespan obtained
by a given algorithm, and LB is the lower bound provided
in Quintiq1; and the average computational time t(s) in sec-
onds over the 20 runs.

In order to have a fair comparison with other algorithms,
the cutoff time of MAE is set to 90 seconds for the BR-
data and BCdata instances, and 5 minutes for the DPdata
and HUdata instances, which is the same as that in GRASP-
mELS. We also provide the results of MAE with a cutoff
time of 1 hour. Besides, we normalize the computational
time as the computer-independent CPU time (CI-CPU) in
the same way as that in GRASP-mELS. Therefore, setting
the speed factor of our computer as 1, the speed factor of
GRASP-mELS, SSPR, HA, and HGTS are 1.09, 0.75, 0.50,
and 0.63, respectively.

Comparison with metaheuristics
We compare our MAE algorithm with the recent state-of-
the-art algorithms (SSPR, HGTS, HA, and GRASP-mELS)
on the four benchmark sets. The comparative results are re-
ported in Tables 1-4. Note that columns best (avg) and t(s)
are the best (average) solutions obtained and average com-
putational time in seconds required by each algorithm, the
LB values marked with ∗ denote the optimal solutions, and
the best known solutions that can be obtained by each ref-
erence algorithm are indicated in bold. Rows #better, #even,
and #worse give the number of instances for which the best
solutions obtained by MAE within 5 minutes or 90 seconds
are better, equal, and worse than each reference algorithm.

1http://www.quintiq.com/optimization/flexible-job-shop-
scheduling-problem-results.html

2265



Table 1: Comparison between MAE and other reference algorithms on the DPdata instance set

Ins. LB
2015 2015 2016 2017 This paper This paper
SSPR HGTS HA GRASP-mELS MAE(5 min) MAE(1 hour)

best(avg) t(s) best(avg) t(s) best t(s) best(avg) t(s) best(avg) t(s) best(avg) t(s)

01a 2505∗ 2505(2508) 68 2505(2505) 122 2505 108 2505(2505) 62 2505(2505) 28.56 2505(2505) 28.56
02a 2228∗ 2229(2230) 100 2230(2234) 205 2230 133 2229(2231) 86 2228(2230.7) 145.12 2228(2229.9) 712.33
03a 2228∗ 2228(2228) 110 2228(2230) 181 2229 97 2228(2230) 94 2228(2228) 55.8 2228(2228) 55.8
04a 2503∗ 2503(2504) 57 2503(2503) 112 2503 87 2503(2503) 31 2503(2503) 8.62 2503(2503) 8.62
05a 2192 2211(2215) 112 2214(2218) 208 2212 116 2212(2215) 126 2208(2211.45) 125.69 2203(2208.05) 834.49
06a 2163 2183(2192) 181 2193(2198) 260 2197 93 2195(2200) 181 2182(2188.85) 177.42 2181(2184.3) 1867.14
07a 2216 2274(2285) 139 2270(2280) 344 2279 204 2276(2284) 127 2269(2274.6) 180.3 2254(2273.85) 2316.78
08a 2061∗ 2064(2066) 181 2070(2074) 318 2067 184 2069(2072) 144 2063(2064.3) 122.58 2062(2063.4) 1741.55
09a 2061∗ 2062(2063) 213 2067(2069) 376 2065 201 2069(2071) 170 2062(2063.15) 176.44 2062(2063.1) 472.62
10a 2212 2269(2287) 120 2247(2266) 369 2287 238 2263(2278) 110 2247(2266.4) 224.36 2245(2266.15) 2428.7
11a 2018 2051(2058) 193 2064(2069) 294 2060 181 2065(2068) 170 2050(2051.8) 200.57 2045(2049.75) 2865.49
12a 1969 2018(2020) 280 2027(2033) 486 2027 151 2039(2045) 148 2016(2021.45) 215.64 2008(2019.3) 1588.16
13a 2197 2248(2257) 119 2250(2264) 416 2248 293 2252(2263) 158 2247(2251.75) 116.55 2236(2246.65) 2674.32
14a 2161∗ 2163(2164) 269 2170(2173) 396 2167 210 2170(2174) 191 2163(2163.9) 191.26 2162(2163.2) 2915.81
15a 2161∗ 2162(2163) 376 2168(2169) 523 2163 192 2172(2174) 173 2162(2164.35) 203.2 2162(2163.15) 568.14
16a 2193 2244(2253) 131 2246(2257) 384 2249 160 2243(2258) 151 2242(2251.65) 196.5 2232(2245.45) 2135.66
17a 2088 2130(2134) 299 2142(2146) 483 2140 203 2145(2152) 190 2128(2132.7) 245.71 2121(2129.3) 1682.54
18a 2057 2119(2123) 409 2129(2133) 650 2132 133 2146(2151) 164 2118(2124.85) 242.2 2108(2114.6) 1752.68

RPD 1.18(1.4) 1.34(1.59) 1.43 1.49(1.73) 1.04(1.24) 0.85(1.13)
CI-CPU 170 214.45 1105 149.94 158.7 1480.52
#better 12 14 16 15
#even 6 4 2 3
#worse 0 0 0 0

From Table 1, one observes that MAE outperforms
HGTS, and HA in terms of both solution quality and compu-
tational time on the DPdata benchmark. Although it requires
slightly more computational time than SSPR and GRASP-
mELS, MAE has the least RPD values (1.04 and 1.24)
for the best and average objective values. Besides, MAE
obtains better results for 12 and 15 instances than SSPR
and GRASP-mELS, respectively. When extending the cut-
off time to 1 hour, MAE improves the previous best known
solutions for 15 instances.

From Table 2, one observes that MAE is competitive with
HGTS and HA on the BCdata benchmark, because it has
smaller values for the best and average objective values. Be-
sides, MAE outperforms HGTS in terms of solution quality.
Compared with SSPR, MAE obtains better, equal, and worse
solutions for 1, 19, and 1 instances, respectively. GRASP-
mELS has better performance than MAE on the BCdata
benchmark.

Results in Table 3 show that MAE outperforms SSPR,
HGTS, and GRASP-mELS in terms of both solution quality
and computational time on BRdata. Although HA requires
slightly less computational time, MAE has smaller values
for the best and average makespan. Besides, MAE obtains
better or the same results for all the instances compared with
other reference algorithms.

Table 4 presents the results of MAE in comparison with
SSPR and GRASP-mELS on the HUdata benchmark. One
observes that MAE outperforms SSPR and GRASP-mELS
because MAE obtains better or equal results for all the
instances with less computational time only except for

GRASP-mELS on the rdata set. In particular, MAE im-
proves the best results obtained by GRASP-mELS(SSPR)
for 4(5), 18(19), and 13(9) instances on edata, rdata, and
vdata, respectively.

In sum, MAE improves the previous best results obtained
by SSPR and GRASP-mELS for 47 and 52 out of the 178
test instances.

Comparison with the state-of-the-art exact method
We compare MAE with the state-of-the-art exact method
based on constraint programming: LNS+FDS (Vilı́m, La-
borie, and Shaw 2015). LNS+FDS constitutes the basis of
the automatic search for scheduling problems in CP Opti-
mizer, which is part of IBM ILOG CPLEX Optimization
Studio. LNS+FDS (also denoted as CPO) has been success-
fully tested on a range of scheduling benchmarks such as
JSP and FJSP, etc.

MAE obtains better, equal, and worse results for 45, 255,
and 13 instances compared with CPO among the 313 in-
stances, respectively. Table 5 reports the results of MAE and
comparison with CPO for the 45 improving instances. Note
that the results of CPO were obtained with a time limit of 8
hours, while the results of MAE were obtained with a time
limit of 1 hour.

Comparison with the industrial solver Quintiq
We now compare MAE with the well-known industrial
solver Quintiq, which has found new best-known solutions
for 119 out of 313 instances. It also indicates the world

2266



Table 2: Comparison between MAE and other reference algorithms on the BCdata instance set

Ins. LB
2015 2015 2016 2017 This paper This paper
SSPR HGTS HA GRASP-mELS MAE(90 s) MAE(1 hour)

best(avg) t(s) best(avg) t(s) best t(s) best(avg) t(s) best(avg) t(s) best(avg) t(s)

mt10c1 927∗ 927(928) 26 927(927) 13 927 12 927(927) 8 927(927.3) 45.72 927(927) 61.69
mt10cc 908∗ 908(908) 20 908(910) 13 908 10 908(909) 17 908(909.85) 14.25 908(909.4) 125.5
mt10x 918∗ 918(918) 23 918(918) 15 918 11 918(918) 2 918(918) 25.67 918(918) 25.67
mt10xx 918∗ 918(918) 19 918(918) 12 918 11 918(918) 2 918(918) 4.5 918(918) 4.5
mt10xxx 918∗ 918(918) 20 918(918) 12 918 11 918(918) 2 918(918) 6.78 918(918) 6.78
mt10xy 905∗ 905(906) 21 905(905) 13 905 11 905(905) 26 905(905) 34.42 905(905) 34.42
mt10xyz 847∗ 847(847) 20 847(850) 18 847 9 847(847) 26 847(847.65) 35.46 847(847) 256.38
setb4c9 914∗ 914(916) 28 914(914) 16 914 15 914(914) 11 914(918.25) 39.78 914(914) 302.61
setb4cc 907∗ 907(907) 21 907(908) 15 907 15 907(907) 29 907(907) 12.54 907(907) 12.54
setb4x 925∗ 925(925) 19 925(925) 15 925 13 925(925) 4 925(925) 16.42 925(925) 16.42
setb4xx 925∗ 925(925) 21 925(925) 14 925 5 925(925) 2 925(925) 7.7 925(925) 7.7
setb4xxx 925∗ 925(925) 22 925(925) 15 925 9 925(925) 3 925(925) 8.45 925(925) 8.45
setb4xy 910∗ 910(912) 32 910(910) 19 910 12 910(910) 18 910(910) 58.79 910(910) 58.79
setb4xyz 902∗ 905(905) 21 905(905) 15 905 14 902(904) 11 902(905.6) 34.6 902(903.55) 956.86
seti5c12 1169∗ 1170(1173) 25 1170(1171) 41 1170 31 1169(1172) 39 1170(1174.4) 64.13 1170(1173.2) 205.68
seti5cc 1135∗ 1135(1136) 29 1136(1137) 34 1136 17 1135(1136) 24 1135(1136.2) 32.41 1135(1135.65) 243.52
seti5x 1198∗ 1198(1199) 41 1199(1201) 38 1198 27 1198(1199) 36 1198(1201.6) 75.48 1198(1199.35) 341.4
seti5xx 1194∗ 1197(1199) 37 1197(1198) 34 1197 29 1194(1197) 26 1197(1198.5) 45.76 1197(1197) 473.48
seti5xxx 1194∗ 1194(1198) 38 1197(1198) 31 1197 19 1194(1197) 27 1197(1198.45) 35.5 1194(1196.7) 612.57
seti5xy 1135∗ 1135(1136) 29 1136(1137) 34 1136 17 1135(1136) 28 1135(1136.4) 25.53 1135(1136) 227.91
seti5xyz 1125∗ 1125(1126) 35 1125(1126) 43 1125 33 1125(1127) 42 1125(1128.75) 32.96 1125(1125.65) 336.27

RPD 0.03(0.12) 0.07(0.13) 0.05 0(0.07) 0.03(0.17) 0.02(0.08)
CI-CPU 12.75 13.8 7.88 19.88 31.28 205.67
#better 1 4 3 0
#even 19 17 18 18
#worse 1 0 0 3

Table 3: Comparison between MAE and other reference algorithms on the BRdata instance set

Ins. LB
2015 2015 2016 2017 This paper This paper
SSPR HGTS HA GRASP-mELS MAE(90 s) MAE(1 hour)

best(avg) t(s) best(avg) t(s) best t(s) best(avg) t(s) best(avg) t(s) best(avg) t(s)

Mk01 40∗ 40(40) 11 40(40) 5 40 0 40(40) 0 40(40) 0.2 40(40) 0.2
Mk02 26∗ 26(26) 15 26(26) 15 26 1 26(26) 10 26(26) 0.55 26(26) 0.55
Mk03 204∗ 204(204) 24 204(204) 2 204 0 204(204) 0 204(204) 0.16 204(204) 0.16
Mk04 60∗ 60(60) 19 60(60) 10 60 0 60(60) 0 60(60) 0.47 60(60) 0.47
Mk05 172∗ 172(172) 57 172(172) 18 172 5 172(173) 15 172(172) 1.46 172(172) 1.46
Mk06 57∗ 57(58) 40 57(58) 63 57 54 58(58) 36 57(58.15) 30.4 57(57.25) 268.54
Mk07 139∗ 139(141) 84 139(139) 33 139 20 139(140) 32 139(139.7) 61.58 139(139) 481.27
Mk08 523∗ 523(523) 83 523(523) 3 523 0 523(523) 0 523(523) 0.36 523(523) 0.36
Mk09 307∗ 307(307) 52 307(307) 24 307 1 307(307) 0 307(307) 1.13 307(307) 1.13
Mk10 189 196(197) 94 198(199) 104 197 33 197(199) 59 195(195.95) 36.78 193(194.6) 827.34

RPD 0.37(0.74) 0.48(0.71) 0.42 0.6(0.83) 0.35(0.51) 0.23(0.34)
CI-CPU 12.75 17.45 5.7 16.57 13.31 158.15
#better 1 1 1 2
#even 9 9 9 8
#worse 0 0 0 0

records of solution quality for all the 313 instances, together
with the first method to hit the records. However, Quintiq
did not describe their methods and the time limits to obtain
these results.

We compare MAE with Quintiq by using a time limit of 1
hour for MAE. Experiments show that MAE obtains better

results than Quintiq for 10 out of 121 instances. These new
records obtained by MAE are provided in Table 6 for future
comparison, where column “UB Ref.” and “UB Date” rep-
resent the method and the date to obtain the new record, re-
spectively, and “[Q]” represents the Quintiq method. Finally,
the summarized comparison of MAE with CPO and Quintiq
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Table 4: Comparison between MAE and other reference algorithms on HUdata w.r.t. RPD values

Ins.

edata rdata vdata

SSPR MAE(5 min) GRASP-mELS SSPR MAE(5 min) GRASP-mELS SSPR MAE(5 min)

best avg best avg best avg best avg best avg best avg best avg best avg

mt06/10/20 0 0.04 0 0.07 0 0 0 0 0 0 0 0 0 0 0 0

la01-la05 0 0 0 0 0 0.07 0.07 0.09 0 0.07 0 0 0 0 0 0

la06-la10 0 0 0 0 0 0 0 0.01 0 0 0 0 0 0 0 0

la11-la15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

la16-la20 0 0 0 0 0 0 0 0.03 0 0 0 0 0 0 0 0

la21-la25 0.08 0.23 0 0.22 2.63 3.27 2.53 2.91 1.91 2.35 0.49 0.8 0.23 0.35 0.1 0.24

la26-la30 0.43 0.66 0.3 0.73 0.36 0.71 0.36 0.48 0.13 0.27 0.17 0.24 0.06 0.08 0 0.03

la31-la35 0.01 0.07 0 0.01 0.05 0.12 0.04 0.05 0 0.02 0.04 0.07 0.01 0.02 0 0

la36-la40 0 0.05 0 0.02 0.36 1.22 0.66 0.9 0 0.1 0 0 0 0 0 0

CI-CPU 18 51 34 44 30 47 25

#better 5 18 19 13 9

#even 38 25 24 30 34

#worse 0 0 0 0 0

Table 5: The improved results of MAE compared with CPO
on 45 instances

Ins.
CPO MAE

Ins.
CPO MAE

LB UB UB LB UB UB

Mk05 168 173 172 r-la23 816 832 831
Mk10 183 195 193 r-la24 775 805 795
02a 2228 2234 2228 r-la25 768 787 779
05a 2189 2213 2203 r-la26 1056 1066 1057
06a 2162 2191 2181 r-la27 1085 1099 1086
07a 2216 2277 2254 r-la28 1075 1079 1076
08a 2061 2066 2062 r-la29 993 1001 994
10a 2197 2263 2245 r-la30 1068 1089 1071
11a 2017 2067 2045 r-la31 1520 1522 1520
12a 1969 2013 2008 r-la32 1657 1658 1657
13a 2197 2258 2236 r-la33 1497 1498 1497
14a 2161 2163 2162 r-la34 1535 1536 1535
16a 2148 2240 2232 v-car1 5005 5006 5005
17a 2088 2140 2121 v-car3 5597 5599 5597
18a 2057 2125 2103 v-car5 4909 4912 4910
e-abz7 564 620 610 v-la22 733 734 733
e-abz8 586 639 636 v-la25 751 753 752
r-abz7 492 535 522 v-la29 993 994 993
r-abz8 506 558 535 v-la30 1068 1069 1068
r-abz9 497 553 536 v-la32 1657 1658 1657
r-car3 5597 5623 5622 v-la33 1497 1498 1497
r-la21 808 838 825 v-la35 1549 1550 1549
r-la22 741 755 753

is reported in Table 7, where columns <, =, and > denote
the number of instances that MAE obtains better, equal, and
worse results than the reference algorithms.

Discuss and analysis
To show the merit of the two-individual based evolutionary
framework, we compare MAE with the trajectory method
called iterated tabu search (ITS) which works on a single

Table 6: New world records obtained by MAE

Ins.
Previous world record MAE

LB LB
Ref.

UB UB
Ref.

UB Date UB

05a 2192 [Q] 2204 [Q] Nov. 2015 2203
07a 2216 [CPO] 2264 [Q] Nov. 2015 2254
13a 2197 [CPO] 2239 [Q] Jan. 2016 2236
rdata-abz7 493 [Q] 524 [Q] Jan. 2016 522
rdata-abz8 507 [Q] 536 [Q] Jan. 2016 535
rdata-la22 741 [CPO] 755 [CPO] Nov. 2013 753
rdata-la23 816 [Q] 832 [CPO] Mar. 2013 831
rdata-la24 775 [Q] 796 [Q] Nov. 2015 795
rdata-la25 768 [CPO] 783 [Q] Jan. 2016 779
vdata-car5 4909 [Q] 4911 [Q] Nov. 2015 4910

Table 7: Summary of MAE compared with CPO and Quintiq
Set MAE(1 h) vs CPO(8 h) MAE(1 h) vs Quintiq

< = > < = >

DPdata 13 5 0 3 2 10
BCdata 0 18 3 0 0 0
BRdata 2 8 0 0 2 0

HUdata

edata 2 60 4 0 20 0
rdata 18 48 0 6 30 1
vdata 10 53 3 1 22 0
sdata 0 63 3 0 18 6

Total 45 255 13 10 94 17

solution. At each iteration of ITS, the tabu search procedure,
which is the same as that in MAE, is performed, followed
by a perturbation procedure that randomly applies 0.2∗ |Nc|
moves in Nπ ∪Nk on the current solution or the best found
solution if the number of consecutive non-improving itera-
tions exceeds 500, where Nc is the set of critical operations.
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Figure 4: Comparison between MAE and ITS on DPdata.

Fig. 4 shows the best, average, and worst solutions ob-
tained by MAE and ITS for each of the 18 instances in DP-
data. It can be observed that the best, average, and worst
solutions of MAE are better than or equal to those of ITS for
all the instances. Besides, the differences between the best
and worst solutions of MAE are also smaller than those of
ITS. This indicates that the two-individual based evolution-
ary algorithm is superior to the trajectory method.

In the preliminary experiments, we have taken 11 differ-
ent values (5, 6, . . . ,15) of p, 5 different groups of values
([0, 0.2], . . . , [0.8, 1]) of [α, β], and 10 different values (1,
. . . ,10) of γ to analyze the parameter sensitivity. There are
totally 11 * 5 * 10 = 550 combinations for all the parameters.
We ran MAE 10 times independently to solve a relatively
difficult instance seti5xyz in BCdata with each of the 550
combinations, the cutoff time of each run being 90 seconds.
The results show that MAE achieves the best performance
when p, α, β, and γ are set to 10, 0.4, 0.6, and 5, respec-
tively, considering both solution quality and computational
efficiency. In the following paragraphs, we will further an-
alyze the impact of one parameter on the performance of
MAE by extending its value domain and keeping other pa-
rameters fixed.

To analyze the impact of parameter p on the performance
of MAE, we take 20 different values (p ∈ {1, . . . , 20}),
keep other parameters fixed, and apply MAE on all the in-
stances in DPdata. The corresponding results are plotted in
Fig. 5. One finds that the average makespan decreases when
p ∈ {1, . . . , 10} and keeps flat or slightly increases when
p ∈ {10, . . . , 20}, while the computational time drastically
decreases when p ∈ {1, 2, 3} and gradually increases when
p ∈ {3, . . . , 20} . The reason might lie in the fact that when
p is small, the best solution preserved in the previous cycle
is not of high quality, which cannot provide good features
to be inherited. When p is too large, the best solution in a
cycle is closer to the best solution found so far, which can-
not provide sufficient diversity, so that MAE would be more
likely trapped into local optima. The best value of p in MAE
is suggested to be 10.
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Figure 5: The average makespan and computational time
corresponding to different values of parameter p on DPdata.
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Figure 6: The average makespan and computational time
corresponding to different values of parameter [α, β] on DP-
data.

To analyze the impact of the parameters α, β, γ on MAE,
we take 5 groups of values ([0, 0.2], . . . , [0.8, 1]) for [α, β],
15 values (1, . . . , 15) for γ, keep other parameters fixed,
and conduct experiments on DPdata and BCdata, respec-
tively. The results are presented in Fig. 6 and Fig. 7. Fig.
6 shows that the average makespan decreases from the first
to the third group and increases from the third to the fifth
group, while the corresponding computational time gradu-
ally increases in the whole range. Fig. 7 shows that both
average makespan and computational time decrease when
γ ∈ {1, . . . , 5} and increase when γ ∈ {5, . . . , 15}. Con-
sidering both solution quality and computational efficiency,
α, β, γ are suggested to be 0.4, 0.6, and 5, respectively.

MAE is effective because it maintains a good balance be-
tween intensification and diversification using two individu-
als S1 and S2, where S1 plays the role of intensification and
S2 plays the role of diversification. To illustrate this, we de-
pict in Fig. 8 the evolution of the objective value of S1 and
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Figure 7: The average makespan and computational time
corresponding to different values of parameter γ on BCdata.
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Figure 8: The evolution of objective values and distances
when solving instance 01a.

S∗ which is the best S1 obtained so far, and the distances
d(S1, S

∗) and d(S1, S2) when solving the representative in-
stance 01a. We see that the objective value of S1 is generally
good and that of S∗ is monotonously improved. This is pos-
sible because d(S1, S2) periodically becomes large (com-
paring with d(S1, S

∗)), so that the path relinking operator
on S1 and S2 is able to find diversified solutions.

Furthermore, we apply statistical significance test on the
average makespan of the instances which are obtained by
multiple runs of MAE compared with SSPR and GRASP-
mELS, the resulting p-value of the average makespan be-
tween MAE and SSPR (GRASP-mELS) are reported in Ta-
ble 8. Considering a level of significance of 0.05, one ob-
serves from Table 8 that there is significant difference be-
tween MAE and SSPR on DPdata, rdata, and vdata, and
there is no significant difference between MAE and SSPR
on BCdata, BRdata, and edata. Besides, there is significant
difference between MAE and GRASP-mELS on DPdata,
rdata, vdata, and BCdata, and there is no significant dif-
ference between MAE and GRASP-mELS on BRdata and

Table 8: Statistical significance test
Benchmark set MAE vs. SSPR MAE vs. GRASP-mELS

DPdata 4.79 × 10−2 3.28 × 10−5

rdata 1.3 × 10−4 6.17 × 10−5

vdata 2.13 × 10−3 3.69 × 10−4

BCdata 8.37 × 10−2 7.12 × 10−3

BRdata 0.2066 0.2230

edata 0.7746 0.7724

edata. The reason may lie in the fact that the instances in
BCdata, BRdata, and edata are relatively easy to solve. The
values of #better, #even, and #worse in Tables 1-4 also give
an idea of the difficulties of the instances.

Conclusion
We have proposed a master-apprentice evolutionary algo-
rithm called MAE for solving the flexible job shop schedul-
ing problem, which distinguishes itself from both single
solution-based and traditional population-based metaheuris-
tics in three main aspects: (1) The population size in MAE is
two, allowing effective collaboration between the two indi-
viduals; (2) MAE uses a simple but very effective individual
updating strategy to ensure the quality and the diversity of
the evolution; (3) In order to generate promising offspring
solutions, MAE uses a semantic problem-specific recombi-
nation operator based on path relinking with a novel distance
definition for two individuals. Computational experiments
show the high performance of MAE in terms of both solu-
tion quality and computational efficiency. We strongly be-
lieve that this two-individual based mater-apprentice evolu-
tionary algorithm is a promising framework for solving other
challenging combinatorial optimization problems.
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