
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Heuristic Search Algorithm for Dimensionality Reduction
Optimally Combining Feature Selection and Feature Extraction

Baokun He, Swair Shah, Crystal Maung, Gordon Arnold, Guihong Wan, Haim Schweitzer
(Baokun.He, swair, gordon.arnold, Guihong.Wan, HSchweitzer)@utdallas.edu, Crystal.Maung@gmail.com

Department of Computer Science, The University of Texas at Dallas
800 W. Campbell Road, Richardson, TX 75080

Abstract

The following are two classical approaches to dimensionality
reduction: 1. Approximating the data with a small number of
features that exist in the data (feature selection). 2. Approx-
imating the data with a small number of arbitrary features
(feature extraction). We study a generalization that approxi-
mates the data with both selected and extracted features. We
show that an optimal solution to this hybrid problem involves
a combinatorial search, and cannot be trivially obtained even
if one can solve optimally the separate problems of selection
and extraction. Our approach that gives optimal and approx-
imate solutions uses a “best first” heuristic search. The algo-
rithm comes with both an a priori and an a posteriori opti-
mality guarantee similar to those that can be obtained for the
classical weighted A* algorithm. Experimental results show
the effectiveness of the proposed approach.

1 Introduction
The representation of data in terms of a small number of
features is a fundamental tool in data analysis. The compact
representation allows for efficient manipulation, and may re-
veal relations in the data that are harder to identify. We study
the unsupervised case, where a typical criterion of quality
for the representation is the accuracy with which the data
can be reconstructed from the compact representation.

Letm be the number of data items, each specified in terms
of n features, so that the data can be viewed as the matrix X
of m rows and n columns. A compact representation with r
features is given by a matrix V of size m × r, with r ≤ n.
The reconstruction of X from V is computed by X ≈ V A,
where A is the r × n coefficients matrix. We note that the
matrix V A is of rank r, so that X is being approximated
by a rank r matrix. Conversely, any rank r matrix can be
expressed as the product V A, and thus gives a compact rep-
resentation in terms of r features.

1.1 Previous work and the current state of the art
Studies of dimensionality reduction distinguish between the
case where the columns of V must also be columns of X
(feature selection), and the case in which this constraint is
not enforced (feature extraction). We review these two ap-
proaches and then propose to combine them. We show that

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Input: the matrix X , the integer r.
Output: the r vectors v1, . . . , vr.

1 Compute the matrix B = XXT .
2 v1, . . . , vr are the top r eigenvectors of B.

Figure 1: The algorithm for optimal feature extraction

applying selection followed by extraction or vice versa does
not give the optimal hybrid representation.

Let Θ be a matrix norm, then the error of approximating
the matrix X by V A is given by:

X ≈ V A, error = Θ(X − V A) (1)

Feature extraction. The well-known algorithm for opti-
mal feature extraction is shown in Fig.1. See, e.g., (Jolliffe
2002; Li et al. 2017). Applications of this algorithm include
the technique of principal component analysis (PCA), which
is arguably the most popular feature extraction technique.
With recent advances in numerical techniques for comput-
ing eigenvectors (e.g., (Halko, Martinsson, and Tropp 2011;
Li et al. 2017)) the algorithm in Fig.1 can be implemented
efficiently even for large amounts of data.

Among the topics of current research are attempts to min-
imize the approximation error (1) in norms that are not uni-
tarily invariant. This turns out to be very challenging. In
particular, minimizing the entry-wise l1 or l0 norms is ex-
pected to improve the robustness of the estimation, but un-
fortunately the problem formulated in these norms turns out
to be NP-hard. See, e.g., Gillis (2018), Song (2017), and
Bringmann (2017). For the more general case of entrywise
lp norms see Chierichetti (2017).

Feature selection. In feature selection the columns of V
are constrained to be columns of X . This is sometimes
known as the Column Subset Selection Problem (CSSP).
See, e.g. (Golub and Van-Loan 2013). Even though the
approximation obtained by feature selection is worse than
the approximation obtained by feature extraction, there are
advantages of feature selection that make it the preferred
choice in many situations. For example:
• Unlike feature selection, the results obtained by feature

extraction are “notoriously difficult to interpret in terms of

2280

the underlying data” (Drineas, Mahoney, and Muthukrish-
nan 2008).
• Selected features generalize better than extracted fea-

tures in machine learning tasks (Guyon and Elisseeff 2003).
• Functions computed from extracted features depend on

all the features and are typically more expensive to evaluate
than functions computed from few selected features.
• Feature selection retains the data sparsity.

To describe current and previous results we need the fol-
lowing notation. Let EFE, EFS be the smallest errors obtain-
able by feature extraction and by feature selection respec-
tively. Consider an algorithm α that produces a selection
S from the matrix X . Its error is given by Eα(S,X) =
minA Θ(X − SA). For such algorithm one can define:

pα(X) =
Eα(S,X)

EFE
, pα = max

X
pα(X)

Then the value of pα indicates the estimation quality in the
worst-case (e.g., Boutsidis (2009), Golub (2013)). The moti-
vation behind this definition is that for any algorithm α and a
matrixX we have: 1 ≤ Eα(S,X)

EFE
≤ pα. Therefore, small val-

ues of pα imply better worst-case performance. For example,
Deshpande (2010) showed that for the Frobenius norm error
in selecting r features pα =

√
r + 1. Thus, we say that an

algorithm α is optimal if Eα(S,X) is the smallest possible,
and it is worst-case optimal if its pα is the smallest possible.

Unsupervised feature selection formulated as CSSP has
attracted a lot of attention, with the first algorithm (pivoted
QR) being developed more than 50 years ago (Businger and
Golub 1965). Recent results improve the accuracy, the run-
ning time, and the number of passes (e.g., (Paul, Magdon-
Ismail, and Drineas 2015; Maung and Schweitzer 2013)).
The problem was recently proved NP-hard (Shitov 2017).
There are, however, polynomial algorithms that are worst-
case optimal, and nontrivial optimal algorithms that run
much faster than exhaustive search.

Numerical linear algebra studies focus on algorithms for
minimizing the Spectral norm. The deterministic algorithm
with the best worst-case error can be found in (Gu and
Eisenstat 1996). A randomized algorithm with an improved
worst-case accuracy for the Spectral norm is described
in (Boutsidis, Mahoney, and Drineas 2009). The theoretical
computer science community produced worst-case optimal
and near optimal randomized algorithms for the Frobenius
norm. These include, among others, (Deshpande et al. 2006;
Guruswami and Sinop 2012). A worst-case optimal deter-
ministic algorithm for the Frobenius norm is given in (Desh-
pande and Rademacher 2010; Guruswami and Sinop 2012).

The algebraic approach taken by most researchers was
shown effective in deriving worst-case optimal algorithms,
but so far has not produced optimal algorithms. Recent stud-
ies using classical AI tools of combinatorial search were
used to derive optimal and near optimal algorithms in the
Frobenius norm. See Arai (2015; 2016).

Hybrid low rank representation. As discussed above
feature extraction and feature selection each have unique ad-
vantages and disadvantages. A hybrid representation that in-
cludes both extracted and selected features was previously

proposed in (Kneip and Sarda 2011) and (Wang 2012). The
main idea is that feature extraction works well in situations
where the features are highly correlated, while feature selec-
tion works well in situations where the data is uncorrelated.
Therefore, these studies apply feature extraction to remove
the correlated components and follow it by feature selection.
As we show this approach is not optimal.

1.2 Our results
In our model we fix both the number of selected features and
the number of extracted features, and attempt to perform se-
lection and extraction to minimize the approximation error
in various norms. We show that the optimal combination of
extraction and selection cannot be obtained by separate op-
timal algorithms for selection and extraction and requires a
combinatorial search. To the best of our knowledge we are
the first to make this observation.

The model we propose has r1 selected features and r2
extracted features. The approximation of X is given by:

X ≈ SA1 +V A2, error = min
A1,A2

Θ(X−SA1−V A2) (2)

where S consists of r1 columns from X and the r2 columns
of V are unconstrained. We refer to the representation in (2)
as the “Hybrid Low Rank”, or HLR. Our main result is an al-
gorithm that computes HLR for any unitarily invariant error
criteria. Observe that the HLR has simple feature extraction
and simple feature selection as special cases.

The algorithm. An obvious approach to obtain a hybrid
low rank representation is to start with the selection of r1
features and follow it with the extraction of r2 features. An-
other alternative is to have the order of selection and extrac-
tion reversed. However, it turns out (see Section 2.1) that
neither of these approaches is optimal. Instead, we propose
to use variants of a “best first” heuristic search to find opti-
mal and near optimal HLR solutions.

The algorithm that we develop is based on the combina-
torial approach to feature selection described in Arai (2016).
The authors define a search graph for subsets, and use vari-
ants of A* to find a solution. The key to their algorithm is the
introduction of heuristic functions that use eigenvalues. We
show that the solution to the HLR can be found in a similar
way, but with different heuristic functions.

The main contributions.
• A heuristic search algorithm for computing optimal and

near optimal hybrid low rank (HLR).
• A priori and a posteriori bounds for these algorithms.
• Since feature selection is a special case of the HLR

(r2=0), our HLR algorithm can also be used for optimal
feature selection in all unitarily invariant norms. In partic-
ular this gives the first optimal feature selection algorithm
for the spectral norm and for the nuclear norm.

2 Hybrid Low Rank representations
To simplify expressions related to matrices that are some-
times used as sets of columns we use the following notation:
For two matrices A,B with the same number of rows we

2281

write A ⊂ B to indicate that the columns of A are a sub-
set of the columns of B. We write |A| for the number of
columns in A, and [A|B] for the matrix consisting of the
columns of A followed by the columns of B.

Let Θ be an error criterion. We consider the following
approximation errors:

EFE(X, r) = min
V,A

Θ(X − V A)

subject to |V | = r

EFS(X, r) = min
S,A

Θ(X − SA)

subject to S ⊂ X , |S| = r

EHLR(X, r1, r2) = min
S,A1,V,A2

Θ(X − SA1 − V A2)

subject to S ⊂ X , |S| = r1, |V | = r2

(3)

From (3) it easily follows that with r = r1 + r2 we have:

EFE(X, r) ≤ EHLR(X, r1, r2) ≤ EFS(X, r) (4)

Thus, one would expect the HLR to have some desired prop-
erties of feature selection combined with some desired prop-
erties of feature extraction. For example, r1 of the HLR fea-
tures are easy to interpret (as in feature selection), and only
r2 of them are hard to interpret (as in feature extraction).

2.1 Greedy HLR is not Optimal
Suppose we are given a black box algorithm that computes
optimal selection, and another black box algorithm that com-
putes optimal extraction. We show by example that one can-
not perform optimal selection followed by optimal extrac-
tion, or vice versa, to compute the optimal HLR. Consider
the following two matrices:

X1 =

(
100 0 1
0 1 100
0 100 50

)
, X2 =

(
20 0 12
−5 0 100
10 30 0

)
The goal for both matrices is to optimally select one column
and extract one feature (r1 = 1, r2 = 1). If optimal selection
of one feature is applied to X1, the best selection (in Frobe-
nius norm) is Column 3 (the error is EFS(X1, 1)=133.9).
Combining the selection of Column 3 with an optimally ex-
tracted single feature reduces the error to 89.0. This, how-
ever, is not optimal. The selection of Column 1 with one
extracted feature reduces the error to EHLR(X1, 1, 1)=77.4
which is optimal. This shows that optimal selection followed
by optimal extraction does not guarantee the optimal HLR.

Similarly, if optimal extraction of one feature is applied
to X2 followed by optimal selection, the error is reduced
to 20.44. The selection in this case is Column 2. This is
not optimal since it is possible to extract a feature fol-
lowed by the selection of Column 3 and reduce the error
to EHLR(X2, 1, 1)=18.8. This shows that optimal extraction
followed by optimal selection does not guarantee the opti-
mal HLR.

3 HLR by heuristic search
A recent paper (Arai et al. 2016) has shown how to solve
CSSP with the weighted A* algorithm for the Frobenius

{}

{x1} {x2} {x3}

{x1, x2} {x1, x3} {x2, x3}

{x1, x2, x3}

Figure 2: Example of the subsets graph

norm. They create a graph of subsets and perform the search
on that graph. We use the same graph to convert the HLR
into a graph search problem and study the performance of
graph search algorithms for this problem. We propose two
heuristics in a standard “best-first” setting. The first heuris-
tic, that we call u, is an upper bound on the optimal HLR
value. As we show, selecting graph nodes according to u
gives a fast greedy algorithm.

The second heuristic, that we call f , is a lower bound
on the optimal HLR value. We prove that using f by it-
self gives an algorithm that is guaranteed to find the optimal
solution. Experimental results show that the algorithm runs
much faster than exhaustive search (and produces the same
results).

We linearly combine f and u to create the following
heuristic: f ′ = f + εu. This gives a much faster algorithm
than using f by itself. This is similar to the weighted A*
approach, and we prove that the solution found by our algo-
rithm comes with guaranteed bounds on its accuracy.

3.1 The subsets graph
The subsets graph is created with nodes corresponding to
column subsets. There is an edge from subset Si to subset Sj
if adding one column to Si creates Sj . The graph generated
for the matrix X = (x1, x2, x3) is shown in Fig.2.

Even though a subset graph is not a tree, it has two prop-
erties that are typically associated with trees. The first prop-
erty is that it has a root, corresponding to the empty sub-
set. The second is that all paths leading from the root to
a node can be considered equivalent. For example, if the
goal node {x1, x3} is found, it is irrelevant if it is reached
by the path {} → {x1} → {x1, x3} or by the path {} →
{x3} → {x1, x3}. This is similar to the case of a tree where
the choice of path leading to a node is irrelevant since there
is a unique path leading from the root to any node.

3.2 The heuristic search algorithm
The algorithm in Figure 3 performs the search for the opti-
mal HLR. It is similar to the standard “best-first” algorithm
except for the following notable difference. The standard
graph search algorithm updates a node in the fringe if a bet-
ter path to it is found (in Line 8 of the algorithm, when nj
is in the fringe). In our algorithm there is no such update.

2282

Input: X ,r1,r2, and a heuristic function f ′(n).
Output: a subset S of selected columns.
Data Structures: Each node ni keeps the subset Si,

and f ′i . Two global lists: the fringe
list L, and the closed nodes list C.

Initialization: Put an empty subset into L.
1 while L is nonempty do
2 Pick ni with the smallest f ′i from L. Ties are

resolved in favor of the larger |Si| (depth).
3 if Si contains r1 columns then
4 Stop and return Si as the solution subset.
5 else
6 Add ni to C.
7 for each child nj of ni do
8 if nj is not in C or L then
9 Compute f ′j from X , Sj , r1, and r2.

10 Put nj with its corresponding f ′j in L.
11 end
12 end
13 end
14 end

Figure 3: The best-first search algorithm.

As explained in Section 3.1, all paths to the same subset are
equivalent, and the value of the node depends only on the
subset and not on the path leading to the subset.

3.3 Heuristic functions
The HLR is defined in terms of X, r1, r2. At each node ni
the subset Si and its size ki = |Si| are known. Recall that
the error EHLR is the smallest error of approximating X by
a selection of r1 columns and the best possible additional r2
unconstrained vectors. The function di at node ni is defined
as the smallest error of approximatingX by a selection of r1
columns that include Si and the best possible additional r2
unconstrained vectors. This is the value at the best goal node
below ni. The function ui at node ni is defined as the small-
est error of approximatingX by the selection Si and the best
possible additional r2 unconstrained vectors. The function
fi at node ni is defined as the smallest error of approximat-
ing X by the selection Si and the best possible additional
r1 + r2 − ki unconstrained vectors, where ki = |Si|.

EHLR(X, r1, r2) = min
S,A1,V,A2

Θ(X − SA1 − V A2)

subject to S ⊂ X, |S| = r1, |V | = r2

di = d(ni, r1, r2) = min
S,A1,V,A2

Θ(X − SA1 − V A2)

subject to Si ⊂ S ⊂ X, |S| = r1, |V | = r2

ui = u(ni, r2) = min
A1,V,A2

Θ(X − SiA1 − V A2)

subject to |V | = r2

fi = f(ni, r1, r2) = min
A1,V,A2

Θ(X − SiA1 − V A2)

subject to |V | = r1 + r2 − ki

(5)

Observe that EHLR and di cannot be calculated efficiently
since the optimal selection S is unknown. By contrast,
ui and fi use only the partial selection available at the
given node, and as shown later can be computed efficiently.
Clearly, the best heuristic choice for the algorithm is f ′i =
di. But since it cannot be efficiently calculated we consider
other choices using fi and ui. The motivation behind these
choices is that both fi and ui can be viewed as approxima-
tions of di, as shown in Proposition 1.

Proposition 1: For each node ni:

f(ni, r1, r2) ≤ d(ni, r1, r2) ≤ u(ni, r2)

and at a goal node (where ki=r1) the inequalities become
equalities.
Proof:
• To see that fi ≤ di observe that both fi and di use the

same number of vectors (r1 + r2), and both use the ki
vectors in Si. The rest of the vectors are unconstrained in
fi but partially constrained in di. This proves the left hand
side inequality.

• To see that di ≤ ui, let Si, V be the vector subsets that
are used to calculate ui. The minimum in the definition of
di includes the subsets Si and V (and additional vectors).
This proves the right hand side inequality.

• If ki = r1 then the definitions of fi and ui are identical.
�

4 The three variants of the algorithm
Proposition 1 shows that the optimal heuristic di is “sand-
wiched” between fi and ui. We consider three different
options for running the algorithm. The first is the choice
f ′i = ui, the second is the choice f ′i = fi, and the third
takes f ′i between fi and ui. Specifically, for the third choice
we observe that taking f ′i = (1−β)fi+βui with 0 ≤ β ≤ 1

is equivalent to taking f ′i = fi + εui with ε = 1−β
β , ε ≥ 0.

The Greedy HLR algorithm: f ′
i = ui. We prove in The-

orem 1 that using f ′i=ui gives a greedy algorithm that exam-
ines exactly r1 nodes before terminating with a solution.

The Optimal HLR algorithm: f ′
i = fi. We prove in

Theorem 2 using f ′i=fi gives an algorithm that is guaranteed
to find the optimal solution.

The Suboptimal HLR algorithm: f ′
i = fi + εui. We

prove in Theorem 3 that using f ′i=fi+εui guarantees a
solution “close” to the optimum.

Bounds on the distance between the optimum and the
solution can be calculated a priori before the algorithm is
executed, and a posteriori, after the algorithm terminates.

4.1 Proofs
Theorem 1: With the choice f ′i = ui, the algorithm ter-
minates after examining r1 nodes.

Theorem 2: With the choice f ′i = fi, the algorithm termi-
nates with an optimal solution. The optimal solution error is
EHLR(X, r1, r2).

2283

Theorem 3: Let n∗ be an optimal solution node for the
HLR. Let e∗ = EHLR(X, r1, r2) be the error at n∗. Suppose
the algorithm is using f ′i = fi + εui, with ε ≥ 0. Let n∗∗ be
the goal node found by the algorithm. Let e∗∗ be the error at
n∗∗, and f∗∗ be the value of f at n∗∗. Let umax be the largest
value of u in the nodes remaining at the Fringe list after the
goal node is reached. Then:

e∗∗ ≤ e∗ + ε(umax − f∗∗) (6)
Lemma 1: fi is monotonically increasing along any path.
Proof of Lemma 1: Suppose nj is a child of ni, so that
Sj = [Si|x], where x is the added column. We need to show:

f(nj , r1, r2) = min
|Vj |=r1+r2−ki−1

min
A

Θ(X − [Si|x|Vj]A)

≥ min
|Vi|=r1+r2−ki

min
A

([Si|Vi]A) = f(ni, r1, r2)

This follows because the minimum on the right hand side
has one unconstrained vector that is constrained on the left
hand side. �

Lemma 2: The value of ui is monotonically decreasing
along any path.
Proof of Lemma 2: We need to show that if nj is the child
of ni then uj ≤ ui. From the definition in (5) the right hand
side reduces the error with the subset Si while the left hand
side reduces the error with the subset Sj , which includes Si
and one additional column. Clearly, the additional column
can only reduce the error. �

Lemma 3: Consider the choice f ′i = ui. Let ni be the
node picked at Line 2 of the algorithm. Let nj be a child of
ni. The following two properties hold:
a. The depth |Sj | of nj is larger than the depth of all other

nodes currently in the fringe.
b. The next node to be picked is a child of ni.
Proof of Lemma 3: The proof is by induction. Property a
follows trivially from Property b. To prove Property b ob-
serve that from Lemma 2, ui is monotonically decreasing
(non-increasing) along any path. Therefore, the f ′ values of
the children of ni will be no greater than the f ′ values of all
the nodes currently in the fringe. Property a guarantees that
the tie breaker will always be decided in favor of a child, so
that the child of ni will be selected next. �

Lemma 4: Suppose Theorem 3 is false. Then for any node
nz on the path from the root to n∗ the following condition
holds: f ′z < f ′∗∗.
Proof of Lemma 4: The falsehood of Theorem 3 can be
written as follows: e∗∗ > e∗+ ε(umax− e∗∗). Since both n∗
and n∗∗ are goal nodes Proposition 1 implies: e∗∗ = f∗∗ =
u∗∗ and e∗ = f∗ = u∗. Using this and some algebra it can
be shown that an equivalent falsehood condition is: f∗∗ >
f∗ + ε

1+ε (umax − f∗). The lemma can now be proved as
follows:
f ′∗∗ = f∗∗ + εu∗∗ = (1 + ε)f∗∗ (c1)

> (1 + ε)f∗ + ε(umax − f∗) = f∗ + εumax (c2)

≥ fz + εumax ≥ fz + εuz = f ′z (c3)
c1 : from the definition of f ′. c2 : from the equivalent false-
hood assumption. c3 : from Lemma 1 f∗ > fz . �

Proof of Theorem 1: The proof follows trivially from
Lemma 3. �

Proof of Theorem 2: The proof follows as a corollary of
Theorem 3 with ε = 0. �

Proof of Theorem 3: If the theorem is false then from
Lemma 4 it follows that all nodes on the path from the root
to n∗ have smaller f ′i values than f ′∗∗. Since at any given
time at least one of them is in the fringe list, they should all
be selected before n∗∗ is selected. But this means that n∗ is
selected as the solution and not n∗∗. �

4.2 A priori and a posteriori bounds
Both the Greedy HLR and the Suboptimal HLR are not guar-
anteed to produce the optimal solution. We proceed to show
how to obtain bounds on how close their solution is to the
optimal. We call a bound a priori if it can be calculated be-
fore the run of the algorithm and a posteriori if it can only
be calculated after the run of the algorithm.

Consider a run of a nonoptimal algorithm producing the
nonoptimal value of f∗∗, while the optimal value is f∗. The
value of f∗∗ can be bounded as follows:

f∗∗ ≤ f∗ +B, B ≥ f∗∗ − f∗
We refer to the value of B as a bound, where a smaller B
indicates a better bound, and B = 0 implies an optimal so-
lution.

The a posteriori bounds that we describe require the ex-
amination of the fringe list after the run of the algorithm.
In particular we compute the following two values from the
fringe list:

fmin = min
ni∈F

fi, umax = max
ni∈F

ui

In addition, the a posteriori bounds use the value f∗∗ at the
(nonoptimal) goal node.

From Lemma 1 it follows that f∗ ≥ fmin, so that B1 =
f∗∗ − fmin is an a posteriori bound for all variants of the
algorithm.

Greedy HLR. Greedy HLR has the following a priori
bound: B2 = uroot − froot. This bound follows from Propo-
sition 1. The only a posteriori bound of Greedy HLR is B1.

Suboptimal HLR. Suboptimal HLR has the following a
priori bound: B3 = εuroot. This bound follows from Theo-
rem 3 and Lemma 2 by observing that:

ε(umax − f∗∗) ≤ εuroot
Suboptimal HLR has two a posteriori bounds:B1 andB4 =
ε(umax − f∗∗). Clearly, its effective bound is the minimum
of the two.

4.3 Using a posteriori bound to improve the result
A paper by Thayer and Ruml (2008) shows how to use
the a posteriori bounds to improve the output of the clas-
sic weighted A* algorithm. The idea is to run the weighted
A* algorithm to convergence, and then identify the node in
the fringe list that affects the bound the most. That node is

2284

Input: X ,r1,r2, ε, T .
Output: a subset S of selected columns.

1 Start with an empty fringe F and a Closed list C.
2 for t = 1, . . . , T do
3 Run either the Greedy HLR or the Suboptimal HLR

to convergence, using F and C.
4 Go over the fringe F , identify the nodes nb1 and

nb4, and compute the values of B1, B4.

nb1 = arg min
ni∈F

fi, nb4 = arg max
ni∈F

ui

5 if B1 < B4 then
6 Expand nb1.
7 else
8 Expand nb4.
9 end

10 end

Figure 4: Optimistic Search Algorithm

then expanded, its children are added to the fringe, and the
weighted A* algorithm continues with the new fringe. Typ-
ically, a single iteration of this algorithm would either im-
prove goal node or improve the a posteriori bound. Fig.4
describes the algorithm in detail.

5 Relationship to previous work
In this section we discuss the relationship between the algo-
rithm presented here and classical work on the weighted A*
algorithm. We also compare our work to the results of (Arai
et al. 2016).

There are many similarities between our model and the
classical weighted A* graph search algorithm (e.g. (Pearl
1984)). The most important one is introduction of the heuris-
tic function f with the following three key properties: 1. f is
a lower bound on the true value at the goal. 2. f is monotoni-
cally increasing. 3. At a goal node the value of f is the value
that one attempts to minimize. Although a heuristic function
is also introduced in the classical theory of (weighted) A*
search, its definition is entirely different. On the other hand,
there is no function in our setting that corresponds naturally
to the functions g (distance from the root) or h (heuristic) in
the classical theory. Similarly, there is no natural function in
the classical theory that corresponds to the function u in our
setting.

The similarity in the properties of f makes our subopti-
mality proofs similar to the classical proofs of weighted A*
suboptimality (e.g. (Pearl 1984)). However, since the heuris-
tic functions used here are different from those used in graph
search, one cannot use the classical proofs “as is” and apply
them to our case. In particular, our Lemma 1 has a corre-
sponding lemma in the classical theory, and our proof idea
of Lemma 4 is similar (but not identical) to the classical
theory. However, there is no correspondence to our Propo-
sition 1 (right hand side), Lemma 2, and Theorem 1. The
bound obtained in Theorem 3 is also different. The result for
the classical weighted A* algorithms are in terms of a rel-

0 2 4 6 8 10

0

1,000

2,000

3,000

4,000

r1

Ti
m

e
(S

ec
on

ds
)

Exhaustive
f ′ = f

0 2 4 6 8 10

0

1

2

3

4

5

6

7

r1

Ti
m

e
(S

ec
on

ds
)

f ′ = f

f ′ = f + u

Figure 5: Run-time results HLR on the dataset vehicle. x-
axis shows r1 and r2=10−r1. Error criterion is the Schatten
p-Norm with p=0.25.

ative bound, while the guarantees in our case are in terms
of an additive bound. Still, the similarity between the ap-
proaches enables us to map ideas that were developed in the
classical theory to our setting. We demonstrated this with the
Optimistic Search Algorithm that can be applied almost ver-
batim in our case. (The only difference is the exact formulas
for the a posteriori bounds.)

Our work is motivated by the study described in
Arai (2016). The main difference is that our results are for
the HLR, and do not use any norm specific assumptions. By
contrast, the Arai proofs are for the CSSP which is a special
case of the HLR, and they make use of the Frobenius norm
assumption.

6 Experimental Results
Efficiently computing fi and ui. The optimality proof
does not use any properties of the error criterion Θ. How-
ever, an efficient computation requires the norms to be uni-
tarily invariant. From the definition of fi, ui in (5) the chal-
lenge is the computation of the coefficient matrices A1, A2,
and the unconstrained matrix V . For all unitarily invariant
norms A1, A2 can be calculated with a pseudo inverse, and
the matrix V by calculating eigenvectors. For other norms
it is not immediately clear how to compute these values.
Specifically, for the entry-wise l0, l1 these calculations are
known to be NP-hard. See Gillis (2018).

Running time. Fig.5 shows running-time on the dataset
vehicle. The left panel shows that the algorithm with f ′i = fi
is significantly faster than exhaustive search. The right panel
shows that using fi + ui runs much faster than fi.

Optimal feature selection. As discussed in Section 1.2
feature selection is a special case of the HLR. Our algo-
rithm is the first nontrivial algorithm for optimal feature se-
lection for unitarily invariant error criteria besides Frobe-
nius. The results for various norms are shown in Table 1. We
do not include the results when algorithms run more than
five minutes. They are compared with two algorithms. The
column ARSS shows results obtained by the algorithm of
Zhu (2015). Their algorithm cannot be used to compute the

2285

Error
r1 f ′ = f

f ′ = f ′ = f ′ =
f ′ = u

f ′ = u ARSS GECriterion f + 0.2u f + 0.4u f + 0.8u a priori a posteriori
vehicle dataset (m = 846 , n = 18)

Nuclear 5 1399.20 1402.64 1569.49 1569.49 1569.49 24490.7 270.83 3465.75 -
Spectral 5 247.58 326.12 326.12 326.12 326.12 19600.32 82.66 - 248.58
Nuclear 10 466.85 520.18 520.18 520.18 520.18 25371.7 105.55 1682.16 -
Spectral 10 112.19 138.80 144.99 144.99 148.60 19744.0 48.85 - 131.68

spectf dataset (m = 267 , n = 45)
Nuclear 5 3814.14 3814.14 3816.69 3817.42 3821.42 8334.75 435.57 4598.65 -
Spectral 5 252.69 257.91 290.60 290.60 280.45 6841.58 78.09 - 348.24
Nuclear 15 - - 2297.04 2292.79 2292.79 9850.00 457.51 3091.28 -
Spectral 15 - 152.12 151.83 165.41 1883.42 6938.17 82.43 - 154.62

libras dataset (m = 360 , n = 90)
Nuclear 4 68.44 68.53 68.53 68.48 71.55 135.88 11.03 91.79 -
Spectral 4 8.558 9.954 9.954 9.954 13.182 84.62 4.80 - 11.863
Nuclear 30 - 6.134 6.185 6.322 6.322 189.90 1.89 8.235 -
Spectral 30 - 0.343 0.351 0.351 0.712 92.80 0.50 - 0.4211

Table 1: Accuracy comparison under Nuclear norm and Spectral norm. The minimum error is highlighted.

Spectral norm, so we use the algorithms of Gu and Eisen-
stat (1996) instead.

Norm r1 r l0 error l1 error
spectf dataset (m = 267 , n = 45)

Nuclear
1 30 0.693 1.16
3 30 0.671 1.15
5 30 0.647 1.13

p = 0.25
1 30 0.691 1.16
3 30 0.675 1.16
5 30 0.649 1.14

vehicle dataset (m = 846 , n = 18)

Frobenius
1 10 0.562 0.92
5 10 0.472 0.831
9 10 0.342 0.71

p = 0.4
1 10 0.562 0.92
5 10 0.465 0.819
9 10 0.342 0.71

Table 2: Reduction in l0 and l1 entrywise norms with in-
creased r1

Minimizing entry-wise l0 and l1 norms. As discussed
in Section 1.1 a current topic of interest is the computation
of low rank representation minimizing entrywise l0 and l1
norms. We found experimentally that feature selection typi-
cally gives lower errors for entry-wise l0 and l1 norms than
feature extraction, though feature extraction performs better
in terms of the unitarily invariant norm used as the error cri-
terion. The hybrid low rank approach allows us to balance
this trade-off, reducing the unitarily invariant norm while at
the same time reducing the error in the l0 and/or l1 norms.
Table 2 shows that for a fixed r, increasing r1 indeed reduces
the entry-wise l0 and l1 norms.

Experiments with big sparse data. We describe exper-
iments with the Greedy HLR algorithm applied to the

r1 Bound r2 = 0 r2 = 5 r2 = 10

100
a priori 530.37 122.62 100.46

a posteriori 0.19 0.15 0.13
solution error 21354.43 15511.81 11278.12

120
a priori 1606.61 430.05 391.93

a posteriori 0.24 0.16 0.12
solution error 7056.89 4445.01 2909.46

140
a priori 9410.57 4065.81 9779.79

a posteriori 0.28 0.17 0.07
solution error 1205.26 470.98 116.84

Table 3: Greedy HLR on TechTC01 data with relative
bounds

TechTC dataset. The matrix size in this case is 163×29261.
This means that the algorithm selection is from 29261 fea-
tures. Exhaustive search algorithms are clearly not practical
in this case. (For example, there are approximately 10288

subsets of selecting 100 features out of 29261, which is sig-
nificantly more than the number of atoms in the universe.)

The results are shown in Table 3. The value of the bounds
is given as the ratio between the bounds and the errors at the
goal node.

Experiments with the Optimistic Search Algorithm.
We do experiments with the Optimistic Search Algorithm,
as discussed in Section 4.3. The results are shown in Table 4.
Observe that the solution error does not change, but the rel-
ative error bound is being reduced (slightly) with additional
iterations.

7 Concluding remarks
This paper introduces the “Hybrid Low Rank” (HLR) rep-
resentation of a matrix as a low rank matrix representation
that uses both selected features and extracted features. It was
shown that an optimal HLR representation cannot be ob-
tained by first selecting features and then extracting features,
or vice versa. Instead, it requires a combinatorial search.

2286

r1 : r2
Iterations solution error1 10 100

42:0 0.09173 0.09171 0.09156 273585.83
42:5 0.06124 0.06122 0.06105 214917.10

42:10 0.04434 0.04434 0.04416 170169.98
5:0 0.04592 0.04528 0.03664 2.02e6
5:5 0.01126 0.01033 0.00854 1.16e6

5:10 0.00388 0.00385 0.00299 8.25e5

Table 4: Relative a posteriori bounds of the Greedy HLR
with Optimistic Search Algorithm on the TechTC01 dataset

An algorithm that uses the “best-first” heuristic search ap-
proach was described. Three variants, optimal, suboptimal
and greedy, were described, This heuristic search technique
allows us to compute a priori and a posteriori bounds, which
show how close the results are to the optimal solution. A pri-
ori bounds can be computed before the run of the algorithm.
A posteriori bounds can be computed after termination. The
paper also shows how to use the a posteriori bound to im-
prove the solution accuracy.

A short abstract describing some of the results in this pa-
per appears in (Shah et al. 2018b). Similar ideas were also
used to derive new algorithms for robust PCA. See (Shah et
al. 2017; 2018a).

References
Arai, H.; Maung, C.; Xu, K.; and Schweitzer, H. 2016. Unsuper-
vised feature selection by heuristic search with provable bounds on
suboptimality. In AAAI’16, 666–672.
Arai, H.; Maung, C.; and Schweitzer, H. 2015. Optimal column
subset selection by A-Star search. In AAAI’15, 1079–1085.
Boutsidis, C.; Mahoney, M. W.; and Drineas, P. 2009. An improved
approximation algorithm for the column subset selection problem.
In SODA, 968–977.
Bringmann, K.; Kolev, P.; and Woodruff, D. P. 2017. Approxima-
tion algorithms for `0-low rank approximation. In NIPS’17. Curran
Associates, Inc.
Businger, P., and Golub, G. H. 1965. Linear least squares solutions
by Householder transformations. Numer. Math. 7:269–276.
Chierichetti, F.; Gollapudi, S.; Kumar, R.; Lattanzi, S.; Panigrahy,
R.; and Woodruff, D. P. 2017. Algorithms for `p low-rank approx-
imation. In Proceedings of the 34th International Conference on
Machine Learning, volume 70, 806–814. PMLR.
Deshpande, A., and Rademacher, L. 2010. Efficient volume sam-
pling for row/column subset selection. In FOCS, 329–338. IEEE
Computer Society Press.
Deshpande, A.; Rademacher, L.; Vempala, S.; and Wang, G. 2006.
Matrix approximation and projective clustering via volume sam-
pling. Theory of Computing 2(12):225–247.
Drineas, P.; Mahoney, M.; and Muthukrishnan, S. 2008. Relative-
error CUR matrix decompositions. SIAM Journal on Matrix Anal-
ysis and Applications 30(2):844–881.
Gillis, N., and Vavasis, S. A. 2018. On the complexity of robust
pca and l1-norm low-rank matrix approximation. Mathematics of
Operations Research in press.
Golub, G. H., and Van-Loan, C. F. 2013. Matrix Computations.
Johns Hopkins University Press, fourth edition.

Gu, M., and Eisenstat, S. C. 1996. Efficient algorithms for comput-
ing a strong rank-revealing QR factorization. SIAM J. Computing
17(4):848–869.
Guruswami, V., and Sinop, A. K. 2012. Optimal column-based
low-rank matrix reconstruction. In Rabani, Y., ed., Proceedings of
the Twenty-Third Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, 1207–
1214. SIAM.
Guyon, I., and Elisseeff, A. 2003. An introduction to variable and
feature selection. Journal of Machine Learning Research 3:1157–
1182.
Halko, N.; Martinsson, P. G.; and Tropp, J. A. 2011. Finding struc-
ture with randomness: Probabilistic algorithms for constructing ap-
proximate matrix decompositions. SIAM Review 53(2):217–288.
Jolliffe, I. T. 2002. Principal Component Analysis. Springer-
Verlag, second edition.
Kneip, A., and Sarda, P. 2011. Factor models and variable selection
in high-dimensional regression analysis. The Annals of Statistics
39(5):2410–2447.
Li, H.; Linderman, G. C.; Szlam, A.; Stanton, K. P.; Kluger, Y.; and
Tygert, M. 2017. Algorithm 971: An implementation of a random-
ized algorithm for principal component analysis. ACM Trans Math
Softw. 43(3):28:1–28:14.
Maung, C., and Schweitzer, H. 2013. Pass-efficient unsupervised
feature selection. In Advances in Neural Information Processing
Systems (NIPS), volume 26, 1628–1636.
Paul, S.; Magdon-Ismail, M.; and Drineas, P. 2015. Column se-
lection via adaptive sampling. In NIPS’15. Curran Associates, Inc.
406–414.
Pearl, J. 1984. Heuristics : intelligent search strategies for com-
puter. Reading, Massachusetts: Addison-Wesley.
Shah, S.; He, B.; Maung, C.; and Schweitzer, H. 2017. Computing
robust principal components by A* search. In IEEE 29th Inter-
national Conference on Tools with Artificial Intelligence (ICTAI),
1042 – 1049.
Shah, S.; He, B.; Maung, C.; and Schweitzer, H. 2018a. Computing
robust principal components by A* search. International Journal
on Artificial Intelligence Tools 27(7).
Shah, S.; He, B.; Xu, K.; Maung, C.; and Schweitzer, H. 2018b.
Solving generalized column subset selection with heuristic search.
In Proceedings of the 32nd National Conference on Artificial Intel-
ligence (AAAI’18), 8153–8154. AAAI Press.
Shitov, Y. 2017. Column subset selection is np-complete. arXiv
e-print (arXiv:1701.02764[math.CO]).
Song, Z.; Woodruff, D. P.; and Zhong, P. 2017. Low rank approxi-
mation with entrywise `1-norm error. In STOC’17, 688–701. New
York, NY, USA: ACM.
Thayer, J. T., and Ruml, W. 2008. Faster than weighted a*: An op-
timistic approach to bounded suboptimal search. In Proceedings of
the Eighteenth International Conference on International Confer-
ence on Automated Planning and Scheduling, ICAPS’08, 355–362.
AAAI Press.
Wang, H. 2012. Factor profiled sure independence screening.
Biometrika 99(1):15–28.
Zhu, F.; Fan, B.; Zhu, X.; Wang, Y.; Xiang, S.; and Pan, C. 2015.
10,000+ times accelerated robust subset selection. In Twenty-Ninth
AAAI Conference on Artificial Intelligence, 3217–3223.

2287

