
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

On the Optimal Efficiency of Cost-Algebraic A*

Robert C. Holte
Computing Science Dept.

University of Alberta
Edmonton, Canada T6G 2E8

(rholte@ualberta.ca)

Sandra Zilles
Computer Science Dept.

University of Regina
Regina, Canada S4S 0A2

(zilles@cs.uregina.ca)

Abstract

Edelkamp et al. (2005) proved that A*, given an admissible
heuristic, is guaranteed to return an optimal solution in any
cost algebra, not just in the traditional shortest path setting.
In this paper, we investigate cost-algebraic A*’s optimal ef-
ficiency: in the cost-algebraic setting, under what conditions
is A* guaranteed to expand the fewest possible states? In the
traditional setting, this question was examined in detail by
Dechter & Pearl (1985). They identified five different situa-
tions in which A* was optimally efficient. We show that three
of them continue to hold in the cost-algebraic setting, but that
one does not. We also show that one of them is false, it does
not hold even in the traditional setting. We introduce an alter-
native that does hold in the cost-algebraic setting. Finally, we
show that a well-known result due to Nilsson does not hold in
the general cost-algebraic setting but does hold in a slightly
less general setting.

1 Introduction
In the traditional shortest path problem, the cost of an edge
can be any non-negative real number, the cost of a path is the
sum of its edge costs, and the aim is to find a path from the
start state to a goal state whose cost is smallest according to
the usual way of ordering the real numbers. This particular
combination of permissible values, cost-aggregating opera-
tor, and value ordering is an example of a cost algebra. There
are many other ways of defining the set of permissible val-
ues, cost-aggregating operator, and value ordering, and some
of these alternatives are of practical importance, in network
routing for example (Sobrinho 2002).

An example of a “shortest path” problem based on a dif-
ferent cost algebra is the widest path problem. A robot trav-
els to a goal location through a network of corridors, each of
which has a width. The aim is to find a path whose narrow-
est corridor is widest, so as to minimize the risk of the robot
scraping against a wall. The values in this problem are the
positive real values up to some maximum possible width, the
cost-aggregating operator is min (because it is the narrowest
corridor in a path that determines the path’s value), and the
value ordering is the opposite of the ordering used for the
normal shortest path problem (because this is a maximiza-
tion problem, not a minimization problem).

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A* (Hart, Nilsson, and Raphael 1968) is a fundamental
algorithm for solving the traditional shortest path problem,
so the question naturally arises, can it also be used to solve
shortest path problems in the general cost-algebraic set-
ting (e.g. the widest path problem)? Edelkamp et al. (2005)
showed that the answer is yes. Just as in the traditional set-
ting, A* with an admissible heuristic is guaranteed to return
an optimal solution in the general cost-algebraic setting.

In this paper our primary focus is on the optimal efficiency
of A*: under what conditions is A* guaranteed to expand the
fewest possible states?

In the traditional setting, this question was examined in
detail by Dechter & Pearl (1985). They identified five dif-
ferent situations in which A* was optimally efficient (“0-
optimal” in their terminology), which we refer to as results
R1 through R5 (see Section 5 for details). We show that R1,
R2, and R5 continue to hold in the cost-algebraic setting, but
that R4 does not. We also show that R3 is false, it does not
hold even in the traditional setting. We introduce an alterna-
tive to R3 that does hold in the cost-algebraic setting.

Finally, we consider the following result in the traditional
setting (Nilsson 1980): if heuristics h1 and h2 are admissible
and h1(s) > h2(s) on every non-goal state s then every state
expanded by A* using h1 is also expanded by A* using h2.
We show that this does not hold in the general cost-algebraic
setting but does hold in a slightly less general setting.

Proofs of some lemmas are omitted due to space limita-
tions. A technical report with all the proofs is available from
the authors on request.

2 Cost Algebra Definitions
The definitions in this section are copied from (Edelkamp,
Jabbar, and Lluch Lafuente 2005) with a few minor changes.

Informally, Ω is the set of possible edge and path costs,
1 is the cost of the empty path, × is the operator for com-
puting a path’s cost from the costs of its edges, and � is the
ordering on costs. Those four components define a cost alge-
bra. Isotonicity is a key defining property of a cost algebra,
almost all our theoretical results rely on it.

Definition 1. Let Ω be a set and × : Ω × Ω → Ω a binary
operator. A monoid is a triple 〈Ω,×,1〉 such that 1 ∈ Ω and
for all a, b, c ∈ Ω:

• a× (b× c) = (a× b)× c

2288



• 1× a = a× 1 = a (1 is the identity element)

Definition 2. If 〈Ω,×,1〉 is a monoid and 〈a1, . . . , an〉 ∈
Ωn is a sequence of length n ≥ 0, then

n∏
i=1

ai =

{
1, if n = 0

a1 × a2 × · · · × an, otherwise.

Definition 3. If Ω is a set and � is a total order on Ω then
a ≺ b denotes (a � b) ∧ (a 6= b), and a � b and a � b are
alternative ways of writing b � a and b ≺ a respectively.

Definition 4. A monoid 〈Ω,×,1〉 with total order � on Ω
is isotone iff a � b implies both (a × c) � (b × c) and
(c× a) � (c× b) for all a, b, c ∈ Ω.

In cost-algebraic search, where the elements of Ω are path
costs, isotonicity is a very natural property. For two paths Pa
and Pb costing a and b, respectively, with a � b, isotonicity
requires that appending a path of cost c to Pa produces a
path whose total cost is less than or equal to (�) the total
cost of the path produced by appending a path of cost c to
Pb. This is closely related to the “order preserving” property
defined by Dechter & Pearl.
Definition 5. A cost algebra is a 4-tuple 〈Ω,×,�,1〉 such
that

• 〈Ω,×,1〉 is a monoid
• � is a total order on Ω

• 1 � a for all a ∈ Ω

• 〈Ω,×,1〉 with � is isotone.

3 Search-Related Definitions
Many A* studies, including Dechter & Pearl’s, allow a state
space to contain an infinite number of states but require edge
costs to be bounded away from zero. This requirement is
used to guarantee that A* terminates after a finite number
of iterations but does not play a role in Dechter & Pearl’s
optimal efficiency results. We take an alternative approach,
allowing edge costs to be 0 (1 in the algebra) but restricting
the state space to be finite in order to guarantee A*’s termi-
nation.

For a finite set of states S and cost algebra 〈Ω,×,�,1〉, a
problem P is a triple 〈start, goal, σ〉, where start, goal ∈
S and σ is a successor function on S.1 A successor function
maps each s ∈ S to a set of pairs {(si, ω(s, si))} where
si ∈ S and ω : S × S → Ω is a cost function specifying the
cost, ω(s, t), of transitioning directly from state s to state t.
If σ(s) contains a pair of the form (t, x), we write t ∈ σ(s), t
is called a successor of s, and we say there is an edge from s
to t whose cost is x. To identify the problem P with which a
successor function is associated we will useP as a subscript,
i.e. σP . Σ denotes the set of all possible successor functions
for a given state set and cost algebra.

For a given σ ∈ Σ, a finite sequence 〈s0, . . . , sn〉 of
states in S is a path if si ∈ σ(si−1) for i ∈ [1, n].
If P = 〈s0, . . . , sn〉 is a path then its cost, ω(P ), is

1This definition mandates that a problem have just one goal
state. Dechter & Pearl allow multiple goal states, but this differ-
ence does not materially affect any of our analysis.

∏n
i=1 ω(si−1, si). Path P from state s to state t is optimal if

ω(P ) � ω(P ′) for all paths P ′ from s to t. If there exists a
path from state s to state t the distance from s to t, d(s, t),
is the cost of an optimal path from s to t. If there is no path
from s to t then d(s, t) = ∞, where ∞ is a special value
(∞ /∈ Ω) and � and × are extended as follows:

• a ≺ ∞ for all a ∈ Ω

• a×∞ =∞× a =∞×∞ =∞ for all a ∈ Ω.

When we wish to emphasize the specific σ on which dis-
tances (and related functions such as ω) depend we will add
σ as a subscript, as in dσ(s, t), ωσ(P ), etc.

Problem 〈start, goal, σ〉 is solvable if there exists a path
from start to goal. In this paper we are exclusively con-
cerned with solvable problems, so we will henceforth use
the term “problem” to mean “solvable problem”. A solu-
tion for problem P is a path from start to goal, and C∗P =
d(start, goal) is the cost of an optimal solution (written as
C∗ when P is obvious from context).

A search algorithm succeeds on problem P if it returns
C∗P when given P as input, and succeeds on a set of prob-
lems P if it succeeds on every problem in P.

A heuristic is a function h : S → Ω ∪ {∞} with
h(goal) = 1. We will write A∗h to denote A* using h as
its heuristic.

Definition 6. For heuristic h, goal ∈ S, and σ ∈ Σ, the
triple 〈h, goal, σ〉 is admissible iff h(s) � dσ(s, goal) for
all s ∈ S and is consistent2 iff h(s) � ωσ(s, t) × h(t) for
all s ∈ S and t ∈ σ(s).

Definition 7. For heuristic h, PAD(h) is the set of prob-
lems 〈start, goal, σ〉 such that 〈h, goal, σ〉 is admissible,
and PCONS (h) is the set of problems 〈start, goal, σ〉 such
that 〈h, goal, σ〉 is consistent.

PAD(h) and PCONS (h) correspond to Dechter & Pearl’s
IAD and ICONS , respectively.

Definition 8. Let h be any heuristic and P a problem. Then
path P = 〈s0, . . . , sn〉 is strictly C∗-bounded iff fP (si) ≺
C∗ for all i ∈ [0, n], where fP (si) = gP (si)× h(si), and

gP (si) =
i−1∏
j=0

ω(sj , sj+1).

State s is surely expanded by A* (abbreviated s.e.) iff
there is a path from start to s that is strictly C∗-bounded.

Definition 9. Given any heuristic h, problem
〈start, goal, σ〉 is non-pathological iff there exists an
optimal solution P = 〈s0, . . . , sn〉 (s0 = start, sn = goal)
such that fP (si) ≺ C∗ for i ∈ [0, n− 1].

2Historically, this is the definition of a heuristic being “mono-
tone”, consistency required h(s) � dσ(s, t)×h(t) for all s, t ∈ S.
Pearl (1984) was the first to note that the two definitions are equiv-
alent in the traditional numerical, additive setting. This equivalence
also holds in the cost-algebraic setting.

2289



4 Fundamental A* Results
In this section we prove that A*, in the cost-algebraic set-
ting, always expands all s.e. states (Lemma 2) and, if the
problem being solved is non-pathological, it expands only
the s.e. states (Lemma 3). Both results use the following
generalization of Lemma 1 by Hart et al. (1968). Our proof
closely follows theirs.

Lemma 1. The following holds at the beginning of every
iteration prior to A*’s termination: if state s is not closed,
then for every path P from start to s there exists a state
s′ ∈ P that is in Open with g(s′) � gP (s′).

Proof: There are two cases to consider.
Case 1: start is not closed. In this case the lemma follows
with start playing the role of s′ for all states s and paths P
from start to s.
Case 2: start is closed. Let s be any state that is not closed,
P any path from start to s, and ∆ the set of all states si ∈ P
that are closed with g(si) � gP (si). ∆ is not empty because
start ∈ ∆. Let s∗ be the state in ∆ with the largest “index”
in P , i.e. all other states in ∆ precede s∗ in P . Let t be the
successor of s∗ in P (t exists because s∗ 6= s since the latter
is not in ∆).

We will now show that t has the properties required of s′
by the lemma. At the time s∗ became closed with its present
g-value, g(s∗), a path to t was created with a cost of g(s∗)×
ω(s∗, t). Because of isotonicity and the fact that g(s∗) �
gP (s∗), we have g(s∗) × ω(s∗, t) � gP (s∗) × ω(s∗, t) =
gP (t). The current g-value of t, g(t), cannot be larger than
g(s∗)× ω(s∗, t) (because g-values can only decrease as A*
proceeds) and therefore g(t) � gP (t).

Because t has been generated (by the expansion of s∗)
it is either open or closed. We will now show it cannot be
closed, and therefore must be open. t cannot be closed with
g(t) � gP (t) at the present time because if it were, it would
be in ∆, contradicting the fact that s∗ has the largest index
of the states in ∆. t could have been in Closed with g(t) �
gP (t) prior to s∗ being closed with its present g-value, but
A* would have removed t from Closed at that time because
a lower cost path to twas generated. Therefore at the present
time, tmust be open with g(t) � gP (t), so s′ = t establishes
the lemma.

Lemma 2. Let h be a heuristic and P a problem. If state s
is s.e. then A∗h will expand it.

Proof: Because s is s.e. there exists a strictly C∗-bounded
path P from start to s, i.e. a path such that fP (si) ≺ C∗

for all si ∈ P . By Lemma 1, if s is not closed then there
exists an open state s′ ∈ P with g(s′) � gP (s′). Because of
isotonicity, this implies g(s′)× h(s′) � gP (s′)× h(s′), i.e.
that f(s′) � fP (s′). We have fP (s′) ≺ C∗ and, if goal is on
Open, C∗ � f(goal), so that fP (s′) ≺ f(goal). Since A∗h
terminates when f(goal) is the smallest (�) f -value among
the states inOpen, it will not terminate until all the states on
P , including s, have been expanded.

Lemma 3. Let h be a heuristic and P a non-pathological
problem. If A∗h breaks ties in favour of goal then it will return
an optimal solution for P and will only expand s.e. states.

5 Dechter & Pearl’s Optimal Efficiency
Results

Dechter & Pearl (1985) give four definitions of “optimality”.
Of the most practical interest is what they called 0-optimal:
Definition 10. Let P be a set of problems and A a set of
algorithms. Then A* is 0-optimal over A relative to P iff for
every P ∈ P and A ∈ A the set of nodes expanded by A* in
solving P , no matter what tie-breaking rule A* uses as long
as ties are broken in favour of goal, is a subset of the set of
nodes expanded by A in solving P .

We will focus on the situations in which Dechter & Pearl
proved that A* is 0-optimal and use the phrase “optimally
efficient” to mean 0-optimal.

Dechter & Pearl analyzed 12 different situations: prob-
lems could be drawn from PAD(h) or PCONS (h), problems
could be pathological or non-pathological, and the algo-
rithms to which A* is compared could be one of three types:
ad (admissible, i.e. guaranteed to succeed on PAD(h)), gc
(defined in Section 6 below), or bf (what we call BF*(F ) in
Section 7 below). The following are all the combinations of
problem- and algorithm-types they analyzed for which A* is
0-optimal (see their Figure 9):

(R1) Non-pathological P ∈ PCONS (h), ad algorithms
(their Theorem 8). Their proof, with only minor
changes in a few details, is valid in the cost-algebraic
setting. We present this in Appendix A.

(R2) Non-pathological P ∈ PCONS (h), gc algorithms.
Follows from R1 because every gc algorithm is ad.

(R3) Non-pathological P ∈ PAD(h), gc algorithms (their
Corollary 5). In Section 6 we show that this result is
false, even in the traditional setting. In Section 6.1
we give an alternative result that maintains some of
the spirit of R3.

(R4) Non-pathological P ∈ PAD(h), bf algorithms (their
Corollary 7). In Section 7 we give an example show-
ing that this result does not hold, in general, in the
cost-algebraic setting.

(R5) Non-pathological P ∈ PCONS (h), bf algorithms.
For Dechter & Pearl this is a special case of R4, so
they did not give a separate proof. However, their
proof of R4, with only minor changes in a few de-
tails, is valid in the cost-algebraic setting when re-
stricted to PCONS (h), as we will prove in Section 7.

6 Result R3 (Dechter & Pearl’s Corollary 5)
Dechter & Pearl’s Corollary 5 deals with an important type
of situation—an admissible, but not necessarily consistent,
heuristic is available for the given problem—but only con-
siders a particular type of search algorithm, called a globally
compatible (gc) algorithm. They define an algorithm to be gc
if it returns an optimal solution to a problem whenever A*
does, even if the heuristic used by A* is inadmissible.

In our notation, Dechter & Pearl’s Corollary 5 is this:
For any heuristic h, non-pathological problem P ∈
PAD(h), and gc algorithmA, if A∗h breaks ties in favour
of goal then any state expanded by A∗h in solving P
must also be expanded by A in solving P .

2290



Since A∗h breaking ties in favour of goal will only expand
s.e. states on a non-pathological problem (Lemma 3), to
show that their Corollary 5 is false we need to give a gc
algorithm and a non-pathological problem with an admissi-
ble heuristic that the gc algorithm solves optimally without
expanding some s.e. state. The proof that our algorithm is gc
uses the following quantities.

Definition 11. For path P originating at start define
Qf (P ) = max{fP (s)|s ∈ P}.

For any state s, define Q(s) = min{Qf (P )|P is a path
from start to s} and Qopt(s) = min{Qf (P )|P is an opti-
mal path from start to s}.

Finally, define Q = Q(goal) and Qopt = Qopt(goal).

Our gc algorithm, GC1, proceeds in two phases. In Phase I, it
computes all least-cost paths from start to a selected state s
and updates h(s). In Phase II it runs Algorithm C by Bagchi
& Mahanti (1983) – which we will refer to asAlgC – on the
given problem but using the updated h(s) value.

Phase I can be done in various ways, for example as fol-
lows. Let s be the terminal state of a walk of a predeter-
mined length expanding the leftmost child at each level,
and let Cr the cost of that path to s. Then run a depth-first
search, without using h, with Cr as the cost bound, record-
ing all the optimal paths to s. The new h(s) value is then
Qopt(s)− d(start, s).3 Thus ends Phase I.

The new h(s) value defined in this way has the important
property that it does not change Qf (P ) for any optimal path
P from start to s. This property is instrumental in the proof
of the following lemma.

Lemma 4. Given a problem for which Q = Qopt, the modi-
fied version of the problem produced by GC1’s Phase I also
has Q = Qopt.

AlgC is identical to A* except in how it chooses nodes for
expansion. It records the largest f -value expanded so far in a
variable called F . When it selects a node to be expanded, it
first looks to see if there are any open nodes n with f(n) ≤
F . If there are, it chooses one with the smallest g-value. If
there are not, it chooses an open node with the smallest f -
value, breaking ties in favour of nodes with the smallest g-
value. In either case, ties are broken in favour of the goal.

The proof that GC1 is globally compatible with A*, i.e. it
returns an optimal solution whenever A* does, is based on
two properties of AlgC proven by Bagchi & Mahanti:4

(1) the solution returned by A* is never cheaper than the solu-
tion returned by AlgC (their Theorem 3.7 and Remark (i)
following it). In particular, for our purposes, if A* returns
an optimal solution for a problem then so does AlgC;

(2) the solution returned by AlgC is optimal if and only if
Q = Qopt (their Theorem 3.8).

Together these imply that if A* solves a problem optimally
then Q = Qopt. The modification of h(s) made in GC1’s
Phase I does not change this fact (Lemma 4). Since Q =

3This cannot be smaller than the original h(s) value because s
is a state on all optimal paths from start to s.

4If Property (2) could be proven for A* then A* could be used
in Phase II instead of AlgC.

Figure 1: GC1 does not expand s.e. node B.

Qopt in the modified problem, (2) guarantees AlgC will re-
turn an optimal solution for the modified problem, which,
of course, is also an optimal solution for the original prob-
lem since GC1 has only modified h(s), not any edge costs.
We have thus proven that GC1 returns an optimal solution
whenever A* does.

Figure 1 gives an example of a problem with an admissi-
ble heuristic that GC1 solves optimally without expanding
s.e. state B. The execution of GC1 on this problem if B
is the state s selected in Phase I is as follows. start–A–B
is the only optimal path from start to B, so Qopt(B) =
Qf (start–A–B) = f(A) = 21. Phase I therefore updates
h(B) to be 21 − 2 = 19. In Phase II, AlgC halts imme-
diately after expanding start because neither f(A) = 21
nor f(B) = 22 is less than f(goal). GC1 has found the op-
timal solution (start–goal) without expanding B, which is
s.e. given its original h(B) value. This completes our coun-
terexample to Dechter & Pearl’s Corollary 5.

The key idea in this counterexample is that a state can be
s.e. because its initially given heuristic value is excessively
low and a process such as GC1’s Phase I can increase its
heuristic value to the point that the state is no longer s.e.

6.1 An Alternative to Dechter & Pearl’s
Corollary 5

Definition 12. Search algorithm A cost-dominates search
algorithm B iff for any problem P the cost of the solution
returned by A, CA(P), is no worse than CB(P), the cost of
the solution returned by B (formally, CA(P) � CB(P)).

For example, by proving that the solution returned by A*
is never cheaper than the solution returned by AlgC, Bagchi
& Mahanti proved that AlgC cost-dominates A*.

We will now show that any algorithm that cost-dominates
A* must expand all s.e. states. The proof is almost identical
to Dechter & Pearl’s proof of their Theorem 8 (presented in
this paper as Theorem 16 in Appendix A). The key idea in
the proof is the construction of a new problem from a given
problem P and s.e. state s. We call the new problem Pscd.
It is identical to P except it has a new edge directly from
s to goal with a suitably chosen cost (cs). Formally, Pscd is
defined as follows.
Definition 13. Given heuristic h, problem P =
〈start, goal, σP〉, and s.e. state s, define cs = 1, and define

2291



a new problem Pscd = 〈start, goal, σPs〉 that is identical to
P except for σPs

cd
(s), which differs from σP(s) as follows:

• if goal /∈ σP(s) then σPs
cd

(s) = σP(s) ∪ {(goal, cs)},
• if (goal, ωP(s, goal)) ∈ σP(s) then σPs

cd
(s) = (σP(s) \

{(goal, ωP(s, goal))}) ∪ {(goal, cs)}
Lemma 5. Let h,P, s, cs, and Pscd be as in Definition 13.
Then CA∗(Pscd) ≺ C∗P .

A crucial step in Dechter & Pearl’s proof of their The-
orem 8, which is also needed here, is the assertion that an
algorithm that did not expand s.e. state s in solving P would
behave identically on problem P and the new problem de-
rived from it (Pscd in our case). Eckerle et al. (2017) pointed
out this is only true of certain kinds of algorithms and iden-
tified one set of assumptions that make this assertion true:
that the algorithm be deterministic, expansion-based, and
“black box”, or DXBB (see Appendix B). The following re-
sult about DXBB algorithms is what is needed in the proof
of Dechter & Pearl’s Theorem 8 and in the proof we are
about to give about algorithms that cost-dominate A*.
Lemma 6. Let A be a DXBB algorithm, P1 =
〈start, goal, σ1〉 and P2 = 〈start, goal, σ2〉 two problems
with a common start and goal, and X the set of states ex-
panded by A in solving P1. If σ1(s) = σ2(s) for all s ∈ X ,
then A will return the same solution when it solves P2 as it
did when it solved P1.
Theorem 7. Let h be a heuristic, P = 〈start, goal, σP〉 a
problem, and s an s.e. state. Then any DXBB algorithm A
that cost-dominates A* must expand s in solving P .
Proof: Suppose, for the purpose of contradiction, thatA suc-
ceeds on problem P without expanding s.e. state s and let
X be the set of states expanded by A in solving P . Since
s /∈ X and s is the only state on which σPs

cd
and σP differ,

the premises of Lemma 6 are satisfied, so A will return the
same solution for problem Pscd as it did for P . By Lemma 5,
CA∗(Pscd) ≺ C∗P and, by definition, C∗P � CA(P) =
CA(Pscd). Thus, CA∗(Pscd) ≺ CA(Pscd), contradicting the
theorem’s premise that A cost-dominates A*.

Combining Theorem 7 and Lemma 3, we get the follow-
ing optimal efficiency result, which is very much in the spirit
of Dechter & Pearl’s Theorem 11:
Theorem 8. For any heuristic h, non-pathological problem
P , and DXBB algorithm A that cost-dominates A*, if A∗h
breaks ties in favour of goal then any state expanded by A∗h
in solving P must also be expanded by A in solving P .

It is instructive to consider why this theorem, with GC1
serving as algorithmA, is not contradicted by the example in
Figure 1. The reason is that GC1 does not cost-dominate A*
so Theorem 8 does not apply to GC1. To see that GC1 does
not cost-dominate A*, consider the problem Pscd created by
applying the construction in Definition 13 to the problem in
Figure 1 with s = B. This Pscd is identical to Figure 1 except
it has an edge of cost 0 (the algebra’s 1) fromB to goal. The
solution returned by GC1 on this problem would be start–
goal costing 10, but A* would return the solution start–B–
goal costing 3. This shows that GC1 does not cost-dominate
A*. In general, although globally compatible algorithms are

required to return optimal solutions whenever A* does, they
are allowed to return more costly solutions than A*’s when
A*’s solutions are not optimal, as in this example.5

7 Results R4 and R5 (Dechter & Pearl’s
Corollary 7)

Dechter & Pearl’s Corollary 7 also considers the situation in
which the heuristics are admissible but not necessarily con-
sistent but with algorithms restricted in a different way. This
corollary focuses on best-first search algorithms, which are
algorithms instantiating their BF* template using an evalua-
tion function for paths, which we will denote F (P ). F (P )
computes a value for path P based on P ’s states, edge costs,
and the heuristic values of P ’s states. We will write BF*(F )
to denote BF* executed with the evaluation function F .

In the context of their Corollary 7 they require F (P ) =
ω(P ) if P is a path from start to goal but otherwise impose
no restrictions on F . A particular function F that satisfies
this requirement is, of course, A*’s evaluation function: for
path P from start to n, F (P ) = ω(P )× h(n). We will use
lower case f to refer to this evaluation function. A*, in this
notation, is BF*(f ).

Dechter & Pearl’s Corollary 7, in our terminology, is this:6

For any heuristic h, non-pathological problem P ∈
PAD(h), and path evaluation function F such that
BF*(F ) succeeds on PAD(h), if A∗h breaks ties in
favour of goal then any state expanded by A∗h in solving
P must also be expanded by BF*(F ) in solving P .
Dechter & Pearl’s Corollary 7 follows immediately from

their Theorem 12(a), which is a mere restatement of their
Lemma 6.7 We shall focus, therefore, on their Lemma 6.

The following generalizeQf (P ) (Definition 11) and Def-
inition 8, respectively, to arbitrary path evaluation functions.
Definition 14. For heuristic h, problem P , path P =
〈s0, . . . , sn〉, and path evaluation function F , define
QF (P ) = F (s0, . . . , sk), where k ∈ [0, n] is such that
F (s0, . . . , sk) � F (s0, . . . , si) for all i ∈ [0, n].
Definition 15. Let h be a heuristic, P a problem, and F
a path evaluation function. Then path P is strictly C∗-
bounded w.r.t. F iff QF (P ) ≺ C∗ and state s is surely ex-
panded w.r.t. F (abbreviated F -s.e.) iff there is a path from
start to s that is strictly C∗-bounded w.r.t. F .

When F = f this definition is identical to Definition 8 so
states that we have been calling s.e. up to now will be called
f -s.e. in the remainder of this section.
Dechter & Pearl’s Lemma 6, in our notation, is as follows.

For any heuristic h and path evaluation function F , if
BF*(F ) succeeds on PAD(h) then for every problem
P ∈ PAD(h) any state that is f -s.e. is also F -s.e.
5The flaw in Dechter & Pearl’s proof of their Corollary 5 occurs

in the proof that a gc algorithm must expand all s.e. states (their
Theorem 11). That proof incorrectly asserts that A* will always
find an optimal solution on their equivalent of Pscd.

6Here we only give the portion of their Corollary 7 related to 0-
optimality. The corollary also includes claims about 1-optimality.

7In their proof of their Theorem 12(a) they mistakenly cite their
Theorem 11 when they meant to cite their Lemma 6.

2292



Their proof is as follows (of course, they used the numer-
ical operators, not the cost-algebraic ones).8 Suppose, for
the purpose of contradiction, that there exists a problem
P ∈ PAD(h) in which some state s is f -s.e. but not F -
s.e. Being f -s.e. means there is a path P from start to s
such that Qf (P ) ≺ C∗, and not being F -s.e. means there
is no path R from start to s for which QF (R) ≺ C∗. In
particular, QF (P ) � C∗.

They then construct a problem P ′ ∈ PAD(h) that consists
only of path P , goal,9 and two edges to goal, one from s
costing c1, the other from start costing c2. Figure 2 depicts
P ′. They then define c1 and c2 so that the following all hold:

(A) (ω(P )× c1) ≺ c2,
(B) Qf (P ) � (ω(P )× c1), and
(C) c2 � QF (P ).

With these facts, the logic of the proof is as follows. Because
of (A), C∗P′ = ω(P ) × c1, i.e. the only optimal solution
in P ′ is P followed by the edge from s to goal. (B) guar-
antees that all the heuristic values are admissible, i.e. that
P ′ ∈ PAD(h). Finally, (C) guarantees that the optimal path
will not be found by BF*(F ) because when it expands start
it finds a solution path costing c2, so it will stop expand-
ing states on P when it reaches the first one whose F -value
equals QF (P ). Therefore, BF*(F ) returns a suboptimal so-
lution for P ′, contradicting the assumption that it succeeds
on PAD(h).

All that remains is to find values of c1 and c2 that satisfy
(A), (B), and (C). Here Dechter & Pearl exploit the fact that
their costs can be arbitrary positive numbers. They define

c1 = Qf (P )− c(P )

and

c2 =
QF (P ) +Qf (P )

2
.

It is easy to verify that (A), (B), and (C) hold with these def-
initions. However, our cost algebra does not have operations
equivalent to subtraction or division by 2, so these defini-
tions cannot be used, something different is needed if this
proof is to be used within the cost-algebraic setting.

Requirement (C) can always be satisfied by setting c2 =
QF (P ), which also gives the most latitude in satisfying (A).

8Their proof is not specific to s.e. states. What is actually being
proven is that if BF*(F ) succeeds on PAD(h) then for every path
P , QF (P ) � Qf (P ).

9Strictly speaking, Dechter & Pearl add two new goal states,
one for each edge. The difference is immaterial.

Figure 2: The construction in Dechter & Pearl’s Lemma 6.

But requirements (A) and (B) are problematic in the cost-
algebraic setting; a value of c1 satisfying both requirements
is not guaranteed to exist, as we will show in a moment.

If c2 is assigned the value QF (P ) then setting c1 = h(s)
always satisfies (A) since ω(P )× h(s) = f(s) � Qf (P ) ≺
QF (P ) = c2. If, in addition, f(s) = Qf (P ), then (B) will
be satisfied and the proof of the lemma completed. We there-
fore get Dechter & Pearl’s Lemma 6, restricted to problems
in PCONS (h), in the cost-algebraic setting by making two
final, simple observations:

(1) if the given problem P is in PCONS (h) (as opposed to
PAD(h)), then P ′ constructed as described (with c1 = h(s)
and c2 = QF (P )) is also in PCONS (h), and

(2) in the cost-algebraic setting with a consistent heuris-
tic f -values along a path can never decrease (just as in the
traditional numerical setting).

Lemma 9. For any heuristic h and path evaluation function
F , if BF*(F ) succeeds on PCONS (h) then for every problem
P ∈ PCONS (h) any state that is f -s.e. is also F -s.e.

Combining Lemma 9 and Lemma 3, we get R5:

Theorem 10. For any heuristic h, non-pathological prob-
lem P ∈ PCONS (h), and path evaluation function F such
that BF*(F ) succeeds on PCONS (h), if A∗h breaks ties in
favour of goal then any state expanded by A∗h in solving P
must also be expanded by BF*(F ) in solving P .

Counterexample to the cost-algebraic version of Dechter
& Pearl’s Lemma 6.

We will now give a counterexample showing that Dechter
& Pearl’s Lemma 6 is not true for PAD(h) in the cost-
algebraic setting. The algebra we will use in this example
is defined as follows. The values of the algebra are all in-
tegers of the form 5a + 7b where a and b are any non-
negative integers. For example, 22 is a value in this alge-
bra (22 = 5 · 3 + 7 · 1) but 23 is not. The algebra’s or-
dering � is the usual ≤ ordering on integers. The algebra’s
× operator is normal integer addition; 0 is the identity el-
ement (“1”). The set of values is closed under × because
(5a+ 7b) + (5x+ 7y) = 5(a+ x) + 7(b+ y).

The function F (P ) in this example computes the smallest
cost possible for an extension of P that reaches goal taking
into account the g- and h-values of all the states in P . If the
algebra contained all the non-negative integers this would
simply be the largest f -value on P but because some inte-
gers are missing in this algebra, F (P ) can be strictly larger
than the largest f -value on P and still be admissible. This
is precisely what Dechter & Pearl’s Lemma 6 says cannot
happen (see footnote 8).

For example, consider the path P = start–A–B in Fig-
ure 3. Qf (P ) = f(A) = 21 but F (P ) = 22 is admissible
because the cost of P is 12 and it is impossible to extend a
path of cost 12 with values in the algebra to create a path
costing exactly 21. The cheapest extension of P to goal that
costs 21 or more has a cost of 22 so F (P ) = 22 is admis-
sible. In a problem where the only path from start to goal
was path P followed by an edge from B to goal costing 10,
C∗ would be 22, and B would be f -s.e. but not F -s.e. Yet
BF*(F ), for the F defined here, would succeed on PAD(h).

2293



Figure 3: Counterexample to Dechter & Pearl’s Lemma 6 in
the cost-algebraic setting. F (start) = 0, F (start − A) =
21, and F (start−A−B) = 22.

8 Nilsson’s RESULT 6
RESULT 6 (p. 81) in (Nilsson 1980)10 is this: if heuristics h1
and h2 are admissible and h1(s) > h2(s) on every non-goal
state s then every state expanded byA∗h1

is also expanded by
A∗h2

. Unlike the Dechter & Pearl results we have examined
in this paper, RESULT 6 is about the relative pruning power
of heuristics and not about whether A* is optimally efficient
with respect to other search algorithms. Nevertheless it is an
intuitively appealing foundational result which, as we shall
now show, does not hold in the cost-algebraic setting.

Given two heuristics, h1 and h2, we define f1P (s) =
gP (s) × h1(s) and f2P (s) = gP (s) × h2(s) for any state
s and any path P from start to s. By f1(s) and f2(s), we
refer to s’s f -values on Open at a specific point in time.

Lemma 11. Let h1 and h2 be heuristics, P a problem, and
s a non-goal state. If h1(s) � h2(s), then f1P (s) � f2P (s)
for every path P from start to s.

It is crucial to note that isotonicity does not guarantee that
f1P (s) � f2P (s) when h1(s) � h2(s), f1P (s) = f2P (s) when
h1(s) � h2(s) is permitted unless the isotonicity is strict.
Definition 16. A monoid 〈Ω,×,1〉 with total order � on
Ω is strictly isotone iff 〈Ω,×,1〉 with � is isotone and, in
addition, a ≺ b implies both (a × c) ≺ (b × c) and (c ×
a) ≺ (c × b) for all a, b ∈ Ω and all c ∈ Ω \ Zero, where
Zero = {0} if there exists an element 0 ∈ Ω such that
a× 0 = 0× a = 0 for all a ∈ Ω (such an element is said to
be “absorptive”), and Zero = ∅ otherwise.

Edelkamp et al. (2005) did not insist on strict isotonic-
ity because their theory did not require it and some of their
applications, such as widest path, were not strictly isotone.

The cost-algebraic equivalent of Nilsson’s RESULT 6 is
easily proven when strict isotonicity holds.
Lemma 12. Let 〈Ω,×,�,1〉 be a cost algebra, h1 and h2
heuristics, and P ∈ PAD(h1) ∩ PAD(h2) a problem. If
〈Ω,×,1〉 with � is strictly isotone and h1(s) � h2(s) for
every non-goal state s, then every state expanded by A∗h1

will also be expanded by A∗h2
.

When the isotonicity is not strict, RESULT 6 does not
hold, as seen in Figure 4. Here the optimal path, costing C∗,
is start–B–goal. Using the stronger heuristic, h1, f1(A) =
f1(B) so A∗h1

must choose between them. Without loss of
generality, let A be the one it chooses. A is a deadend, so
A∗h1

will expand bothA andB in solving this problem. With

10Theorem 3-2 (p. 64) in (Nilsson 1971) is essentially identical.

the weaker heuristic, h2, A∗h2
will only expand B because

f2(B) ≺ f2(A) and, once B is expanded, it will have a
solution whose cost is C∗ = f2(A). This example cannot
happen with strict isotonicity because it would ensure that
f1(A) � f2(A), which would mean either f1(A) � C∗,
in which case A∗h1

would not expand A, or f2(A) ≺ C∗, in
which case A∗h2

would expand both A and B.

9 Conclusion
One of the appealing properties of A* is its optimal effi-
ciency in terms of the number of states expanded – under
certain circumstances, one is guaranteed not to fare bet-
ter when using any alternative to A*. While Dechter &
Pearl (1985) provided such results for the natural but rather
restrictive setting of traditional shortest path problems, we
established formal guarantees of A*’s optimal efficiency for
a much wider class of search problems.

Our results are of importance in several ways. Firstly, the
general cost-algebraic setting studied above can model sce-
narios that may well arise in practice but that are not covered
by the traditional framework, such as, e.g., the widest path
problem. Secondly, we pointed out a mistake in a result in
the classical literature, and provided an alternative result of
a similar flavour. Thirdly, our formal results provide a much
better understanding of known results on A*’s optimal effi-
ciency in the traditional shortest path setting, since they re-
veal which specifics of the traditional setting are essential for
maintaining A*’s optimal efficiency. For example, R4 turns
out to be incorrect when dropping the specific requirement
that all non-negative integers be allowed as values, and Nils-
son’s RESULT 6 relies on strict isotonicity. Knowing which
requirements are of importance for which type of optimal-
ity result may potentially help guide the design of optimally
efficient algorithms for new types of search problems.

10 Acknowledgements
Financial support for this research was in part provided by
Canada’s Natural Sciences and Engineering Research Coun-
cil (NSERC) and by a grant to the first author from the Fac-

Figure 4: State A is expanded using the stronger heuristic
(h1) but not using the weaker heuristic (h2).

2294



ulty of Science and the Computing Science Department of
the University of Alberta.

Appendix A Results R1 and R2
Result R2 is a special case of R1, so we only need to show
that R1 holds in the cost-algebraic setting. Our presentation
of R1’s proof is different than Dechter & Pearl’s, but the
proof itself is almost identical.

The basis for the proof of R1 is Dechter & Pearl’s Theo-
rem 8 (our Theorem 16). The key idea in proving this theo-
rem is the construction of a new problem from a given prob-
lem P and s.e. state s. We call the new problem Ps. It is
identical to P except it has a new edge directly from s to
goal with a suitably chosen cost (cs). Formally, Ps is de-
fined as follows.
Definition 17. Given heuristic h, problem P =
〈start, goal, σP〉 ∈ PCONS (h), and s.e. state s, define cs =
h(s), and define a new problem Ps = 〈start, goal, σPs〉
that is identical to P except for σPs(s), which differs from
σP(s) as follows:
• if goal /∈ σP(s) then σPs(s) = σP(s) ∪ {(goal, cs)},
• if (goal, ωP(s, goal)) ∈ σP(s) then σPs(s) = (σP(s) \
{(goal, ωP(s, goal))}) ∪ {(goal, cs)}

Lemma 13. Let h,P, s, Ps, and cs be as in Definition 17.
Then Ps ∈ PCONS (h).
Lemma 14. Let h,P, s, and cs be as in Definition 17. Then
d(start, s)× cs ≺ C∗P .

Proof: Because s is s.e., there is a strictly C∗P -bounded
path P from start to s. Since s is a state on this path, we
have fP (s) = ω(P ) × h(s) ≺ C∗P . By the definition of
d(start, s), d(start, s) � ω(P ). Because the algebra is iso-
tone, this implies d(start, s)× h(s) � ω(P )× h(s). From
d(start, s)× h(s) � ω(P )× h(s) and ω(P )× h(s) ≺ C∗P
it follows that d(start, s)× cs ≺ C∗P .
Corollary 15. Let h,P, s, Ps and cs be as in Definition 17.
Then C∗Ps ≺ C∗P .

Dechter & Pearl’s Theorem 8 then follows.
Theorem 16. For any heuristic h, problem P =
〈start, goal, σP〉 ∈ PCONS (h), and s.e. state s, any DXBB
algorithm A that succeeds on PCONS (h) must expand s in
solving P .

Proof: Suppose, for the purpose of contradiction, that A
succeeds on problem P without expanding s.e. state s and
let X be the set of states expanded by A in solving P . Since
s /∈ X and s is the only state on which σPs and σP differ,
the premises of Lemma 6 are satisfied, so A will return the
same solution for problem Ps as it did for P . The cost of
this solution is C∗P , but C∗Ps ≺ C∗P (Corollary 15), so A did
not succeed on Ps, contradicting the theorem’s premise that
A succeeds on PCONS (h).

Combining Theorem 16 and Lemma 3, we get R1.
Theorem 17. For any heuristic h, non-pathological prob-
lem P ∈ PCONS (h), and DXBB algorithm A that succeeds
on PAD(h), if A∗h breaks ties in favour of goal then any state
expanded by A∗h in solving P must also be expanded by A in
solving P .

Algorithm 1: Generic DXBB Search Algorithm
Input: 〈start, goal, σ〉, h
Output: a least-cost path from start to goal

1 S0 ← (λ, {(start, 0)})
2 for t from 1 to∞ do
3 if

StoppingCondition(t, S0, . . . , St−1, goal, h)
then

4 return Solution(t, S0, . . . , St−1, goal)
5 st ← Choose(t, S0, . . . , St−1, goal, h)
6 St ← (st, σ(st))

Appendix B DXBB Algorithms
Algorithm 1 is the template for DXBB algorithms by Eck-
erle et al. (2017) adapted to the present setting. A DXBB al-
gorithm is any algorithm that can be implemented by instan-
tiating StoppingCondition, Solution, and Choose
in this template with deterministic functions.

On iteration t Algorithm 1 computes St = (st, σ(st))
recording the state st that was expanded and the results of
that expansion (st must be chosen from among the states
generated in previous iterations). S0 is (λ, {(start, 0)}).
S0, . . . , St−1 is called the expansion sequence up to iteration
t. All the functions (StoppingCondition, Solution,
and Choose) are given the expansion sequence but are not
given σ, so they cannot peek ahead to see what lies beyond
a state that has not yet been expanded. For more details
see (Eckerle et al. 2017).

References
Bagchi, A., and Mahanti, A. 1983. Search algorithms under
different kinds of heuristics – a comparative study. J. ACM
30(1):1–21.
Dechter, R., and Pearl, J. 1985. Generalized best-first search
strategies and the optimality of A*. J. ACM 32(3):505–536.
Eckerle, J.; Chen, J.; Sturtevant, N. R.; Zilles, S.; and Holte,
R. C. 2017. Sufficient conditions for node expansion in
bidirectional heuristic search. In Proc. 27th Intl. Conf. on
Automated Planning and Scheduling (ICAPS), 79–87.
Edelkamp, S.; Jabbar, S.; and Lluch Lafuente, A. 2005.
Cost-algebraic heuristic search. In Proc. 20th National Con-
ference on Artificial Intelligence (AAAI), 1362–1367.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A formal
basis for the heuristic determination of minimum cost paths.
IEEE T. Syst. Sci. Cyb. 4(2):100–107.
Nilsson, N. J. 1971. Problem-Solving Methods in Artificial
Intelligence. McGraw-Hill.
Nilsson, N. J. 1980. Principles of Artificial Intelligence.
Tioga Press.
Pearl, J. 1984. Heuristics – Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley.
Sobrinho, J. L. 2002. Algebra and algorithms for QoS path
computation and hop-by-hop routing in the internet. IEEE-
ACM T. Network. 10(4):541–550.

2295


