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Abstract

Decomposition-based multiobjective evolutionary algorithms
(MOEAs) are a class of popular methods for solving multiob-
jective optimization problems (MOPs), and have been widely
studied in numerical experiments and successfully applied
in practice. However, we know little about these algorithms
from the theoretical aspect. In this paper, we present a running
time analysis of a simple MOEA with crossover based on
the MOEA/D framework (MOEA/D-C) on four discrete op-
timization problems. Our rigorous theoretical analysis shows
that the MOEA/D-C can obtain a set of Pareto optimal so-
lutions to cover the Pareto front of these problems in ex-
pected running time apparently lower than the one without
crossover. Moreover, the MOEA/D-C only needs to decom-
pose an MOP into a few scalar optimization subproblems ac-
cording to several simple weight vectors. This result suggests
that the use of crossover in decomposition-based MOEA can
simplify the setting of weight vector for different problems
and make the algorithm more efficient. This study theoreti-
cally explains why some decomposition-based MOEAs work
well in computational experiments and provides insights in
design of MOEAs for MOPs in future research.

Introduction
Multiobjective optimization problem (MOP) involves the si-
multaneous optimization of multiple conflicting objectives.
It exists widely in real-world applications (Zhou et al. 2011).
The goal of multiobjective optimization is to find a set of
the best eclectic solutions called the Pareto optimal solu-
tions. Due to the advantage of population-based nature, evo-
lutionary algorithms (EAs) are able to obtain multiple Pareto
optimal solutions in a single run, and multiobjective EAs
(MOEAs) have been very popular in solving MOPs. MOEAs
are broadly classified into three categories, i.e., domination-
based, indicator-based and decomposition-based (Trivedi et
al. 2017). In this paper, we present a theoretical analy-
sis of a simple decomposition-based MOEA with crossover
(MOEA/D-C) on several discrete optimization problems.

The idea of decomposition for solving MOPs has been
used in (Ishibuchi and Murata 1998; Murata and Gen 2002).
However, it becomes popular after the MOEA/D framework
is presented in (Zhang and Li 2007). In this framework,
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an MOP is first decomposed into some scalar optimization
subproblems according to the decomposition approach and
weight vector. Then all subproblems are solved simultane-
ously by employing an EA. In the past decade, there are vast
studies that have contributed to improving and developing
MOEAs based on the MOEA/D framework, e.g., studies on
novel weight vector generation methods (Qi et al. 2014; Gi-
agkiozis, Purshouse, and Fleming 2014), improved decom-
position approaches (Ishibuchi et al. 2010; Wang, Zhang,
and Zhang 2016) and selection mechanisms (Chiang and
Lai 2011; Li et al. 2017). For further decomposition-based
MOEAs, the readers are advised to (Trivedi et al. 2017).

In (Ishibuchi et al. 2017), the authors conducted an exper-
imental analysis for MOEAs based on the MOEA/D frame-
work on the DTLZ and WFG test problems. Their results
show that the performance of the algorithm strongly depends
on Pareto front shapes. In (Tanabe and Ishibuchi 2018), the
authors presented a parameter study in the MOEA/D frame-
work using the unbounded external archive (UEA). Their ex-
perimental results indicate that suitable settings of the three
control parameters (population size, scalarizing functions
and penalty parameter of the penalty-based boundary inter-
section (PBI) function) significantly depend on the choice of
UEA scenarios. An experimental study on the effect of refer-
ence point in the MOEA/D framework for optimizing WFG
test problems is presented in (Wang et al. 2017). Their exper-
imental results show that different reference point specifica-
tions lead to different performance of exploitation and ex-
ploration, and the strategy of dynamic reference point spec-
ifications is recommended to use for unknown problems.

Running time analysis is one of the most powerful theory
tools to understand the performance of EAs. The first theo-
retical study for decomposition-based MOEAs is presented
in (Li et al. 2016). They presented a running time analysis
of a simple MOEA with only mutation based on MOEA/D
framework, denoted as MOEA/D-M, on four discrete opti-
mization problems. Their analyzed results show that if the
optimally decomposed weight vector is used, the expected
running time of the MOEA/D-M on these problems are bet-
ter than the simple evolutionary multiobjective optimizer
(SEMO) (Laumanns et al. 2002), which has been theoret-
ically analyzed on many MOPs in the literature. However,
they also show that the optimally decomposed weight vec-
tor for an MOP depends on its properties and may not be
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obtained by using the evenly distributed generation method.
This explains why an optimally decomposed weight vector
is hard to obtain for different MOPs in practical applications.

Crossover operator often plays an important role in the
search process of EAs and is widely used in numerical ex-
periments. However, comparing to the mutation operator,
the understanding of the effect of the crossover operator
in EAs from theoretical analysis aspect is limited (Sudholt
2017). There are several studies have contributed to this
issue. For single optimization problems, these researches
(Jansen and Wegener 2002; Kötzing, Sudholt, and Theile
2011; Lehre and Yao 2011; Doerr et al. 2013; Doerr, Do-
err, and Ebel 2015; Sudholt 2017; Doerr and Doerr 2018;
Dang et al. 2018) have shown that crossover operator can
speed up the search. Specifically, they proved that EAs
enabled crossover outperform the disabled ones on some
benchmark discrete optimization problems in term of the ex-
pected running time. As far as we know, the first running
time analysis to show that the helpfulness of crossover on
MOP is presented in (Neumann and Theile 2010). In (Qian,
Yu, and Zhou 2013), the authors presented a running time
analysis to show that crossover leads to better upper bounds
than previous known result for LPTNO (LOTZ) and COCZ
problems. These results indicate that crossover is helpful
for EAs on optimizing some problems. However, whether it
does help for decomposition-based MOEAs on optimizing
MOPs has not yet been investigated from theoretical aspect.

In this paper, we present a running time analysis of a sim-
ple decomposition-based MOEA with crossover (MOEA/D-
C) on four benchmark discrete optimization problems, i.e.,
COCZ, LPTNO, Dec-obj-MOP and Plateau-MOP. The up-
per bounds of expected running time obtained by MOEA/D-
C are lower than the MOEA/D-M an order of n, where n is
the size of decision variable. These bounds are better than
or at least the best known ones. Moreover, there is an in-
teresting thing worth mentioning that the MOEA/D-C only
needs to decompose these MOPs instances into several sub-
problems according to a set of simple weight vectors while
the MOEA/D-M needs to find Θ(n) optimally decomposed
weight vectors. This theoretical study reveals that the use of
crossover operator in MOEA/D framework can simplify the
setting of weight vectors for different problems and make the
algorithm more efficient. It provides insights in the design of
decomposition-based MOEAs for MOPs in future research.

Algorithm and Problem
Analyzed Algorithm
An MOP can be formally defined as follows:

max F (x) =
(
f1(x), · · · , fm(x)

)
s.t. x ∈ X,

(1)

where X is the decision space and x = (x1, · · · , xn) is the
decision variable, F : X → Rm consists of m functions
and Rm is the objective space. Since the m objectives of (1)
are often mutually conflicting, there is no a solution x that
can maximize all objectives simultaneously. Instead, these
conflicting objectives give rise to a set of eclectic optimal
solutions. For x1, x2 ∈ X , we say that x1 dominates x2,

denoted as x1 � x2, if and only if fi(x1) ≥ fi(x2) for all
i = 1, · · · ,m and fi(x1) > fi(x2) for at least one index i.
A solution x∗ ∈ X is Pareto optimal if there is no solution
x such that x � x∗. The set of all Pareto optimal solutions
is called Pareto optimal set (PS) and the set of all objective
vectors corresponding to PS is called the Pareto front (PF).

In the MOEA/D framework, an MOP is decomposed into
some scalar optimization subproblems according to the de-
composition approach and weight vectors. As in the first im-
plemented algorithm of the MOEA/D framework in (Zhang
and Li 2007), the Tchebycheff decomposition approach and
simplex-lattice weight vector generation method are used in
MOEA/D-C as well as in the MOEA/D-M. Given an MOP
defined in (1), the scalar optimization subproblem generated
by the Tchebycheff approach is

min g(x|λ) = max
1≤i≤m

{λi|fi(x)− z∗i |}

s.t. x ∈ X,
(2)

where λ = (λ1, · · · , λm) is the weight vector, i.e., λi ≥ 0
for i = 1, · · · ,m and

∑m
i=1 λi = 1, and z∗ = (z∗1 , · · · , z∗m)

denotes the reference point, i.e., z∗i = max{fi(x)|x ∈ X}.
By altering the weight vector, the Tchebycheff approach

generates different scalar optimization subproblems in form
of (2) for an MOP defined in (1). LetH be a positive integer.
The simplex-lattice design method generates weight vectors
by taking m values from {0/H, 1/H, · · · , H/H} such that∑m

i=1 λi = 1. Thus, for an MOP with m objectives and
integerH , there areN = Cm−1

H+m−1 weight vectors, and each
one corresponds to a scalar optimization subproblem.

After decomposition, for each subproblem the MOEA/D
framework first selects the T closest subproblems to form its
neighbor set, where T is an input parameter called neighbor
size. The distance are measured by the Euclidean distance
between their weight vectors. It then controls a population
of size N to cooperatively solve the N scalar optimization
subproblems by using the neighborhood-based coevolution.

A description of the presented MOEA/D-C is given in Al-
gorithm 1. Different from the MOEA/D-M only using muta-
tion to create the offspring, the MOEA/D-C allows to use the
crossover operator in Step 7. Observe that the important de-
composition and neighborhood-based coevolution features
of the MOEA/D framework are retained in Algorithm 1.

Analyzed Problems
We denote by ‖x‖1 the number of 1-bits in solution x. The
four analyzed MOPs in this paper are defined as follows.
Definition 1 (COCZ). The pseudo-Boolean function
COCZ : {0, 1}n → N2 is defined as follows:

COCZ(x) =
(
‖x‖1, n− ‖x‖1

)
.

This instance is an extension of the COUNTONES prob-
lem called count ones count zeroes (COCZ). The above def-
inition of COCZ is used in (Li et al. 2016), which is lightly
different from the definition in (Laumanns, Thiele, and Zit-
zler 2004). However, this change does not effect the run-
ning time analysis since it only extends the size of PF from
0.5n+1 to n+1 and will not change the upper bound of the
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Algorithm 1 MOEA/D-C
Input: An MOP with m objectives, stop criterion, param-

eter H , the number of scalar optimization subproblems
N , weight vectors {λ1, · · · , λN} and neighbor size T .

Output: A Pareto optimal solution set P .
1: Initialization: The Pareto optimal solution set P = ∅.

For each subproblem g(x|λk), k = 1, · · · , N , select
the T closest subproblems into its neighbor set Bk ac-
cording to the Euclidean distance between their weight
vectors. Generate a solution xk ∈ {0, 1}n uniformly at
random for each subproblem g(x|λk). Set the reference
point z = (z1, · · · , zm), where zi = max{fi(xk)} for
k = 1, · · · , N . Let Sk denote the set of solutions corre-
sponding to subproblems in Bk.

2: while stop criterion is not satisfied do
3: for each subproblem g(x|λk), k = 1, · · · , N do
4: if rand > pc then
5: Create two new solutions x′k, x

′′
k for the kth sub-

problem by using the mutation operator to xk.
6: else
7: Create two new solutions x′k, x

′′
k for the kth sub-

problem by using the crossover operator on xk
and a solution in Sk \ xk.

8: end if
9: Update z: for each zi, if max{fi(x′k), fi(x

′′
k)} >

zi, set zi = max{fi(x′k), fi(x
′′
k)}, i = 1, · · · ,m.

10: Update Sk: for each solution xj in Sk, if
min{g(x′k|λj), g(x′′k |λj)} ≤ g(xj |λj), replace xj
with the better one in {x′k, x′′k}.

11: Update P : remove all solutions dominated by x′k
or x′′k from P . If x′k or x′′k is not dominated by so-
lutions in P , add it into P .

12: end for
13: end while

expected running time. A similar definition of this instance
called ONEMINMAX is presented in (Giel and Lehre 2010).
All solutions of COCZ are Pareto optimal and the distribu-
tion of elements in the PF is shown in Figure 1 (red points).
Definition 2 (WLPTNO). The pseudo-Boolean function
WLPTNO : {−1, 1}n → R2 is defined as follows:

WLPTNO(x) =
( n∑
i=1

wi

i∏
j=1

(1+xi),

n∑
i=1

vi

n∏
j=i

(1−xi)
)
,

where wi, vi > 0 for i = 1, · · · , n.
This instance is defined in (Qian, Yu, and Zhou 2013). The

abbreviation WLPTNO stands for Weighted Leading Posi-
tive Ones Trailing Negative Ones. It can be considered as
an extension of LOTZ (Leading Ones Trailing Zeroes) by
shifting the decision space from {0, 1}n to {−1, 1}n, and
adding weights wi and vi for each leading positive one and
trailing negative one bits, respectively. However, it mostly
has very different properties from LOTZ. As in analyzing
the MOEA/D-M (Li et al. 2016), we set wi = vi = 1 and
denote this case as LPTNO. Note that the obtained upper
bound of the expected running time in this paper is also true

for other setting of weights. The PS of LPTNO has n+1 ele-
ments. As shown in Figure 2, unlike the COCZ, the elements
of the PF are not evenly distributed.
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Figure 1: Pareto front of the COCZ with n = 25 and Plateau-
MOP with n = 20.
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Figure 2: Pareto front of the LPTNO with n = 20.

Definition 3 (Dec-obj-MOP). The pseudo-Boolean function
Dec–obj–MOP : {0, 1}n → N2 is defined as follows:

Dec–obj–MOP (x) =
(
f1(x), f2(x)

)
,

where
f1(x) = n+ 1− ‖x‖1 mod (n+ 1),

f2(x) = n+ ‖x‖1 mod (n+ 1).

This instance is defined in (Li et al. 2016). There is de-
ceptive property in the search space of f2. The location of
the global optimum is very far from the local optimum in
the search space, and the fitness-based search will be mostly
guided to the local optimum. Thus, these kinds of functions
are deceptive and hard to solve. The expected running time
to obtain the optimal solution for some subproblems of Dec-
obj-MOP is Ω(nn) (Li et al. 2016). The PS and the PF of
Dec-obj-MOP are the same as the COCZ.
Definition 4 (Plateau-MOP). Let 1i0n−i denote that there
are i leading ones and n− i trailing zeroes in the solution x.
The pseudo-Boolean function Plateau–MOP : {0, 1}n →
N2 is defined as follows:

Plateau–MOP (x) =
(
f1(x), f2(x)

)
,

where

f1(x) =


n if x = 1n,

3n/4 if x = 1i0n−i, 3n/4 < i < n,

i if x = 1i0n−i, 0 ≤ i ≤ 3n/4,

−‖x‖1 otherwise,
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f2(x) =

{
n− i if x = 1i0n−i, 0 ≤ i ≤ n,
−‖x‖1 otherwise.

This instance is defined in (Li et al. 2016). For conve-
nience, we hereafter assume that n

4 is integral. Although
neither objective functions in Plateau-MOP is deceptive, it
is hard to solve for SEMO. The expected running time of
SEMO on Plateau-MOP is Ω(n0.25n) (Li et al. 2016).

For f1, there is a plateau which x is in form of 1i0n−i for
i ∈ [ 3

4n, n − 1]. So solutions of Plateau-MOP in this range
are dominated by the solution 13n/40n/4 since the fitness
value of f2 becomes worse with increasing ‖x‖1. The PS
of Plateau-MOP has 3

4n+ 2 elements, which are 1i0n−i for
i ∈ {[0, 3

4n]}∪{n}. The elements on PF of Plateau-MOP is
shown in Figure 1 (blue points). Note that the point (n, 0) is
an outlier in the objective space.

Running Time Analysis
In this section, we present the running time analysis of Al-
gorithm 1 on the four above MOPs. For parameters in Al-
gorithm 1, in this analysis we set H = 2, T = m and
pc = 0.5. So the set of decomposed weight vectors is
{λ1 = (0, 1), λ2 = (0.5, 0.5), λ3 = (1, 0)} and the number
of scalar optimization subproblems N (also the population
size) is 3. For the variation operators in Step 5 and 7, we use
the standard bit mutation and one-point crossover, respec-
tively. Thus Algorithm 1 requires six fitness evaluations in
an iteration. For ease of expression, we assume that the op-
timal value of each objective for these problems have been
known in the following analysis. Note that this assumption
does not effect the expected running time of Algorithm 1 on
these problems, because in each iteration any new solution
with better fitness value for the objective will be updated
immediately in Step 9 and can be accepted in Step 10.

Analysis on COCZ
For COCZ, a set of Pareto optimal solutions corresponding
to the PF is {0n, 0∗n−11∗, · · · , 1n}, where 0∗i1∗j indicates
that there are i 0-bits and j 1-bits randomly distributed in the
solution. The best known upper bound of expected running
time on COCZ is O(n log n) (Qian, Yu, and Zhou 2013).
In (Li et al. 2016), the authors proved that the evenly dis-
tributed weight vectors, i.e., λk = (λk1 , 1−λk1), λk1 = k

n , k =
0, · · · , n, produce n + 1 subproblems that are mapped one-
to-one to the points in the PF. So the MOEA/D-M with
H = n obtains a set of solutions to cover the PF by solv-
ing the n+ 1 subproblems. Thus, the expected running time
of the MOEA/D-M on COCZ is O(n2 log n) since it solves
each subproblem in expected running time O(n log n).

These decomposed subproblems for COCZ in Algorithm
1 (Tchebycheff approach) are listed as follows:

min g(x|λ1) = ‖x‖1, (3)

min g(x|λ2) = max{0.5(n− ‖x‖1), 0.5‖x‖1}, (4)

min g(x|λ3) = n− ‖x‖1. (5)
In the following, we prove that the expected running time

of Algorithm 1 on COCZ is O(n log n). The analysis con-
sists of two phases. In the first phase, by neglecting the pro-
motion of the crossover operator and coevolution, we prove

that Algorithm 1 can find an optimal solution for each sub-
problem by using the mutation operator in expected running
time O(n log n). In the second phase, we prove that by us-
ing the crossover operator to optimal solutions for the three
subproblems, Algorithm 1 obtains a set of solutions to cover
the PF in expected running time O(n log n).

Lemma 1. For COCZ, Algorithm 1 finds an optimal solution
for each subproblem in expected running time O(n log n).

Proof. The optimization process of these functions is simi-
lar to optimize the well-known ONEMAX function. For (3)
(or (5)), the fitness value becomes better when increasing
the 0-bits (1-bits) in solution x and the optimal solution
is 0n (1n). Let i denote the number of 0-bits (1-bits) in
the current solution. For Algorithm 1, the mutation opera-
tor produces a better solution for (3) (or (5)) from the cur-
rent one with probability (n−i)

2 · 1
n · (1 −

1
n )n−1 ≥ n−i

2en ,
since it happens if one of these 0-bits (1-bits) is flipped
while keeping other bits unchanged. Recall that pc = 0.5.
Thus, according to the fitness level approach (Sudholt 2013;
Jansen 2013), Algorithm 1 finds the optimal solution for (3)
and (5) in expected running time O(n log n). For (4), the
optimal solution 0∗n/21∗n/2 is close to the initial solution.
If ‖x‖1 < 0.5n, the fitness value becomes better when in-
creasing ‖x‖1. If ‖x‖1 > 0.5n, decreasing ‖x‖1 will lead to
a better fitness value. Thus, Algorithm 1 finds a better solu-
tion for (4) in an iteration with probability at least n−i

2en and
the expected running time is O(n log n).

Theorem 1. For COCZ, Algorithm 1 obtains a set of solu-
tions to cover the PF in expected running time O(n log n).

Proof. Since each subproblem selects two closest subprob-
lems into Bk according to the Euclidean distance between
their weight vectors, we have S1 = {0n, 0∗n/21∗n/2}, S2 =
{0∗n/21∗n/2, 0n or 1n} and S3 = {1n, 0∗n/21∗n/2} after
solutions 0n, 0∗n/21∗n/2 and 1n have been found for (3),
(4) and (5), respectively. Thus, the rest of Pareto solutions
corresponding to PF can be partitioned into two disjoint sets,
i.e.,R1 = {0∗n−11∗1, 0∗n−21∗2, · · · , 0∗n/2+11∗n/2−1} and
R2 = {0∗n/2−11∗n/2+1, 0∗n/2−21∗n/2+2, · · · , 0∗11∗n−1}.
In the following, we show that those solutions produced by
using crossover operator on solutions in S1 and S3 cover R1

and R2 in expected running time O(n log n), respectively.
Note that solutions produced by using crossover operator on
solutions in S2 and mutation operator to the three solutions
during this phase can only accelerate the search process.

In each iteration, Algorithm 1 applies crossover to solu-
tions in S1 and S3 with probability pc = 0.5. Note that there
are 0.5n 1-bits in solution 0∗n/21∗n/2 and the crossover
point is selected from 1 to n − 1 uniformly. Let l1 and l2
denote the position of the first and the last 1-bit in solution
0∗n/21∗n/2. We have l2 − l1 ≥ 0.5n. We call a crossover
a success if it produces solutions in R1 and at least one of
them have not been produced in previous crossovers. For S1,
if the crossover point is located in (l1, l2), it produces two
solutions in R1 since the other solution in S1 is 0n. Hence,
Algorithm 1 needs at most 0.25n successes to obtain a set
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of solutions to cover R1 because each success produces two
new solutions inR1 and |R1| = 0.5n−1. Observe that there
are one or two points in (l1, l2) corresponding to each suc-
cess. Thus, a success happens in an iteration with probability
at least 0.25n−i

2(n−1) , where i denotes the number of successes so
far. Therefore, the expected running time of Algorithm 1 ob-
tained a set of solutions to cover R1 is upper bounded by

0.25n−1∑
i=0

2(n− 1)

0.25n− i
≤ 2n

0.25n∑
j=1

1

j
= O(n log n).

Similarly, we have that Algorithm 1 obtains a set of solutions
to cover R2 in expected running time O(n log n).

Therefore, combined with Lemma 1, Algorithm 1 obtains
a set of solutions S to cover the whole PF, i.e., PF ⊆ F (S),
of COCZ in expected running time O(n log n).

Analysis on LPTNO
For LPTNO, the set of Pareto optimal solutions correspond-
ing to the PF is {1n, 1n−1(−1), · · · , (−1)n}, and the best
known upper bound of expected running time is O(n2)
(Qian, Yu, and Zhou 2013). In (Li et al. 2016), the authors
proved that the weight vectors, λk = (λk1 , 1 − λk1), λk1 =∑k

j=1 2n+1−j∑n
j=k+1 2j+

∑k
j=1 2n+1−j , k = 0, · · · , n, produces a set of

subproblems which are mapped one-to-one to the points
in the PF. So the MOEA/D-M with H = n obtains a set
of solutions to cover the PF by solving the decomposed
n + 1 subproblems. Thus, the expected running time of the
MOEA/D-M on LPTNO is O(n3) since it solves each sub-
problem in expected running time O(n2). Note that this set
of weight vectors are not evenly distributed since most of λk
fall nearby (0.5, 0.5).

These decomposed subproblems for LPNTO in Algo-
rithm 1 (Tchebycheff approach) are listed as follows:

min g(x|λ1) =2n+1 − 2−
n∑

i=1

n∏
j=i

(1− xi), (6)

min g(x|λ2) = max
{

2n − 1− 0.5

n∑
i=1

i∏
j=1

(1− xi),

2n − 1− 0.5

n∑
i=1

n∏
j=i

(1 + xi)
}
, (7)

min g(x|λ3) =2n+1 − 2−
n∑

i=1

i∏
j=1

(1 + xi). (8)

Lemma 2. For LPTNO, Algorithm 1 finds the optimal solu-
tion for each subproblem in expected running time O(n2).

Proof. The optimization process of functions (6), (7) and
(8) is similar to optimize the well-known LEADINGONES
function. For (8) (or (6)), the fitness value becomes bet-
ter when increasing the leftmost 1-bits (rightmost (−1)-
bits) in x and the optimal solution is 1n ((−1)n). So in
Algorithm 1 the mutation operator produces a better solu-
tion for (8) (or (6)) from the current one with probability

1
2 ·

1
n · (1−

1
n )n−1 ≥ 1

2en , because its fitness value will de-
crease when the leftmost (−1)-bit (rightmost 1-bit) is flipped
while keeping other bits unchanged. Thus, according to the
fitness level approach, the expected running time of Algo-
rithm 1 to find the optimal solution for (8) (or (6)) is O(n2)
since there are at most n bits to be flipped. For (7), any new
solution where the minimum number of leading 1-bits and
trailing (−1)-bits is non-decreased is accepted in the itera-
tion. If the optimal solution is not found, there must exist at
least a bit which is flipped to produce an accepted solution,
and thus a new solution is accepted with probability at least

1
2en . Note that if the difference between the numbers of lead-
ing 1-bits and trilling (−1)-bits is 1, there is a small plateau,
which consists of two points and needs at most additional ex-
pected time O(n) to leave since it needs two random walks
on the plateau in expectation. Therefore, Algorithm 1 also
finds the optimal solution 1n/2(−1)n/2 for (7) in expected
running time O(n2).

Theorem 2. For LPTNO, Algorithm 1 obtains a set of solu-
tions to cover the PF in expected running time O(n2).

Proof. Because Algorithm 1 selects two closest sub-
problems into Bk according to the Euclidean distance
between their weight vectors for each subproblem,
we have that S1 = {(−1)n, 1n/2(−1)n/2}, S2 =
{1n/2(−1)n/2, (−1)n or 1n} and S3 = {1n, 1n/2(−1)n/2}
after solutions (−1)n, 1n/2(−1)n/2 and 1n have been
found for subproblems (6), (7) and (8), respectively.
The rest of Pareto optimal solutions corresponding to
PF can be partitioned into two disjoint sets, that is, R1 =
{1(−1)n−1, 12(−1)n−2, · · · , 1n/2−1(−1)n/2+1} andR2 =
{1n/2+1(−1)n/2−1, 1n/2+2(−1)n/2−2, · · · , 1n−1(−1)}.
We next show that those solutions produced by using
crossover operator on solutions in S1 and S3 cover R1 and
R2 in expected running time O(n log n), respectively.

For the two solutions in S1, the leftmost 0.5n−1 bits have
different value. If and only if one of these bits is selected, the
crossover creates a unique solution in R1. Thus, to obtain a
set of solutions to cover R1, the crossover operator needs
to select each of these bits at least once. Let i denote the
number of these bits that have been selected, a new bit is
selected by the crossover in a new iteration with probability
0.5n−1−i

2(n−1) . Recall that pc = 0.5. Thus, Algorithm 1 obtains a
set of solutions to cover R1 in expected running time

0.5n−2∑
i=0

2(n− 1)

0.5n− 1− i
≤ 2n

0.5n∑
j=1

1

j
= O(n log n).

Similarly, we have that Algorithm 1 obtains a set of solutions
to cover R2 in expected running time O(n log n).

Therefore, combined with Lemma 2, Algorithm 1 obtains
a set of solutions to cover the whole PF of LPNTO in ex-
pected running time O(n2).

Analysis on Dec-obj-MOP
For Dec-obj-MOP, the set of Pareto optimal solutions corre-
sponding to the PF is {0n, 1n, 0∗1∗n−1, · · · , 0∗n−11∗}, and
the best known upper bound of expected running time is

2300



O(n2 log n) (Li et al. 2016). The evenly distributed weight
vectors, i.e., λk = (λk1 , 1 − λk1), λk1 = k

n , k = 0, · · · , n,
also produces a set of subproblems that are mapped one-to-
one to the points in the PF. However, different from COCZ
that every decomposed subproblems can be solved in ex-
pected running time O(n log n), the expected fitness evalu-
ations to find the optimal solution for the subproblem corre-
sponding to weight vector (0, 1), i.e., (9), is Ω(nn). But the
expected running time of the MOEA/D-M on Dec-obj-MOP
is O(n2 log n), because the optimal solution for (9) can be
obtained and added into P by other subproblems in expected
running time O(n log n).

For Dec-obj-MOP, these decomposed subproblems in Al-
gorithm 1 are listed as follows:

min g(x|λ1) = n− f2(x), (9)

min g(x|λ2) = max
1

2
{(n− f1(x)), (n− f2(x))}, (10)

min g(x|λ3) = n− f1(x), (11)

where f1(x) and f2(x) are the same as in the Definition 3.
Lemma 3. For Dec-obj-MOP, Algorithm 1 finds an optimum
for subproblems (10) and (11) and the local optimum for
subproblem (9) in expected running time O(n log n).

Proof. For (11), the fitness value becomes better when de-
creasing ‖x‖1 if ‖x‖1 > 1. Thus, similar to optimize the
ONEMAX, starting from any uniformly random solution
Algorithm 1 finds the optimal solution 0∗n−11∗ for (11)
in expected running time O(n log n). For (10), the fitness
value becomes better when increasing ‖x‖1 if ‖x‖1 < 0.5n
and decreasing ‖x‖1 if ‖x‖1 > 0.5n. Thus, starting from
any initial solution Algorithm 1 finds the optimal solution
0∗n/21∗n/2 for (10) in expected running time O(n log n).
For (9), the optimal solution is 0n. There is deceptive prop-
erty in the search space since the fitness value becomes bet-
ter when increasing ‖x‖1 if ‖x‖1 > 0. Since the expected
number of 1-bits in an initial solution is n

2 > 0, by Cher-
noff bound, the search will be guided to the solution 1n with
probability 1−e−Ω(n). Thus, Algorithm 1 finds the local op-
timum 1n for (9) in expected running time O(n log n).

Although the mutation operator cannot find the optimal
solution for (9) in polynomial running time, we next show
that Algorithm 1 still obtains a set of solutions to cover the
PF of Dec-obj-MOP in expected running time O(n log n).
Theorem 3. For Dec-obj-MOP, Algorithm 1 obtains a set
of solutions to cover the PF in expected running time
O(n log n).

Proof. For Dec-obj-MOP, we have S1 = {1n, 0∗n/21∗n/2},
S2 = {0∗n/21∗n/2, 1n or 0∗n−11∗} and S3 =
{0∗n−11∗, 0∗n/21∗n/2} after solutions 1n, 0∗n/21∗n/2

and 0∗n−11∗ have been found for subproblems (9), (10) and
(11), respectively. We partition the rest of Pareto optimal
solutions corresponding to PF into three disjoint sets, i.e.,
R1 = {0∗n/2−11∗n/2+1, 0∗n/2−21∗n/2+2, · · · , 0∗11∗n−1},
R2 = {0∗n−21∗2, 0∗n−31∗3, · · · , 0∗n/2+11∗n/2−1} and
R3 = {0n}.

Since solutions produced by using crossover on solutions
in S1 are the same as the case in COCZ that each success
creates two new solutions inR1, Algorithm 1 obtains a set of
solutions to cover R1 in expected running time O(n log n).

For R2, there is a bit difference with the case in COCZ,
because there is a 1-bit in the solution 0∗n−11∗ ∈ S3 and it
will be copied into an offspring in the one-point crossover.
In such way, some successes may only produce a new so-
lution in R2 since the other one is a duplication of previ-
ous solutions. Thus, for S3 the crossover operator may take
0.5n − 2 successes to obtain a set of solutions to cover R2

since |R2| = 0.5n − 2. Observe that there is at least one
point in (l1, l2) corresponding to a success, where l1 and
l2 denote the position of the first and the last 1-bit in the
solution 0∗n/21∗n/2. For Algorithm 1, the probability of a
success happening in an iteration is 0.5n−2−i

2(n−1) , where i de-
notes the number of successes so far. Recall that pc = 0.5.
Thus, the expected running time of the crossover operator
produced a set of solutions to cover R2 is upper bounded by

0.5n−3∑
i=0

2(n− 1)

0.5n− 2− i
≤ 2n

0.5n∑
j=1

1

j
= O(n log n).

For the solution 0n in R3, it may be created by using
crossover operator to solutions in S2 and S3. However, the
probability of this event is complex to compute and the lower
bound seems to be very small. We next show that it can still
be found by Algorithm 1 in expected running time O(n).
Note that after the optimal solution 0∗n−11∗ has been found
for (11), it will be kept by this subproblem forever. Thus, in
later mutations it will be always used to create an offspring,
and the offspring is 0n with probability at least 1

en since it
happens when the 1-bit is flipped and all 0-bits are kept un-
changed. Thus, the solution 0n is created and added into P
by the mutation operator in expected running time O(n).

Therefore, combined with Lemma 3, Algorithm 1 obtains
a set of solutions to cover the PF of Dec-obj-MOP in ex-
pected running time O(n log n).

Analysis on Plateau-MOP

The PF of Plateau-MOP is {(0, n), (1, n− 1), · · · , (3n/4,
n/4), (n, 0)} and the set of Pareto optimal solutions corre-
sponding to PF is {0n, 10n−1, · · · , 13n/40n/4, 1n}. The best
known upper bound of expected running time on Plateau-
MOP is O(n3) (Li et al. 2016). The evenly distributed
weight vector, i.e., λk = (λk1 , 1 − λk1), λk1 = k

n , k =
0, · · · , n, produces a set of subproblems that are mapped
one-to-one to the points on PF. So MOEA/D-M with H = n
finds a set of solutions to cover the PF by solving the decom-
posed Θ(n) subproblems. Thus, the expected running time
of MOEA/D-M on Plateau-MOP (exclude the outlier point
(n, 0)) is O(n3) since it solves each subproblem in expected
running time O(n2) (Li et al. 2016).

For Plateau-MOP, these decomposed subproblems in Al-
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gorithm 1 are listed as follows:

min g(x|λ1) = n− f2(x), (12)

min g(x|λ2) = max
1

2
{(n− f1(x)), (n− f2(x))}, (13)

min g(x|λ3) = n− f1(x), (14)

where f1(x) and f2(x) are the same as in the Definition 4.

Lemma 4. For Plateau-MOP, Algorithm 1 finds the optimal
solution for subproblems (12) and (13) and a suboptimal so-
lution for subproblem (14) in expected running time O(n2).

Proof. For (12), starting from any initial solution x, the op-
timization process first tries to minimize the 1-bits in it or
directly jump to a solution with form of 1i0n−i, then it tries
to flip the rightmost 1-bit into 0-bit until the optimal solu-
tion 0n is found. The first part is equivalent to optimizing
the ONEMAX (O(n log n)) and the second part is equivalent
to optimizing the LEADINGONES (O(n2)). Thus, Algorithm
1 finds the optimal solution for (12) in expected running time
O(n2). For (13), the optimal solution is 1n/20n/2. First, by
Chernoff bound, we have that any initial solution turns into
the form of 1i0n−i in expected running time O(n log n),
where i ≤ 3n

4 with probability 1 − e−Ω(n). Second, from
any solution in form of 1i0n−i for i ≤ 3n

4 , the fitness be-
comes better when increasing i if i < 0.5n and decreasing
i if i > 0.5n, which happens with probability at least 1

en .
Thus, Algorithm 1 finds the optimal solution 1n/20n/2 for
(13) in expected running time O(n2). For (14), in the objec-
tive space there is a plateau (suboptimal solutions), which is
in form of 1i0n−i for i ∈ [ 3

4n, n − 1]. Thus, Algorithm 1
finds the suboptimal solution 13n/40n/4 in expected running
time O(n2) from any solution in form of 1i0n−i. After find-
ing the suboptimal solution 13n/40n/4, it randomly walks on
the plateau and accepts any new solution which is in form of
1i0n−i with i ≥ 3

4n.

Theorem 4. For Plateau-MOP, Algorithm 1 obtains a set
of solutions to cover the PF (except the outlier point) in ex-
pected running time O(n2).

Proof. After Algorithm 1 finds the optimal solution for
subproblems (12) and (13) and a suboptimal solution for
(14) (assume that is 13n/40n/4 for convenience), we have
S1 = {0n, 1n/20n/2}, S2 = {1n/20n/2, 0n or 13n/40n/4}
and S3 = {13n/40n/4, 1n/20n/2}. Thus, except the out-
lier point, the rest of Pareto optimal solutions correspond-
ing to PF can be partitioned into two disjoint sets, that
is, R1 = {1n/2−10n/2+1, 1n/2−20n/2+2, · · · , 10n−1} and
R2 = {1n/2+10n/2−1, 1n/2+20n/2−2, · · · , 13n/40n/4}.

For the two solutions in S1, the leftmost 0.5n−1 bits have
different value. If and only if one of these bits is selected, the
crossover creates a unique solution in R1. Thus, to obtain a
set of solutions to cover R1, the crossover phase needs to
select each of these bits once. Let i denote the number of
these bits that have been selected, a new bit is selected by
the crossover operator in the next iteration with probability
0.5n−1−i

2(n−1) . Recall that pc = 0.5. Thus, the expected running

time of Algorithm 1 obtained a set of solutions to cover R1

is upper bounded by
0.5n−2∑
i=0

2(n− 1)

0.5n− 1− i
≤ 2n

0.5n∑
j=1

1

j
= O(n log n).

Similarly, for R2 there are n
4 Pareto optimal solutions, and a

new solution is created in an iteration by applying crossover
on solutions in S3 with probability 0.25n−i

2(n−1) . Thus, we also
have that Algorithm 1 obtains a set of solutions to cover R2

in expected running time O(n log n).
Therefore, combined with Lemma 4, Algorithm 1 obtains

a set of solutions to cover the PF (except the outlier point)
of Plateau-MOP in expected running time O(n2).

Experimental Verification
As shown in Figure 3, the curves of average fitness evalu-
ations of numerical experiments (dash lines) on four prob-
lems are approximately in the order of the corresponding
theoretical bounds (solid lines), respectively. For ease of ob-
servation, we plot curves of 25n2 and 25n log n for bounds
O(n2) andO(n log n), respectively. This result confirms the
correctness of theoretical bounds obtained in our analysis.
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Figure 3: Curves of average fitness evaluations used in ex-
periments, where MOEA/D-C runs 30 times for each n.

Conclusions
In this paper, we present a theoretical analysis for the ef-
fect of crossover in the MOEA/D framework. Our rigorous
running time analysis shows that the MOEA/D-C working
with several simple weight vectors can obtain a set of Pareto
optimal solutions to cover the PF of four benchmark dis-
crete optimization problems in expected running time better
than the MOEA/D-M. This result suggests that the use of
the crossover in the MOEA/D framework can simplify the
complexity of the setting of the decomposed weight vectors
and promote the efficiency of this kind of algorithms.

This study theoretically explains why some MOEAs
based on decomposition in the literature work well in com-
putational experiments and provides insights in design of
decomposition-based MOEAs for MOPs in future research.
In addition, it provides evidence for that crossover is helpful
in design of EAs. To derive a better bound of MOEA/D-C
on these problems, one needs to estimate the effect of the
coevolution in the algorithm. This is an interesting and chal-
lenging study in future work.
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