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Abstract
Multi-objective optimization problems require simultane-
ously optimizing two or more objective functions. Many stud-
ies have reported that the solution set of an M -objective
optimization problem often forms an (M − 1)-dimensional
topological simplex (a curved line for M = 2, a curved
triangle for M = 3, a curved tetrahedron for M = 4,
etc.). Since the dimensionality of the solution set increases
as the number of objectives grows, an exponentially large
sample size is needed to cover the solution set. To reduce
the required sample size, this paper proposes a Bézier sim-
plex model and its fitting algorithm. These techniques can
exploit the simplex structure of the solution set and de-
compose a high-dimensional surface fitting task into a se-
quence of low-dimensional ones. An approximation theorem
of Bézier simplices is proven. Numerical experiments with
synthetic and real-world optimization problems demonstrate
that the proposed method achieves an accurate approxima-
tion of high-dimensional solution sets with small samples. In
practice, such an approximation will be conducted in the post-
optimization process and enable a better trade-off analysis.

Introduction
A multi-objective optimization problem is a problem that
minimizes multiple objective functions f1, . . . , fM : X →
R over a common domain X ⊆ RL:

minimize f(x) := (f1(x), . . . , fM (x))

subject to x ∈ X.

Different functions usually have different minimizers, and
one needs to consider a trade-off that two solutions x,y ∈
X may satisfy fi(x) < fi(y) and fj(x) > fj(y). Accord-
ing to Pareto ordering, i.e.,

f(x) ≺ f(y)
def⇐⇒ fm(x) ≤ fm(y) for all m = 1, . . . ,M

and fm(x) < fm(y) for some m = 1, . . . ,M,

the goal of multi-objective optimization is to obtain the
Pareto set

X∗(f) := { x ∈ X | f(y) 6≺ f(x) for all y ∈ X }
and the Pareto front

fX∗(f) :=
{
f(x) ∈ RM

∣∣ x ∈ X∗(f)
}
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which describe the best-compromising solutions and their
values of the conflicting objective functions, respectively.

In industrial applications, obtaining the whole Pareto
set/front rather than a single solution enables us to com-
pare promising alternatives and to explore new innovative
designs, whose concept is variously refered to as innoviza-
tion (Deb and Srinivasan 2006), multi-objective design ex-
ploration (Obayashi, Jeong, and Chiba 2005) and design
informatics (Chiba, Makino, and Takatoya 2009). Quite a
few real-world problems involve simulations and/or exper-
iments to evaluate solutions (Chand and Wagner 2015) and
lack the mathematical expression of their objective functions
and derivatives. Multi-objective evolutionary algorithms are
a tool to solve such problems where the Pareto set/front is
approximated by a population, i.e., a finite set of sample
points (Coello, Lamont, and Van Veldhuisen 2007).

While the available sample size is limited due to expen-
sive simulations and experiments, it is well-known that the
dimensionality of the Pareto set/front increases as the num-
ber of objectives grows. Describing high-dimensional Pareto
sets/fronts with small samples is one of the key challenges
in many-objective optimization today (Li et al. 2015).

A considerable number of real-world applications share
an interesting structure: their Pareto sets and/or Pareto fronts
are often homeomorphic to an (M − 1)-dimensional sim-
plex. See for example (Rodrı́guez-Chı́a and Puerto 2002;
Vrugt et al. 2003; Shoval et al. 2012; Mastroddi and Gemma
2013). This observation has been theoretically backed up in
some cases (Kuhn 1967; Smale 1973; Shoval et al. 2012).
A recent study (Lovison and Pecci 2014) pointed out that
for all m ≤ M , each (m − 1)-dimensional face of such a
simplex is the Pareto set of a subproblem optimizing m ob-
jective functions of the original problem.

By exploiting this simplex structure, we considers the
problem of fitting a hyper-surface to the Pareto front. In
statistics, machine learning and related fields, regression
problems have been considered in Euclidean space with-
out boundary or at most with coordinate-wise upper/lower
boundaries (Gelman and Hill 2007; Gelman et al. 2013).
Hyper-surface models developed in such spaces are not suit-
able for Pareto fronts as a simplex has a non-axis-parallel
boundary whose skeleton structure is described by its faces.

This paper proposes a new model and its fitting algorithm
for approximating Pareto fronts with the simplex structure.
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(a) Simplex ∆J (b) Pareto set X∗(fJ) (c) Pareto front fX∗(fJ)

Figure 1: Skeletons for non-empty J ⊆ { 1, 2, 3 } and simplicial f = (f1, f2, f3).

Our contibution can be summarized as follows:

1. We define a new class of multi-objective optimization
problems called the simplicial problem in which the
Pareto set/front have the simplex structure discussed
above. We propose a Bézier simplex model, which is a
generalization of a Bézier curve (Farin 2002).

2. We prove that Bézier simplices can approximate the
Pareto set/front (as well as the objective map between
them) of any simplicial problem with arbitrary accuracy.

3. We propose a Bézier simplex fitting algorithm. Exploiting
the simplex structure of the Pareto set/front of a simplicial
problem, this algorithm decomposes a Bézier simplex into
low-dimensional simplices and fits each of them, induc-
tively. This approach allows us to reduce the number of
parameters to be estimated at a time.

4. We evaluate the approximation accuracy of the proposed
method with synthetic and real-world optimization prob-
lems; compared to a conventional response surface model
for Pareto fronts, our method exhibits a better boundary
approximation while keeping the almost same quality of
interior approximation. As a result, a five-objective Pareto
front is described with only tens of sample points.

Preliminaries
Let us introduce notations for defining simplicial problems
and review an existing method of Bézier curve fitting.

Simplicial Problem
A multi-objective optimization problem is denoted by its
objective map f = (f1, . . . , fM ) : X → RM . Let I :=
{ 1, . . . ,M } be the index set of objective functions and

∆M−1 :=

{
(t1, . . . , tM ) ∈ RM

∣∣∣∣∣ 0 ≤ tm,
∑
m∈M

tm = 1

}

be the standard simplex in RM . For each non-empty subset
J ⊆ I , we call

∆J :=
{

(t1, . . . , tM ) ∈ ∆M−1
∣∣ tm = 0 (m 6∈ J)

}

the J-face of ∆M−1 (see Figure 1a) and

fJ := (fi)i∈J : X → R|J|

the J-subproblem of f . For each 0 ≤ m ≤M − 1, we call

∆(m) :=
⋃

J⊆I, |J|=m

∆J

the m-skeleton of ∆M−1.
The problem class we are interested in is as follows:

Definition 1 (Simplicial problem) A problem f : X →
RM is simplicial if there exists a map φ : ∆M−1 → X
such that for each non-empty subset J ⊆ I , its restriction
φ|∆J : ∆J → X gives homeomorphisms

φ|∆J : ∆J → X∗(fJ),

f ◦ φ|∆J : ∆J → fX∗(fJ).

We call such φ and f ◦ φ a triangulation of the Pareto
set X∗(f) and the Pareto front fX∗(f), respectively. For
each non-empty subset J ⊆ I , we call X∗(fJ) the J-face
of X∗(f) and fX∗(fJ) the J-face of fX∗(f). For each
0 ≤ m ≤M − 1, we call

X∗(m) :=
⋃

J⊆I, |J|=m

X∗(fJ),

fX∗(m) :=
⋃

J⊆I, |J|=m

fX∗(fJ)

the m-skeleton of X∗(f) and fX∗(f), respectively.

By definition, any subproblem of a simplicial problem is
again simplicial. The homeomorphism φ|∆J ensures that
the Pareto sets forms a curved simplex as shown in Fig-
ure 1b. The homeomorphism f ◦φ|∆J asserts that f |X∗(f) :

X∗(f) → RM is a C0-embedding. This means that
the Pareto front is also a curved simplex (with a possi-
bly different shape) as shown in Figure 1c. Therefore, the
Pareto set/front of an M -objective simplicial problem can
be treated as a curved (M − 1)-simplex. We can find its J-
face by solving the J-subproblem.
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The above structure appears in a broad range of appli-
cations. In operations research, the Pareto set of the facil-
ity location problem under the L2-norm is shown to be the
convex hull of single-objective optima (Kuhn 1967). When
the optima are in general position, the Pareto set becomes a
simplex. Similar observations are also reported under other
norms (Rodrı́guez-Chı́a and Puerto 2002). In economics, the
Pareto set of the pure exchange economy with M players is
known to be homeomorphic to an (M−1)-dimensional sim-
plex (Smale 1973). In hydrology, the two-objective Pareto
set of a hydrologic cycle model calibration is observed to
be a curve. Its end points are single-objective optima, and
the end points correspond to end points of the Pareto front
curve (Vrugt et al. 2003). In addition, a recent study pointed
out that the Pareto set of an M -objective convex optimiza-
tion problem is diffeomorphic to an (M − 1)-dimensional
simplex and that its (m−1)-dimensional faces are the Pareto
sets of m-objective subproblems for all m ≤ M (Lovison
and Pecci 2014).

Bézier Curve Fitting
Since the Pareto front of any two-objective simplicial prob-
lem is a curve with two end points in R3, the Bézier curve
would be a suitable model for describing it.

In RM , the Bézier curve of degree D is a parametric
curve, i.e., a map b : [0, 1] → RM determined by D + 1
control points p0, . . . ,pD ∈ RM (Farin 2002):

b(t) :=

D∑
d=0

(
D

d

)
td(1− t)(D−d)pd (0 ≤ t ≤ 1), (1)

where
(
D
d

)
represents the binomial coefficient. The parame-

ter t moves from t = 0 to t = 1, giving a curve b(t) with
two end points b(0) = p0 and b(1) = pD.

Given sample points x1, . . . ,xN ∈ RM , a Bézier curve
can be fitted by solving the following problem (Borges and
Pastva 2002):

minimize
tn, pd

N∑
n=1

‖b(tn)− xn‖2

subject to 0 ≤ tn ≤ 1 (n = 1, . . . , N)

(2)

where tn (n = 1, . . . , N) and pd (d = 0, . . . , D) are vari-
ables to be optimized. Notice that tn (n = 1, . . . , N) are
introduced to calculate residuals for each sample point. The
error function (2) to be minimized represents the sum of
squared residuals for sample points.

If one fix all control points pd (d = 0, . . . , D), the Bézier
curve b(t) is determined. The error function (2) can be now
separately optimized by minimizing ‖b(tn)− xn‖2 with re-
spect to each tn. The solution tn is the foot of a perpendicu-
lar line from a sample point xn to the Bézier curve b([0, 1]),
which satisfies〈

∂

∂t

∣∣∣
t=tn

b(t), b(tn)− xn

〉
= 0. (3)

Since (3) is a nonlinear equation, Newton’s method is used
to find the solution tn.

Algorithm 1 Bézier curve fitting (Borges and Pastva 2002)

1: (Initialize) Set i← 1 and initial control points p(i)
d (d =

0, . . . , D).
2: while not converged do
3: (Update parameters) Fix control points p(i)

d (d =
0, . . . , D) and solve (3) for each n = 1, . . . , N using
Newton’s method. Then set the solutions as t(i+1)

n .
4: (Update control points) Solve (2) with respect to the

control points and set the solutions as p(i+1)
d (d =

0, . . . , D).
5: i← i + 1.
6: end while
7: return p

(i)
d (d = 0, . . . , D)

Figure 2: A Bézier simplex for M = 3, D = 3.

If one fix all parameters tn (n = 1, . . . , N), the Bézier
curve b(tn) becomes a linear function with respect to the
control points p0, . . . ,pD. The error function (2) can be now
optimized by solving linear equations with respect to all pd.

Algorithm 1 shows Borges and Pastva’s method, which
alternately adjusts parameters and control points. This algo-
rithm is also used to adjust some of the control points with
remaining points fixed (Shao and Zhou 1996).

Bézier Simplex Fitting
To describe the Pareto front of an arbitrary-objective sim-
plicial problem, however, Bézier curve fitting is not enough,
and we need to generalize it to the Bézier simplex. We pro-
pose a method of fitting a Bézier simplex to the Pareto front
of a simplicial problem.

Bézier Simplex
Let N be the set of nonnegative integers and

NM
D :=

{
(d1, . . . , dM ) ∈ NM

∣∣∣∣∣
M∑

m=1

dm = D

}
.

For t := (t1, . . . , tM ) ∈ RM and d := (d1, . . . , dM ) ∈
NM , we denote by td a monomial td1

1 td2
2 · · · t

dM

M . As shown
in Figure 2, the Bézier simplex of degree D in RM is a map
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∆M−1 → RM determined by control points pd ∈ RM (d ∈
NM

D ):

b(t) :=
∑

d∈NM
D

(
D

d

)
tdpd, (4)

where
(
D
d

)
represents a polynomial coefficient(

D

d

)
:=

D!

d1!d2! · · · dM !
.

Approximation Theorem
Is the Bézier simplex a suitable model for describing the
Pareto front of a simplicial problem? Let us check that for
any simplicial problem, Bézier simplices can approximate
the Pareto front (as well as the Pareto set and the objective
map between them) with arbitrary accuracy.

We begin with a more general proposition that any contin-
uous map on a simplex can be uniformly approximated by
some Bézier simplex as a map:

Theorem 1 Let φ : ∆M−1 → RK be a continuous map.
There exists an infinite sequence of Bézier simplices b(i) :
∆M−1 → RK such that

lim
i→∞

sup
t∈∆M−1

|φ(t)− b(i)(t)| = 0.

The proof of Theorem 1 is shown in Appendix A.1
Recall (Definition 1) that a simplicial problem f : X →

RM admits a triangulation of the Pareto set

φ : ∆M−1 → X∗(f) ⊂ RL,

which induces a triangulation of the Pareto front

f ◦ φ : ∆M−1 → fX∗(f) ⊂ RM .

Addtionally, the trianglation φ : ∆M−1 → X∗(f)
also induces a triangulation of a restricted objective map
f : X∗(f) → fX∗(f). That is, its graph G∗(f) ={

(x,f(x)) ∈ RL × RM
∣∣ x ∈ X∗(f)

}
is triangulated by

the induced map

(φ,f ◦ φ) : ∆M−1 → G∗(f) ⊂ RL+M

because f : X∗(f) → fX∗(f) is continuous by definition
and any continuous map induces a homeomorphism from
the domain to the graph. These three triangulations fulfill
the qualifications of the map φ in Theorem 1. We thus get
the desired result for approximation as a set.

Corollary 2 Let X∗ be the Pareto set, the Pareto front or
the graph of the objective map restricted to the Pareto set
of a simplicial problem. There exists an infinite sequence of
Bézier simplices b(i) : ∆M−1 → RK such that

lim
i→∞

dH(X∗, B(i)) = 0

where dH is the Hausdorff distance and B(i) are images of
Bézier simplices: B(i) := b(i)(∆M−1).

1Appendix is available from https://github.com/rafcc/
stratification-learning.

Algorithm 2 Bézier simplex fitting (all-at-once)

1: (Initialize) Set i← 1 and initial control points p(i)
d (d ∈

NM
D ).

2: while not converged do
3: (Update parameters) Fix control points p(i)

d (d ∈
NM

D ) and solve (6) for each n = 1, . . . , N using New-
ton’s method. Then set the solutions as t(i+1)

n .
4: (Update control points) Solve (5) with respect to the

control points and set the solutions p(i+1)
d (d ∈ NM

D ).
5: i← i + 1.
6: end while
7: return p

(i)
d (d ∈ NM

D )

All-at-Once Fitting
Let us consider algorithms to realize such a sequence of
Bézier simplices. First, we develop a straightforward gen-
eralization of the Bézier curve fitting method. We call this
method the all-at-once fitting.

Given sample points x1, . . . ,xN ∈ RM , a Bézier simplex
can be fitted by solving the following problem, which is a
multi-dimensional analogue of the problem (2):

minimize
tn, pd

N∑
n=1

‖b(tn)− xn‖2

subject to tn ∈ ∆M−1 (n = 1, . . . , N)

(5)

where tn = (tn1, . . . , tnM ) (n = 1, . . . , N) and pd (d ∈
NM

D ) are variables to be optimized.
As is the case of Bézier curve fitting, if one fix all control

points pd (d ∈ NM
D ), the Bézier simplex b(t) is determined.

The error function (5) can be now separately optimized by
minimizing ‖b(tn)− xn‖2 with respect to each tn. The so-
lution tn is the foot of a perpendicular line from a sample
point xn to the Bézier simplex b(∆M−1), which satisfies〈

∂

∂tm

∣∣∣
t=tn

b(t), b(tn)− xn

〉
= 0 (m = 1, . . . ,M).

(6)
Since (6) is a system of nonlinear equations, Newton’s
method is used to find the solution tn.

If one fix all parameters tn (n = 1, . . . , N), the Bézier
simplex b(tn) is a linear function with respect to the con-
trol points pd (d ∈ NM

D ). The error function (5) can be
now optimized by solving linear equations with respect to
all pd (d ∈ NM

D ).
As well as Borges and Pastva’s method, the all-at-once

fitting alternately adjusts parameters and control points. We
describe the all-at-once fitting in Algorithm 2. This algo-
rithm is also used to adjust some of the control points with
remaining control points fixed.

While a Bézier simplex has enough flexibility as de-
scribed in Theorem 1, the required sample size for the all-at-
once fitting grows quickly with respect to M . Let us consider
the case of fitting a Bézier simplex of degree D to the Pareto
front of an M -objective problem. In this case, the number of
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control points to be estimated is∣∣NM
D

∣∣ =

(
D + M − 1

D

)
=

(D + M − 1)!

D!(M − 1)!
= O(MD).

Practically, the degree of a Bézier simplex to be fitted is of-
ten set as D = 3; nevertheless the number of control points
to be estimated at a time becomes unreasonable for large M .

Inductive Skeleton Fitting
To reduce the required sample size, we consider decompos-
ing a Bézier simplex into subsimlices and fitting each sub-
simplex one by one from low dimension to high dimension.
This approach allows us to reduce the number of control
points to be estimated at a time. We call this method the
inductive skeleton fitting.

Let I := { 1, . . . ,M } and for each non-empty subset
J ⊆ I , we define

NJ
D :=

{
(d1, . . . , dM ) ∈ NM

D

∣∣ dm = 0 (m 6∈ J)
}
.

The J-face of an (M − 1)-Bézier simplex of degree D is a
map ∆J → RM determined by control points pd ∈ RM for
all d ∈ NJ

D:

bJ(t) :=
∑

d∈NJ
D

(
D

d

)
tdpd. (7)

For arbitrary parameters t satisfying

t ∈ ∆J ⊆ ∆I ,

all entries that are not in J are 0. It then holds that

bI(t) =
∑

d∈NI
D

(
D

d

)
tdpd =

∑
d∈NJ

D

(
D

d

)
tdpd = bJ(t).

This means that, for each non-empty subset J ⊂ I , the
J-face of the (M − 1)-Bézier simplex of degree D is the
(|J | − 1)-Bézier simplex of the same degree and it is de-
termined by the control points pd of the (M − 1)-Bézier
simplex satisfying d ∈ NJ

D. To exploiting this structure, the
inductive skeleton fitting decomposes a Bézier simplex into
subsimplices and fits a subsimplex bJ(t) to XJ for each
non-empty subset J ⊆ I in ascending order of cardinality
of J .

When a problem f = (f1, . . . , fM ) : X → RM is sim-
plicial, we can provide a set of subsamples for running the
inductive skeleton fitting. Remember that the Pareto front
fX∗(f) has the same skeleton as the (M − 1)-simplex:
fX∗(fJ) ⊆ fX∗(fI) for all ∅ 6= J ⊆ I . Thus given a
sample X of fX∗(f), we can decompose it into subsam-
ples

XJ := { x ∈ X | fJ(y) 6≺ fJ(x) for all y ∈ X } ,

each of which represents a sample of the J-face
fX∗(fJ) (∅ 6= J ⊆ I). Algorithm 3 summarizes the in-
ductive skeleton fitting.

Unlike the all-at-once fitting, the inductive skeleton fit-
ting allows us to reduce the number of control points to be

Algorithm 3 Bézier simplex fitting (inductive skeleton)

1: for m = 1, . . . ,min {D,M } do
2: for J ⊆ I such that |J | = m do
3: Fix control points pd (d ∈

⋃
∅6=K⊂J NK

D ) as esti-
mated in previous steps.

4: Adjust remaining control points pd (d ∈ NJ
D \

(
⋃
∅6=K⊂J NK

D )) by Algorithm 2 with sample XJ .
5: end for
6: end for
7: return pd (d ∈ NM

D )

estimated at a time. Let us consider the case of fitting a sub-
simplex bJ(t) with |J | = m. As we described before, the
subsimplex bJ(t) has |Nm

D | =
(
D+m−1

D

)
= (D+m−1)!

D!(m−1)! con-
trol points. In practice, it is sufficient to set D as a small
value compared to M . In such a case, the inductive skele-
ton fitting estimates at most D-objective solutions, then we
only have to adjust at most maxm=1,...,D

(
D+m−1

D

)
control

points for each step. Notice that this number does not depend
on M but on D. Therefore, in case of the inductive skeleton
fitting, the number of control points to be estimated at a time
is much smaller than

(
D+M−1

D

)
for large M .

Numerical Experiments
The small sample behavior of the proposed method is exam-
ined using Pareto front samples of varying size.2

Data Sets
To investigate the effect of the Pareto front shape and dimen-
sionality, we employed six synthetic problems with known
Pareto fronts, all of which are simplicial problems. Schaffer,
ConstrEx and Osyczka2 are two-objective problems. Their
Pareto fronts are a curved line that can be triangulated into
two vertices and one edge. 3-MED and Viennet2 are three-
objective problems. Their Pareto fronts are a curved triangle
that can be triangulated into three vertices, three edges and
one face. 5-MED is a five-objective problem. Its Pareto front
is a curved pentachoron that can be triangulated into five ver-
tices, ten edges, ten faces, five three-dimensional faces and
one four-dimensional face. We generated Pareto front sam-
ples of 3-MED and 5-MED by AWA(objective) using default
hyper-parameters (Hamada et al. 2010). Pareto front sam-
ples of the other problems were taken from jMetal 5.2 (Ne-
bro, Durillo, and Vergne 2015).

To assess the practicality of the proposed method, we also
used one real-world problem called S3TD. This is a four-
objective problem3 of designing a silent super-sonic aircraft.
The Pareto front has not been exactly known, and we only
have an inaccurate sample of 58 points obtained in the prior
study (Chiba, Makino, and Takatoya 2009). Its simplicial-
ity is also unknown. If it is assumed to be simplicial, then

2The source code is available from https://github.com/rafcc/
stratification-learning.

3The original problem is five-objective, but we dropped one ob-
jective because there are two objectives that are highly correlated.
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the Pareto front is a curved tetrahedron that can be trian-
gulated into four vertices, six edges, four faces, one three-
dimensional face. The problem definitions of the synthetic
and real-world problems are described in Appendix B.

For each problem, the Pareto front sample is split into a
training set and a validation set. The training set is further
decomposed into subsamples for the Pareto fronts of sub-
problems: each m-objective subproblem has a subsample
consisting of Nm points. Experiments were conducted on
all combinations of the following subsample sizes:4

N1 = 1,

N2 = 2, . . . , 10,

N3 = 1, . . . , 10 (N4 = N5 = 0).

An M -objective problem has M single-objective problems,
M(M −1)/2 two-objective problems and M(M −1)(M −
2)/6 three-objective problems. The total sample size of the
training set is
N = MN1 +M(M −1)N2/2 +M(M −1)(M −2)N3/6.

The details of making Pareto front subsamples are described
in Appendix C.

Methods
We compared the following surface-fitting methods:
• the inductive skeleton fitting (Algorithm 3);
• the all-at-once fitting (Algorithm 2);
• the response surface method (Goel et al. 2007).
The inductive skeleton fitting used each training subsample
for each subproblem. The all-at-once fitting and the response
surface method used all training subsamples as a whole. We
set the initial control points p0

d (d ∈ NJ
D, J ⊂ I, |J | = 1),

which are the vertices of the Bézier simplex, to be the single-
objective optima, and the rest of control points were set to be
the simplex grid spanned by them. Newton’s method used in
the inductive skeleton fitting and the all-at-once fitting em-
ployed the first and second analytical derivatives, and was
terminated when the number of iterations reached 100 or
when the following condition is satisfied:√√√√ M∑

m=1

〈
∂

∂tm

∣∣∣
t=tn

b(t), b(tn)− xn

〉2

≤ 10−5.

The fitting algorithm was terminated when the number of
iterations reached 100 or when the following condition is
satisfied: √

SSRi+1/N −
√

SSRi/N ≤ 10−5,

where SSRi is the value of the loss function (5) at the i-th
iteration.

According to a prior study (Goel et al. 2007), the response
surface method treated multi-dimensional objective values
as a function from the first M−1 objective values to the last
objective value by using multi-polynomial regression with
cubic polynomials. We removed cross terms of degree three
so that the number of explanatory variables did not exceed
the sample size.

4We fix N4 = N5 = 0 as all methods used in our experiments
do not require these subsamples to fit the Pareto front.

(a) GD assesses false positive. (b) IGD assesses false negative.

Figure 3: GD and IGD.

Performance Measures
To evaluate how accurately an estimated hyper-surface ap-
proximates the Pareto front, we used the generational dis-
tance (GD) (Veldhuizen 1999) and the inverted generational
distance (IGD) (Zitzler et al. 2003):

GD(X,Y ) :=
1

|X|
∑
x∈X

min
y∈Y
‖x− y‖ ,

IGD(X,Y ) :=
1

|Y |
∑
y∈Y

min
x∈X
‖x− y‖

where X is a finite set of points sampled from an estimated
hyper-surface and Y is a validation set.

Figure 3 depicts what GD and IGD assess. These values
can be viewed as the avarage length of arrows in each plot.
Figure 3a implies that GD becomes high when the estimated
front has a false positive area which is far from the Pareto
front. Conversely, Figure 3b tells that IGD becomes high
when the Pareto front has a false negative area which is not
covered by the estimated front. Thus, we can say that the es-
timated hyper-surface is close to the Pareto front if and only
if both GD and IGD are small.

For the all-at-once fitting and the inductive skeleton fit-
ting, we sampled the estimated Bézier simplex as follows:

X :=

{
b(t)

∣∣∣∣ t ∈ ∆M−1, tm ∈
{

0,
1

20
,

2

20
, . . . , 1

}}
.

For the response surface method, we sampled the estimated
response surface as follows:

X := {(x1, . . . , xM−1, r(x1, . . . , xM−1))

|x1, . . . , xM−1 ∈ {0,
1

20
,

2

20
, . . . , 1}},

where r(x1, . . . , xM−1) is an estimated polynomial func-
tion. We repeated experiments 20 times5 with different train-
ing sets and computed the average and the standard devia-
tions of their GDs and IGDs.

5We set the number of trials on the basis of power analysis. Ac-
cording to our preliminary experiments, the effect size of GD/IGD
values was approximately d = 0.6. In this case, the sample size
n = 20 is required to assume the power > 0.8 with significance
level p = 0.05.
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Table 1: GD and IGD (avg. ± s.d. over 20 trials) with subsample size (1, 3) for Schaffer, ConstrEx and Osyczka2; (1, 2, 1) for
3-MED, Viennet2 and 5-MED; (1, 5, 5) for S3TD. The best scores are shown in bold. (∗∗ : p < 0.05, ∗ : p < 0.1)

Problem Inductive skeleton All-at-once Response surface
Iteration GD IGD Iteration GD IGD GD IGD

Schaffer 3.00 ± 0.00 5.21e-10 ± 1.16e-09 2.49e-02 ± 1.68e-12 3.00 ± 0.00 5.21e-10 ± 1.16e-09 2.49e-02 ± 1.68e-12 1.68e-01 ± 1.74e-01 1.13e-01 ± 3.50e-02
ConstrEx 3.00 ± 0.00 4.94e-02 ± 4.73e-02 5.44e-02 ± 2.39e-02 3.00 ± 0.00 4.94e-02 ± 4.73e-02 5.44e-02 ± 2.39e-02 5.09e-02 ± 8.63e-03 7.13e-02 ± 1.09e-02
Osyczka2 3.00 ± 0.00 1.22e-01 ± 1.35e-01 1.18e-01 ± 7.98e-02 3.00 ± 0.00 1.22e-01 ± 1.35e-01 1.18e-01 ± 7.98e-02 1.74e-01 ± 1.56e-01 1.39e-01 ± 4.08e-02

MED.3D 2.39 ± 0.49 4.13e-01 ± 1.42e+00 5.55e-02 ± 2.44e-02 3.00 ± 0.00 1.86e+00 ± 6.02e+00 1.17e-01 ± 7.75e-02 1.22e+00 ± 2.10e-01 7.42e-02 ± 5.22e-03
Viennet2 2.38 ± 0.48 6.25e+00 ± 1.37e+01 6.09e-02 ± 8.44e-03 3.57 ± 0.49 2.76e+05 ± 4.94e+05 1.94e-01 ± 1.27e-02 9.37e-01 ± 3.03e-01 6.72e-02 ± 2.59e-03
MED.5D 2.80 ± 0.40 2.57e-01 ± 3.33e-01 7.93e-02 ± 1.05e-02 3.00 ± 0.00 7.21e-01 ± 4.12e-01 1.53e-01 ± 1.87e-02 3.33e+00 ± 6.76e-01 1.19e-01 ± 7.53e-03

S3TD 3.25 ± 1.58 2.04e-01 ± 4.04e-02 1.37e-01 ± 3.15e-02 36.20 ± 33.81 5.58e-01 ± 5.99e-01 6.31e-01 ± 6.36e-01 7.17e-01 ± 2.14e-01 9.88e-02 ± 6.67e-03

Results
For each problem and method, the average and the stan-
dard deviation of the GD and IGD are shown in Table 1.
In Table 1, we highlighted the best score of GD and IGD
out of all methods for each problem and added the results
of Mann-Whitney’s one-tail U-test to check the best score
was smaller than that of the other methods significantly. In
case of conducting multiple tests, we corrected p-value by
Holm’s method.

For Bézier simplex fitting methods, the number of itera-
tions until termination is also shown. The table shows that
the fitting was finished in approximately three iterations in
all cases except for the all-at-once fitting on S3TD.

Inductive skeleton vs. all-at-once For all the two-
objective problems, both methods obtained almost identical
GD and IGD values. For three- and five-objective problems,
the inductive skeleton fitting significantly outperformed the
all-at-once fitting in both GD and IGD. Especially in Vien-
net2, the all-at-once fitting exhibited unstable behavior in
GD while the inductive skeleton fitting was stable.

Inductive skeleton vs. response surface The inductive
skeleton fitting achieved better IGDs in Schaffer, Osyczka2,
3-MED, and 5-MED but worse values in ConstrEx and Vi-
ennet2. In terms of the average GD, the inductive skeleton
fitting was better in all the problems except ConstrEx.

Discussion
In this section, we discuss approximation accuracy, required
sample size, practicality for real-world data and objective
map approximation of our method.

Approximation Accuracy
For three- and five-objective problems, the inductive skele-
ton fitting achieved slightly better IGDs. The inductive
skeleton fitting adjusts a small subset of control points at
each step with already-adjusted control points of the faces.
This reduces the number of parameters estimated at a time,
which seems to prevent over-fitting.

More significant differences can be seen in GD. Figure 4
shows the cause of these defferences: The all-at-once fitting
obtained an overly-spreading Bézier simplex while the in-
ductive skeleton fitting found an exactly-spreading Bézier
simplex. Minimizing the squared loss (5) only imposes that

all sample points are close to the Bézier simplex, which
leads to a good IGD. However, it does not impose that all
Bézier simplex points are close to the sample points, which
is needed to achieve a good GD. The inductive skeleton fit-
ting stipulates that each face of the Bézier simplex must be
close to each face of the Pareto front (i.e., the Pareto front of
each subproblem), which minimizes GD.

Similarly to the all-at-once fitting, the response surface
has poor GDs. As we do not know the true Pareto set, it
is difficult for grid sampling to obtain an exactly-spreading
surface.

ConstrEx and Viennet2 are the only problems where the
inductive skeleton fitting was worse than the response sur-
face method. ConstrEx is a non-smooth curve that cannot be
fitted by a single Bézier curve (see Figure 1 in Appendix D).
This type of Pareto fronts leads to a challenging problem:
developing a method for gluing multiple Bézier simplices to
express a non-smooth surface. Viennet2 is a smooth surface
but its curvature is severely sharp (see Figure 3 in Appendix
D). Although Viennet2 is defined by quadratic functions (see
Appendix B), its Pareto front cannot be fitted by the Bézier
simplex of degree three. This means that setting the degree
of the Bézier simplex grater than or equal to the maximum
degree in the problem definition does not ensure approxima-
tion accuracy. It would be useful to develop a way to un-
derstand the required degree of the Bézier simplex from the
problem definition.

Required Sample Size

To achieve good accuracy, how many sample points does
the Bézier simplex require? Figure 5 shows transitions of
GD and IGD on 5-MED when the sample size of each three-
objective subproblem (two-dimensional face) varies N3 =
1, . . . , 10 with fixed N1 = 1 and N2 = 2. Surprisingly, both
GD and IGD have already converged at N3 = 4.

In case of D = 3 for 5-MED, which is a five-objective
(M = 5) problem, the number of all control points to be
esitimated is

(
3+5−1

5

)
= 35. While the all-at-once fitting

fits them simultaneously, in case of the induuctive skeleton
method, we only have to fit two and one control points for
each two- and three-objective subproblem respectively.This
result demonstrates that the inductive skeleton fitting allows
us to fit Pareto fronts with small samples by reducing the
number of control points to be estimated at a time.
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(a) Inductive skeleton (b) All-at-once (c) Response surface

Figure 4: Bézier triangles for 3-MED with sample size (1, 2, 1).

Practicality for Real-World Data
Now we discuss the practicality of the inductive skeleton fit-
ting. Firstly, we focus on the performance of S3TD, which is
a real-world problem. Table 1 indicates that the average IGD
of the inductive skeleton fitting on S3TD was worse than that
of the response surface method. However, the IGD itself is
an order of 10−1, which small in absolute sense consider-
ing the number of the objective functions (M = 4) and the
sample size of the validation set (N = 58) on S3TD. The
average GD of the inductive skeleton method was smaller
than that of the other methods and the difference was sig-
nificant with significance level p = 0.1. Figure 6 shows
transitions of GD and IGD on S3TD when the sample size
of each three-objective subproblem (two-dimensional face)
varies N3 = 1, . . . , 10 with fixed N1 = 1 and N2 = 5.
We can observe that both GD and IGD already converged at
N3 = 4 as Figure 5. These results suggest that the inductive
skeleton fitting can work properly in real-world problems.

In real-world problems, it seems to be difficult to know
that the Pareto set/front is a simplex and in some cases, it
is degenerated. However, a statistical test has been proposed
to judge whether the Pareto set/front of a given problem is
a simplex or not (Hamada and Goto 2018). This test tells us
whether we can apply the inductive skeleton fitting to real-
world problems. Furthermore, even if the Pareto front is de-
generated, Theorem 1 states the Bezier simplex model can
fit degenerate Pareto sets/fronts.

Objective Map Approximation
As well as the Pareto front approximation discussed and
demonstrated so far, Theorem 1 ensures that our method can
be used for approximating the Pareto set, X∗(f), and the
restricted objective map, f : X∗(f) → fX∗(f). Such
approximations may provide richer information about the
problem. To check the performance of graph approximation,
we made a sample of solution-objective pairs of 5-MED
X =

{
(x,f(x)) ∈ R5 × R5

∣∣ x ∈ X∗(f)
}

and applied
the inductive skeleton fitting to it. Other settings were the
same as the Pareto front approximation. Table 2 shows the
GD and IGD values where the results of the all-at-once fit-
ting are just for baseline. As the inductive skeleton fitting

achieved GD and IGD of 10−1 order of magnitude, which
means that it accurately approximates the graph of the re-
stricted objective map in the abslute sense. In 5-MED, the
graph of the restricted objective map on the Pareto set is
a four-dimensional topological simplex in a 10-dimensional
space. Although the codimension is six times higher than the
case of Pareto front approximation, we have similar GD and
IGD to ones of 5-MED in Table 1. This fact implies that the
approximation error mainly depends on the intrinsic dimen-
sionality rather than the ambient dimensionality.

Conclusions

In this paper, we have proposed the Bézier simplex model
and its fitting algorithm for approximating Pareto fronts of
multi-objective optimization problems. An approximation
theorem of the Bézier simplex has been proven. Numeri-
cal experiments have shown that our fitting algorithm, the
inductive skeleton fitting, obtains exactly-spreading Bézier
simplices over synthetic Pareto fronts of different shape and
dimensionality. It has been also observed that a real-world
problem with four objectives but only 58 points is accurately
fitted. The proposed model and its fitting algorithm drasti-
cally reduce the sample size required to describe the entire
Pareto front.

The current algorithm has some drawbacks. The inductive
skeleton fitting requires that each subproblem must have a
non-empty sample, which may be too demanding for some
practice. Furthermore, the loss function for fitting does not
take into account of the sampling error of the Pareto front.
To get a more stable approximation under wild samples, we
plan to extend the (deterministic) Bezier simplex to a prob-
abilistic model.

We believe that the potential applications of the method
are not limited to the use in post-optimization process. It will
be introduced in evolutionary algorithms and dynamically
evolved to accelerate search. We also expect that this model
can be applied to regression problems that have complex
boundary conditions such as learning from multi-labeled
data.
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Figure 5: Sample size N3 vs. GD/IGD on 5-MED with sample size (1, 2, N3) (boxplot over ten trials).

Figure 6: Sample size N3 vs. GD/IGD on S3TD with sample size (1, 5, N3) (boxplot over ten trials).

Table 2: GD and IGD (avg. ± s.d. over 20 trials) with sample size (1, 2, 1) for the graph of 5-MED.

Inductive skeleton All-at-once
Iteration GD IGD Iteration GD IGD

2.85 ± 0.36 3.35e-01 ± 9.27e-02 2.05e-01 ± 3.37e-02 3.00 ± 0.00 1.34e+00 ± 1.95e+00 2.79e-01 ± 8.00e-02
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