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Abstract

We propose a simple, powerful, and flexible machine learning
framework for (i) reducing the search space of computation-
ally difficult enumeration variants of subset problems and (ii)
augmenting existing state-of-the-art solvers with informative
cues arising from the input distribution. We instantiate our
framework for the problem of listing all maximum cliques in
a graph, a central problem in network analysis, data mining,
and computational biology. We demonstrate the practicality
of our approach on real-world networks with millions of ver-
tices and edges by not only retaining all optimal solutions,
but also aggressively pruning the input instance size result-
ing in several fold speedups of state-of-the-art algorithms. Fi-
nally, we explore the limits of scalability and robustness of
our proposed framework, suggesting that supervised learning
is viable for tackling NP-hard problems in practice.

1 Introduction
Computationally challenging (i.e., NP-hard) problems are
ubiquitous and arise naturally in several domains like
scheduling, planning, and design and analysis of networks.
In particular, several such important problems are subset
problems: given an input, what is the largest/smallest sub-
set with a particular property? One of the most central of
such problems is the maximum clique problem. In this prob-
lem, we are given an undirected graph G, and asked for the
largest subset of vertices that are pairwise adjacent, i.e., form
a clique. An even harder and more general variant of a sub-
set problem is its enumeration variant, in which the goal is
to list all optimal solutions. This variant of the maximum
clique problem is known as the maximum clique enumera-
tion (MCE) problem. Note that we consider the problem of
listing of all maximum cliques and not maximal cliques.

The MCE problem has numerous applications such as so-
cial network analysis (Faust and Wasserman 1995), study of
structures in behavioral networks (Bernard, Killworth, and
Sailer 1979), statistical analysis of financial networks (Bo-
ginski, Butenko, and Pardalos 2005), and clustering in ci-
tation and dynamic networks (Stix 2004). Moreover, MCE
is also closely tied to various applications in computa-
tional biology (Abu-Khzam et al. 2005; Eblen et al. 2012;
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Yeger-Lotem et al. 2004), including the detection of protein-
protein interaction complex, clustering protein sequences,
searching for common cis-regulatory elements (Baldwin et
al. 2004), and others (Bomze et al. 1999).

Unfortunately, in the worst case, NP-hard subset prob-
lems like maximum clique are inherently complex even for
small datasets and lack scalable algorithms. To make mat-
ters worse, high-throughput data typically creates extremely
large graphs in e.g., data mining and computational biol-
ogy (Eblen et al. 2012). State-of-the-art solvers employ var-
ious heuristics that are effective when the input graph has
certain structural properties, but the detection of such struc-
ture can be costly in practice. In addition, the solvers are
general purpose, and are unable to exploit information con-
cerning the input distribution.

We argue that practically relevant problem instances typ-
ically come from the same distribution due to e.g., human
nature or laws of physics governing the process the input
models. For instance, it is plausible that humans connect in
similar ways on a social network, or that different human
lungs respond similarly to cigarette smoke. Can we aug-
ment existing state-of-the-art solvers to cheaply and auto-
matically leverage such information about the input distribu-
tion, which we cannot even describe? In particular, can ma-
chine learning be used to cheaply detect and exploit struc-
ture in practically relevant instances of NP-hard problems
that come from the same distribution?

To the best of our knowledge, our work is the first attempt
at using machine learning to reduce the search space of a
computationally difficult enumeration problem.

1.1 Related work
Indirect approaches “Indirect approaches” are unable to
solve hard problem instances themselves, but instead they
augment existing solvers, for problems such as Boolean
satisfiability and mixed-integer programming. In particular,
such methods have been applied in terms of restart strate-
gies (Gomes, Selman, and Kautz 1998; Gomes et al. 2000),
branching heuristics (Liang et al. 2016; He, Daume III, and
Eisner 2014; Khalil et al. 2016), parameter tuning (Hutter
et al. 2009), and algorithm portfolios (Fitzgerald, Malitsky,
and O’Sullivan 2015; Loreggia et al. 2016). In addition, ap-
plications of machine learning to discover algorithms have
also been successful (Khalil et al. 2017), but only for small
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graph sizes (up to 1200 vertices).

Direct approaches By a “direct approach” we refer to
an approach that can solve a hard problem by itself. Vari-
ous researchers proposed approaches for solving TSP (Hop-
field and Tank 1985; Fort 1988; Durbin and Willshaw 1987).
However, these methods can not compete with direct algo-
rithmic methods for TSP like the Concorde solver (Apple-
gate et al. 2006). Similarly, there has been interest in study-
ing the power of neural networks for solving hard prob-
lems (Bruck and Goodman 1988; Yao 1992).

Recently, there has been interest in bringing advance-
ments from deep learning and game-playing to combina-
torial optimization (Vinyals, Fortunato, and Jaitly 2015;
Bello et al. 2016; Nowak et al. 2017). These approaches ap-
ply for small graph sizes (up to only 200 vertices), whereas
direct methods handle instances with several tens of thou-
sands of vertices (Applegate et al. 2009).

Another approach for solving hard problems is via su-
pervised learning, by treating a classifier as a decision or-
acle (Devlin and O’Sullivan 2008; Xu, Koenig, and Kumar
2018). The challenge in making use of such an oracle is that
one is rarely satisfied by merely an affirmative answer, but
demands a witness as well.

The MCE problem The maximum clique problem is
heavily studied and is well-known to be NP-complete with
other strong hardness results known as well (Zuckerman
2006; Chen et al. 2006). The MCE problem is at least as
hard as the maximum clique problem, since its solution in-
cludes all maximum cliques.

Unlike maximal clique enumeration, MCE has received
significantly less attention. Since any algorithm that enu-
merates all maximal cliques also enumerates all maximum
cliques, it is natural to approach MCE by adapting the ex-
isting maximal clique enumeration algorithms (Bomze et al.
1999). However, this approach quickly becomes infeasible
for large dense graphs.

Existing approaches for maximal clique enumeration
problem can be broadly classified into two strategies: iter-
ative enumeration (Kose et al. 2001; Zhang et al. 2005) and
backtracking (Akkoyunlu 1973; Bron and Kerbosch 1973;
Cazals and Karande 2008; Tomita, Tanaka, and Takahashi
2006), with other approaches as well (Buló, Torsello, and
Pelillo 2009; Wan et al. 2006; Modani and Dey 2008;
Cheng et al. 2011; 2012; Schmidt et al. 2009; Wu et al.
2009); for a comprehensive discussion on the related liter-
ature see (Cazals and Karande 2008; Bomze et al. 1999).

1.2 Our contribution
Our contribution overcomes the following challenges:

1. Whole-instance classification: a classifier can be used as
a decision oracle for a decision problem. More precisely,
one can apply the notion of self-reducibility to iteratively
close-in on a solution.1 However, it is challenging to make
practical use of such an oracle.
1For instance, given a graphG, imagine an oracle which answer

positively iff G has a k-clique. If the oracle answers negatively on

2. Cost of optimal labels: (Bello et al. 2016, Section 4) ar-
gue that learning from examples is undesirable for NP-
hard problems since “getting high-quality labeled data is
expensive and may be infeasible for new problem state-
ments”. We show, however, that if the labeled data points
are representative enough of the input distribution, we can
mitigate the need for labeling costly data points due to the
generalizability of our classifier.

In summary, our major contributions are as follows.

• A novel machine learning framework for reducing the
search space of computationally hard enumeration vari-
ants of subset problems with instances drawn from the
same distribution.

• Specifically, we instantiate our framework for listing all
maximum cliques in a graph by applying computationally
cheap graph-theoretic and statistical features for search
space pruning via fine-grained classification of vertices.

• We show that our framework retains all optimal solu-
tions on large, real-world networks with millions of ver-
tices and edges, with significant (typically over 90 %)
reductions in the instance size, resulting in several fold
speedups of state-of-the-art algorithms for the problem.

• We explain the high accuracy of our framework by ex-
ploring its limits in terms cheap trainability, scalability,
and robustness on Erdős-Rényi random graphs.

2 Proposed framework
We instantiate our framework for the MCE problem, but
stress that the approach works in principle for any subset
problem or its enumeration variant.

Fine-grained search space classification In our case, we
assume the instance is represented as an undirected graph
G = (V,E). Moreover, in contrast to previous approaches,
we view individual vertices of G as classification problems
as opposed to G itself. That is, the problem is to induce a
mapping γ : V → {0, 1} from a set of L training examples
T = {〈f(vi), yi〉}Li=1, where vi ∈ V is a vertex, yi ∈ {0, 1}
a class label, and f : V → Rd a mapping from a vertex to
a d-dimensional feature space. We keep d small and ensure
that f can be computed efficiently to ensure practicality.

Search strategies To learn the mapping γ from T , we use
a probabilistic classifier P which outputs a probability dis-
tribution over {0, 1} for a given f(u) for u ∈ V . We give
two parameterized search strategies for enhancing a search
algorithm A by P . Define a confidence threshold q ∈ [0, 1].

• Probabilistic preprocessing: delete from G each vertex
predicted by P to not be in a solution with probability
at least q, i.e., let G′ = G \ V ′, where V ′ = {u | u ∈
V ∧ P (u = 0) ≥ q}. Execute A with G′ as input instead
of G.

input G \ {v} for v ∈ V (G), we have learned that v is contained
in a k-clique.
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• Guiding by experience: Define a set of hints H = {u |
u ∈ V ∧P (u = 1) ≥ q} and use them to guide the search
effort of A executed on input G.

The purpose of q is to control the error and pruning rate of
preprocessing: (i) it is more acceptable to not remove a ver-
tex that is not in a solution than to remove a vertex that is in
a solution, and (ii) a lower value of q translates to a possibly
higher pruning rate.

We observe that the probabilistic preprocessing strategy is
a heuristic, i.e., it is possible the cost of an optimal solution
inG′ differs from that inG. However, the second strategy of
guiding by experience is exact, i.e., given enough time, A
will finish with a globally optimal solution. It is also possi-
ble to combine the strategies by preprocessing first, and then
executingA withH defined onG′. For the remainder of this
work, we only focus on probabilistic preprocessing.

3 Computational features
In this section, we describe the vertex features which can be
computed efficiently and also capture fine-grained, localized
structural properties of the graph. Specifically, we employ
the following features based on graph measures and statisti-
cal properties.

Graph measure based features We use the following
graph-theoretic features: (F1) number of vertices, (F2) num-
ber of edges, (F3) vertex degree, (F4) local clustering coef-
ficient, and (F5) eigencentrality.

Features (F1), (F2), and (F3) capture the crude informa-
tion regarding the graph, providing a reference for the classi-
fier for generalizing to different distributions from which the
graph might have been generated. Feature (F3), the degree of
v, denoted by deg(v), is the number of edges incident to v.

Feature (F4), the order-3 local clustering coefficient
(LCC) of a vertex is the fraction of its neighbors with
which the vertex forms a triangle, encapsulating the small
world (Watts and Strogatz 1998) phenomenon. In general,
the order-k local clustering coefficient of v, denoted by
Ck(v), is computed as Ck(v) = Wk(v)/

(
deg(v)
k−1

)
, where

Wk(v) is the number of (k − 1)-cliques in G[N(v)], i.e.,
the subgraph of G induced by the neighborhood of v (ex-
cluding v itself). For computational efficiency, we limit our
feature set to only order-three LCC.

Feature (F5), the eigencentrality, represents a high degree
of connectivity of a vertex to other vertices, which in turn
have high degrees as well. The eigenvector centrality ~v is the
eigenvector of the adjacency matrix A of G with the largest
eigenvalue λ, i.e., it is the solution of ~A~v = λ~v. The ith entry
of ~v is the eigencentrality of vertex v. In other words, this
feature provides a measure of local “denseness”. A vertex in
a dense region shows higher probability of being part of a
large clique.

Statistical features. Intuitively, for a vertex v present in
a large clique, its degree and the local clustering coeffi-
cient would deviate from the underlying expected distribu-
tion characterizing the graph. Similarly, the neighbors of v

also present in the clique would demonstrate such a prop-
erty. Interestingly, statistical features are not only compu-
tationally cheap but are also inherently robust in approxi-
mately capturing the local graph structural patterns as shown
in (Dutta, Nayek, and Bhattacharya 2017).

The above intuition is captured by the following features:
(F6) the chi-squared value over vertex degree, (F7) average
chi-squared value over neighbor degrees, (F8) chi-squared
value over LCC, and (F9) average chi-squared value over
neighbor LCCs.

Statistical significance can be captured by the notion of
p-value (Read and Cressie 1988). The Pearson’s chi-square
statistic, χ2, is a good estimate (Read and Cressie 1989) of
the p-value, and for features (F6)-(F9) it is computed as

χ2 =
∑
∀i

[
(Oi − Ei)

2
/Ei

]
, (1)

where Oi and Ei are the observed and expected number of
occurrences, of the possible outcomes i.

Classification framework To solve the problem de-
scribed in Section 2, we experiment with various (even non-
probabilistic) classifiers via auto-sklearn (Feurer et al.
2015) which is an automated system for algorithm selection
and hyperparameter tuning (for a list of its classifiers, in-
cluding non-linear ones, see (Feurer et al. 2015, Table 1)).
We observe highest accuracy with linear models, with neg-
ligible differences between logistic regression and (linear)
support vector machines.

Thus, we use a linear classifier (logistic regression)
trained for 400 epochs with stochastic gradient descent.
We use a standard L2 regularizer, and use 0.0001 as the
regularization term multiplier determined by a grid search.
We use a standard implementation (SGDClassifier) from
scikit-learn (Pedregosa et al. 2011).

4 Experimental results
In this section, we demonstrate that supervised learning is
viable for solving large structured instance of NP-hard prob-
lems, whereas previous approaches relying have only scaled
up to instances with 200 vertices. Furthermore, as mentioned
in (Eblen et al. 2012), it is well-known that the topology
of real-world networks differ from that of random graphs.
Hence, we show scalability to large real-world networks.

4.1 Exact clique-finding algorithms
We use the following state-of-the-art algorithms:

• igraph (Csardi and Nepusz 2006) software implemen-
tation of a modified Bron-Kerbosch algorithm (Eppstein,
Löffler, and Strash 2010).

• EmMCE (Cheng et al. 2011), an external memory algo-
rithm focusing on low I/O complexity.

• cliquer (Niskanen and Östergård 2003), using the
branch-and-bound algorithm of (Östergård 2002).

Note that all algorithms here are exact, i.e., they will in-
deed return all optimal solutions. Strictly speaking, also note
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Table 1: Pruning ratios and speedups. The column “fmc (ω)” is the maximum clique size found by the fmc heuristic, followed
by the true maximum clique size ω in parenthesis. The column Pd is the pruning ratio obtained by the degree method, while
Po is the pruning ratio of our framework. The columns “cliquer(d)” and “cliquer(o)” give the runtimes of cliquer on
only degree-pruned instances and on instances pruned by our framework, respectively. The confidence threshold q = 0.55, all
results are averaged over 3 runs and include feature computation time, and the clique accuracy remains one. In the last four
columns, the parenthesis show the speedup while an out of memory for the original instance is marked with *.

Instance |V | |E| fmc (ω) Pd Po igraph EmMCE cliquer(d) cliquer(o)
socfb-A-anon 3 M 24 M 23 (25) 0.85 0.94 101.97 (20.84) 113.90 (44.82) 1337.85 (*) 211.06 (*)
socfb-B-anon 3 M 21 M 23 (24) 0.86 0.94 86.64 (22.26) 96.34 (41.96) 1038.59 (*) 193.50 (*)
socfb-Texas84 36 K 2 M 44 (51) 0.37 0.76 56.88 (1.29) 48.62 (1.28) 4.10 (2.19) 1.87 (4.79)
bio-WormNet-v3 16 K 763 K 90 (121) 0.68 0.90 4400.12 (1.22) 4593.47 (1.26) 1.04 (6.69) 0.89 (7.87)
web-wikipedia2009 2 M 5 M 31 (31) 0.98 0.99 1.50 (412.79) 1.98 (1574.39) 8.86 (*) 3.96 (*)
web-google-dir 876 K 5 M 44 (44) 0.97 0.98 0.39 (150.20) 0.67 (991.52) 4.40 (*) 2.07 (*)
soc-flixster 3 M 8 M 29 (31) 0.97 0.99 23.71 (54.66) 18.64 (20.25) 44.27 (*) 9.52 (*)
soc-google-plus 211 K 2 M 56 (66) 0.94 0.97 6620.77 (1.09) 6711.56 (1.32) 1.50 (214.20) 1.04 (310.40)
soc-lastfm 1 M 5 M 14 (14) 0.92 0.97 9.47 (16.79) 9.12 (31.23) 65.04 (*) 11.61 (*)

that igraph and EmMCE solve the more general problem of
maximal clique enumeration.

We also experimented with the MoMC solver of (Li, Jiang,
and Manyà 2017), but it reported out of memory for large
networks. Runs on this solver are thus omitted. The experi-
ments for real-world networks (Subsection 4.2) are executed
on an Intel Core i7-4770K CPU (3.5 GHz), 8 GB of RAM,
running Ubuntu 16.04. As an exception, we run experiments
for cliquer on Intel Xeon E5-2680 and 102 GB of RAM.

4.2 Real-world networks
To demonstrate the practicality and usefulness of our frame-
work, we use real-world networks from Network Repos-
itory (Rossi and Ahmed 2015) (http://networkrepository.
com/). In particular, we consider biological networks, Face-
book networks, social networks, and web networks, which
contain 36, 114, 57, and 27 networks, respectively. For train-
ing, we choose from the biological networks 32 smallest net-
works, from the Facebook networks 109 smallest networks,
from the social networks a small sample of 32 networks, and
from the web networks a small sample of 11 networks. For
reasons of space, we omit the exact details of the training
networks. For testing, we use from each domain some of the
largest networks by edge count, detailed in Table 1.

Setup and accuracy measures We implement the proba-
bilistic preprocessing strategy of Section 2 with the classifier
P as described in Section 3. We fix the confidence thresh-
old q = 0.55. We consider the following accuracy mea-
sures. The pruning ratio is the ratio of the number of ver-
tices predicted by P to not be in a solution with probability
at least q to the number of vertices n in the original instance.
The clique accuracy is one iff the number of all maximum
cliques of the instance G is equal to the number of all maxi-
mum cliques of the reduced instanceG′ and ω(G) = ω(G′),
where ω(G) is the size of a maximum clique in G.

Preprocessing and comparison A safe preprocessing
strategy is the degree method: find a clique of size k, and

delete every vertex with degree less than k − 1. We imple-
ment this by using Fast Max-Clique Finder (Pattabiraman
et al. 2013) (fmc), a state-of-the-art heuristic for finding
a maximum clique, designed for real-world networks, typ-
ically finding near-optimal solutions (see Table 1). The fmc
heuristic runs in less than 2 seconds for each network.

We make use of the degree method in two ways. First,
being a well-known preprocessing method, we compare our
method against it. Second, the degree distributions of some
real-world networks follow a power law. That is, such net-
works have many low degree vertices. In such cases it might
not be surprising that an algorithm learns to remove many
vertices. Thus, to avoid such a situation from impacting our
results, we preprocess each training and test instance first us-
ing the degree method. This helps our framework to discard
non-trivial vertices, going beyond the degree method.

Features, classifier, and vertex classification accuracy
We train four classifiers that we name bio31, socfb107,
soc32, and web13 using the mentioned networks. More
precisely, for each network Gi in the training set of
the three domains, we list all maximum cliques Ci =
{C1, C2, . . . , C`} in Gi, use as label-0 examples the ver-
tices in H =

⋃`
i=1 V (Ci), and to create a balanced dataset,

sample uniformly at random |H| vertices from V (Gi) \ H
and use them as label-1 examples. The final training set is
obtained by computing the feature vectors of each vertex.
We use the features described in Section 3. In particular,
bio31 is trained with 2178 feature vectors, socfb107
with 10746 feature vectors, soc32 with 2008 feature vec-
tors, and web11 with 2556 feature vectors. A 4-fold cross
validation over the 2178 feature vectors gives an average
vertex classification accuracy of 0.96, the same over the
10746 feature vectors results in an average of 0.93, the same
over the 2008 feature vectors results in an average of 0.97,
and the same over the 2556 feature vectors results in an av-
erage of 0.80.

We implement feature computation in C++, taking less
than 12 seconds for each test network. Further optimization
is also possible in terms of e.g., parallelization.
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Figure 1: The vertex accuracy, pruning ratio, and clique
accuracy of our framework when trained with G(n, 1/2)
with three different parameter pairs (64, 10), (128, 12), and
(256, 13). The predictions are for independent, distinct sam-
ples with the same n, but growing planted clique size k.

Pruning ratios and speedups We show the pruning ra-
tios and solve times along with solver speedups in Table 1.
For each graph, we retain all optimal solutions (i.e., the
clique accuracy is one), and obtain speedups as large as
300x, even for the branch-and-bound strategy of cliquer.
It can also be seen that our strategy speeds up cliquer by
around 6x more than the degree method alone (compare two
last columns in Table 1). Also importantly, our framework
safely prunes away around 90 % or more of the vertices, con-
siderably shrinking the input sizes which is a fundamental
issue in applications in e.g., computational biology (Eblen et
al. 2012). This alleviates memory issues with state-of-the-art
algorithms as reported in (Cheng et al. 2011).

We stress that our approach works without any knowl-
edge or dependence on an estimate of ω at runtime, while
the quality of the degree method crucially depends on it.

5 On supervised learning for hard problems
The goal of this section is two-fold: (i) to explain the high ac-
curacy of our proposed framework, even when it was trained
with small instances, and (ii) as a consequence, argue that
supervised learning is a viable approach for solving struc-
tured instances of certain hard problems.

To ensure that the input instances are, at some point,
“structure-free” we turn to the following heavily-studied
variant of the maximum clique problem. This serves as a
representative of the worst-case input for our preprocessing
strategy. Also, observe that in case the input graph has a
unique maximum clique, MCE is equivalent to finding the
(single) maximum clique.

5.1 Planted clique
In the planted clique problem (Jerrum 1992; Kučera 1995),
we are given an Erdős-Rényi random graph (Erdös and
Rényi 1959) H := G(n, p), i.e., an n-vertex graph where
the presence of each edge is determined independently with
probability p. In addition, the problem is parameterized by
an integer k such that a random subset of k vertices has been
chosen from H and a clique added on it. On this input, the
task is to identify (with the knowledge of the value of k) the
k vertices containing the planted clique.

The problem is easy for k ≤ log2(n). In particular, as
shown in (Bollobás 2013), the clique number of G(n, p) as
n→∞ is almost surely w or w + 1 where w is the greatest

natural number such that(
n

w

)
p(

w
2) ≥ log(n), (2)

where w is roughly 2 log2(n). Even when a clique of such
size is known to exist (whp), we only know how to find a
clique of size log2(n) efficiently,2 and also solve the prob-
lem in polynomial-time when k is large enough. Specifically,
it is known that several algorithmic techniques such as spec-
tral methods (see e.g., (Feldman et al. 2017) for more) pro-
duce efficient algorithms for the problem when k = Ω(

√
n).

However, settling the complexity of the problem is a no-
torious open problem when k is between 2 log2(n) and

√
n.

Next, we will focus precisely on this difficult region.

5.2 Pushing the limits of preprocessing
In this subsection, we explore the limits of scalability and
robustness of our framework on the planted clique problem.
All experiments are done on an Intel Core i5-6300U CPU
(2.4 GHz), 8 GB of RAM, running Ubuntu 16.04, differing
only slightly from the earlier hardware configuration. For all
experiments here, we use only the igraph algorithm.

Generation of synthetic data We use the genrang util-
ity program (McKay and Piperno 2014) to sample a random
graph H := G(n, p). To plant a clique of size k, we sample
uniformly at random k vertices, denoted by K, from H and
insert all corresponding at most

(
k
2

)
missing edges into H .

For each H , we compute the features described in Sec-
tion 3 with the following differences: we add (F10) the
order-four LCC and modify (F8) and (F9) to consider order-
four LCC instead of the LCC. As explained in Section 3, this
brings more predictive power while still remaining compu-
tationally feasible for small graphs. The values Ei in Equa-
tion 1 for (F6) and (F7) are the expected degree n · p, while
for (F8) and (F9) they are the expected order-k LCC given
as
(
n−1
k−1
)
p(

k
2) · 1/

(
np
k−1
)
. To ensure a balanced dataset, we

sample (i) k label-0 examples from K and (ii) k label-1 ex-
amples from G \K, both uniformly at random.

For training, we consider n ∈ {64, 128, 256, 512} be-
cause the clique number grows roughly logarithmically with
n (see Equation 2). We fix p = 1/2. For every n, we com-
pute w from Equation 2, and sample graphs G(n, p) with a
planted clique of size k ∈ {w+2, . . . , w+6} such that each
pair (n, k) gives a dataset of size at least 100K feature vec-
tors. When planting a clique of size at least w + 2, we try to
guarantee the existence of a unique maximum clique in the
graph. However, this procedure does not always succeed due
to randomness, but we do not discard such rare outcomes.

Vertex classification accuracy We study the accuracy of
our classifiers for distinguishing vertices that are and are
not in a maximum clique. Specifically, we train a classifier
for each pair (n, k) ∈ {(64, 10), (128, 12), (256, 12)}, and

2It is conjectured (Karp 1976; Feldman et al. 2017) that there
is no polynomial-time algorithm for finding a clique of size (1 +
ε) log2 n for any ε > 0 in G(n, 1/2).
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Table 2: Robustness and speedups with fixed n and increasing k. The leftmost two columns show the data (n, k) used to train
a classifier P . For each planted clique size k + 1, k + 2, and k + 3, we show the average pruning ratio (column “Pruned”), the
average clique accuracy (column “Acc.’), the average runtime of igraph on the reduced instance obtained from our framework
using P (column “Time (s)”), and the average speedup over executing the same algorithm on the original instance.

k + 1 k + 2 k + 3

n k Pruned Acc. Time (s) Speedup Pruned Acc. Time (s) Speedup Pruned Acc. Time (s) Speedup

64 10 0.530 0.905 0.068 0.132 0.548 0.965 0.068 0.135 0.564 0.995 0.068 0.135
128 12 0.506 0.710 0.301 0.759 0.517 0.875 0.296 0.774 0.525 0.935 0.297 0.784
256 13 0.489 0.170 3.261 3.264 0.493 0.190 3.233 3.304 0.493 0.310 3.260 3.315
512 15 0.492 0.05 70.587 12.994 0.492 0.05 70.086 12.816 0.491 0.100 70.562 12.722
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Figure 2: Distribution of extracted maximum clique size,
with black bars denoting the size of the planted clique. Both
(a) and (b) are over 200 samples, while (c) is over 20 sam-
ples. In each, the predicting classifier has been trained with
64-vertex random graphs with a planted clique of size 10.

test for unseen graphs with the same n but growing planted
clique size k′ = k + 1, . . . , k + 4. The results are shown in
Figure 1 (a). As expected, the classification task becomes
easier once k′ increases. This is also supported the fact
that multiple algorithms solve the planted clique problem in
polynomial-time for large enough k′ (see Subsection 5.1).
In addition, as n grows larger, we see accuracy deterioration
caused by the converge of the local properties towards their
expected values. Especially for small values of k′, the injec-
tion of the planted clique is not substantial enough to cause
significant deviations from the expected values.

Pruning ratio and clique accuracy We study the effec-
tiveness of our framework as a probabilistic preprocessor for
the planted clique instances. We fix the confidence threshold
q = 0.55 and use the same set of classifiers and test data.
The average pruning ratios over all instances are shown in
Figure 1 (b). We see pruning ratios as high as at most 0.6,
while always discarding more than 40 % of the vertices.

Now, it is possible that P makes an erroneous prediction
causing the deletion of a vertex, which in turn lowers the size
of a maximum clique in the instance (although recall that
this was not observed in Section 4 for real-world networks).
The average clique accuracies over all instances are shown
in Figure 1 (c). Here, we see that for n = 256, the vertex
accuracy (Figure 1 (a)) is still above 0.7, but the clique ac-
curacy drops to above 0.4. As the vertex accuracy decreases,
the probability of deleting a vertex present in a maximum
clique increases, translating to a higher chance of error in ex-
tracting a maximum clique. However, while not completely
error-free, we observe that even in the case of (256, 13) we
always delete at most two members of a maximum clique,

Table 3: Deviation in vertex classification accuracy.

n k Trained acc. Rob. acc.

128 12 0.858 0.844
256 13 0.747 0.728
512 15 0.678 0.665

whereas in the case of (512, 16), 95 % of the time, we ex-
tract a maximum clique of size at least 13 (see Figure 2).

Robustness and speedups The robustness and speedups
obtained using the igraph algorithm are given in Table 2.
Here, the clique accuracy and runtime are obtained as the av-
erage over 200 samples for each (n, k) except for (n, k) =
(512, 15) for which there are 20 independent samples. We
see the drop in clique accuracy when a classifier P is trained
with (n, k) ∈ {(256, 12), (512, 15)} and is predicting for
the same n but increasing k. The clique accuracy is a strict
measure, so to quantify the severeness of the erroneous pre-
dictions made by P we show the distributions of the ex-
tracted maximum clique sizes in Figure 2 for some pairs
(n, k). Again, we observe the effects of growing n causing
the convergence of local properties, consequently decreas-
ing the predictive power of P . For (n, k) = (128, 13), 73 %
of the runs still produce an optimal solution (here, one can
also observe the rare event of having a maximum clique of
size 14 when the planted clique was of size 13).

The case for supervised learning on intractable problems
As n grows, the instances get increasingly time-consuming
to solve even for state-of-the-art solvers for suitable k, as
there is no exploitable structure. Consequently, obtaining
optimally labeled data becomes practically impossible for
large enough n. However, up to a point, random graphs with
n = 64 and k = 10 are representative of the input for large
graphs as well, and obtaining the optimal label for such a
small graph is fast.

We show the deviation in vertex classification accuracy
in Table 3. The column “Trained acc.” corresponds to the
accuracy of the classifier trained with the values n and k
mentioned in the two first columns, while the column “Rob.
acc.” is the accuracy of a classifier trained with smaller
(n, k) = (64, 10) instances, and predictions are made for
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the specified (n, k) with planted clique size k+1. A key ob-
servation is that the difference between the two accuracies in
a single row in Table 3 is small enough not to warrant train-
ing on larger instances. This offers an explanation for the
perfect clique accuracy with limited training, as observed in
Section 4 for real-world networks. This observation reduces
the need of labeling costly data points for training.

6 Discussion and conclusions
We proposed a simple, powerful, and flexible machine learn-
ing framework for (i) reducing the search space of computa-
tionally difficult enumeration problems and (ii) augmenting
existing state-of-the-art solvers with informative cues aris-
ing from the input distribution. In particular, we focused
on a probabilistic preprocessing strategy, which retained
all maximum cliques on a representative selection of large
real-world networks from different domains. We showed the
practicality of our framework by showing it speeds up the
execution of state-of-the-art solvers on large graphs without
compromising the solution quality. In addition, we demon-
strated that supervised learning is a viable approach for tack-
ling NP-hard problems in practice.

For future work, we will perform more extensive experi-
ments on a wider set of instances, and provide a deeper anal-
ysis of our model.
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Niskanen, S., and Östergård, P. R. 2003. Cliquer User’s
Guide: Version 1.0. Helsinki University of Technology
Helsinki, Finland.
Nowak, A.; Villar, S.; Bandeira, A. S.; and Bruna, J. 2017.
A note on learning algorithms for quadratic assignment with
graph neural networks. arXiv preprint arXiv:1706.07450.
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