
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

On the Time Complexity of Algorithm
Selection Hyper-Heuristics for Multimodal Optimisation

Andrei Lissovoi, Pietro S. Oliveto, John Alasdair Warwicker
Rigorous Research, Department of Computer Science

The University of Sheffield, Sheffield S1 4DP, United Kingdom
{a.lissovoi,p.oliveto,j.warwicker}@sheffield.ac.uk

Abstract

Selection hyper-heuristics are automated algorithm selec-
tion methodologies that choose between different heuristics
during the optimisation process. Recently selection hyper-
heuristics choosing between a collection of elitist randomised
local search heuristics with different neighbourhood sizes
have been shown to optimise a standard unimodal benchmark
function from evolutionary computation in the optimal ex-
pected runtime achievable with the available low-level heuris-
tics. In this paper we extend our understanding to the domain
of multimodal optimisation by considering a hyper-heuristic
from the literature that can switch between elitist and non-
elitist heuristics during the run. We first identify the range
of parameters that allow the hyper-heuristic to hillclimb ef-
ficiently and prove that it can optimise a standard hillclimb-
ing benchmark function in the best expected asymptotic time
achievable by unbiased mutation-based randomised search
heuristics. Afterwards, we use standard multimodal bench-
mark functions to highlight function characteristics where
the hyper-heuristic is efficient by swiftly escaping local op-
tima and ones where it is not. For a function class called
CLIFFd where a new gradient of increasing fitness can be
identified after escaping local optima, the hyper-heuristic is
extremely efficient while a wide range of established elitist
and non-elitist algorithms are not, including the well-studied
Metropolis algorithm. We complete the picture with an anal-
ysis of another standard benchmark function called JUMPd

as an example to highlight problem characteristics where the
hyper-heuristic is inefficient. Yet, it still outperforms the well-
established non-elitist Metropolis algorithm.

1 Introduction
Selection hyper-heuristics are automated algorithm selec-
tion methodologies designed to choose which of a set of
low-level heuristics to apply in the next steps of the opti-
misation process (Cowling, Kendall, and Soubeiga 2001).
Rather than deciding in advance which heuristics to apply
for a problem, the aim is to automate the process at run-
time. Originally shown to effectively optimise scheduling
problems, such as the scheduling of a sales summit and uni-
versity timetabling (Cowling, Kendall, and Soubeiga 2001;
2002), they have since been successfully applied to a variety

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of hard combinatorial optimisation problems (see (Burke et
al. 2010; 2013) for surveys of results).

Despite their numerous successes, very limited rigor-
ous theoretical understanding of their behaviour and per-
formance is available (Lehre and Özcan 2013; Alanazi and
Lehre 2014). Recently, it has been proved that a simple se-
lection hyper-heuristic called Random Descent (Cowling,
Kendall, and Soubeiga 2001; 2002), choosing between eli-
tist randomised local search (RLS) heuristics with differ-
ent neighbourhood sizes, optimises a standard unimodal
benchmark function from evolutionary computation called
LEADINGONES in the best possible runtime (up to lower
order terms) achievable with the available low-level heuris-
tics (Lissovoi, Oliveto, and Warwicker 2018). For this to oc-
cur, it is necessary to run the selected low-level heuristics
for a sufficient amount of time, called the learning period, to
allow the hyper-heuristic to accurately determine how use-
ful the chosen operator is at the current stage of the opti-
misation process. If the learning period is not sufficiently
long, the hyper-heuristic fails to identify whether the chosen
low-level heuristics are actually useful, leading to random
choices of which heuristics to apply and a degradation of
the overall performance. Since the optimal duration of the
learning period may change during the optimisation, (Doerr
et al. 2018) have recently introduced a self-adjusting mecha-
nism and rigorously proved that it allows the hyper-heuristic
to track the optimal learning period throughout the optimi-
sation process for LEADINGONES.

In this paper we aim to extend the understanding of the be-
haviour and performance of hyper-heuristics to multimodal
optimisation problems. In order to evaluate their capability
at escaping local optima, we consider elitist and non-elitist
selection operators that have been used in hyper-heuristics
in the literature. (Cowling, Kendall, and Soubeiga 2001;
2002) introduced two variants of move acceptance oper-
ators: the elitist ONLYIMPROVING (OI) operator, which
only accepts moves that improve the current solution, and
the non-elitist ALLMOVES (AM) operator, which accepts
any new solution independent of its quality. Another se-
lection operator that has been considered in the literature
is the IMPROVINGANDEQUAL (IE) acceptance operator
which in addition to accepting improving solutions also ac-
cepts solutions of equal quality (Ayob and Kendall 2003;
Bilgin, Özcan, and Korkmaz 2007; Özcan, Bilgin, and Kork-

2322

maz 2006). In the mentioned works, the acceptance operator
remains fixed throughout the run, with the hyper-heuristic
only switching between different mutation operators. How-
ever, it would be more desirable that hyperheuristics are al-
lowed to decide to use elitist selection for hillclimbing in
exploitation phases of the search and non-elitism for explo-
ration, for instance to escape from local optima.

(Qian, Tang, and Zhou 2016) analysed selection hyper-
heuristics in the context of multi-objective optimisation.
They considered a hyper-heuristic selecting between elitist
(IE) and strict elitist (OI) acceptance operators and pre-
sented a function where it is necessary to mix the two ac-
ceptance operators. Lehre and Özcan presented a hyper-
heuristic which chooses between two different low level
heuristics that use the above described OI (elitist) and AM
(non-elitist) acceptance operators (Lehre and Özcan 2013).
The considered Simple Random hyper-heuristic uses 1-bit
flips as mutation operator and selects the AM acceptance
operator with probability p and the OI acceptance operator
with probability 1 − p. Essentially the algorithm is a Ran-
dom Local Search algorithm that switches between strict
elitism, by only accepting improvements, and extreme non-
elitism by accepting any new found solution. For the stan-
dard ROYALROADk benchmark function from evolutionary
computation, which consists of several blocks of k bits each
that have to be set correctly to observe a fitness improve-
ment, and k ≥ 2 they theoretically proved that it is necessary
to mix the acceptance operators for the hyper-heuristic to
be efficient, because by only accepting improvements (i.e.,
p = 0) the runtime is infinite due to the hyper-heuristic not
being able to cross the plateaus of equal fitness while by al-
ways accepting any move (i.e., p = 1), the algorithm simply
performs a random search. By choosing the value of the pa-
rameter p appropriately they provide an upper bound on the
expected runtime of the hyper-heuristic ofO(n3·k2k−3) ver-
sus the O(n log(n) · (2k/k)) expected time required by evo-
lutionary algorithms with standard bit mutation (i.e., each
bit is flipped with probability 1/n) and with the standard
selection operator that accepts new solutions if their fitness
is as good as that of their parent (Doerr, Sudholt, and Witt
2013). In particular, just using the IE acceptance operator
throughout the run leads to a better performance. Hence, the
advantages of switching between selection operators rather
than just using one all the time were not evident.

In this paper we present a systematic analysis of the same
hyper-heuristic considered in (Lehre and Özcan 2013) for
multimodal optimisation problems where the considerable
advantages of changing the selection operator during the
run may be highlighted. In particular, we will increase our
understanding of the behaviour and performance of hyper-
heuristics by providing examples of instance classes where
the hyper-heuristic is efficient at escaping local optima and
examples where it is not. We first perform an analysis of
the standard unimodal ONEMAX benchmark function from
evolutionary computation to identify the range of parameter
values for p that allow the hyper-heuristic to hillclimb, hence
to locate local optima efficiently. In particular, we prove that
for any p = 1

(1+ε)n , for any constant ε > 0, the hyper-
heuristic is asymptotically as efficient as the best mutation-

Algorithm 1 Move Acceptance Hyper-Heuristic
(MAHHOI) (Lehre and Özcan 2013)

1: Choose x ∈ {0, 1}n uniformly at random
2: while termination criteria not satisfied do
3: x′ ← FLIPRANDOMBIT(x)

4: ACC ←
{

ALLMOVES with probability p
ONLYIMPROVING otherwise

5: if ACC(x, x′) then x← x′

based unbiased randomised search heuristic (Lehre and Witt
2012) even though it does not rely on elitism. Afterwards we
highlight the power of the hyper-heuristic by analysing its
performance for standard benchmark function classes cho-
sen because they allow us to isolate important properties of
multimodal optimisation landscapes.

Firstly, we consider the CLIFFd class of functions, consist-
ing of a local optimum that, once escaped, allows the iden-
tification of a new slope of increasing fitness. For this class
of functions we rigorously prove that the hyper-heuristic ef-
ficiently escapes the local optima and even achieves the best
known expected runtime of O(n log n) (for general purpose
randomised search heuristics) on the hardest instances of the
function class (Corus, Oliveto, and Yazdani 2017). Thus,
we prove that it considerably outperforms established eli-
tist and non-elitist evolutionary algorithms and the popular
METROPOLIS algorithm. We complete the picture by con-
sidering the standard JUMPk multimodal instance class of
functions to provide an example of problem characteristics
where the hyper-heuristic is not efficient. This class is cho-
sen to isolate problems where escaping local optima is very
hard because it is difficult to identify a new slope of increas-
ing gradient. Nevertheless, the hyper-heuristic is efficient for
instances of moderate jump size (i.e., constant) where it still
considerably outperforms METROPOLIS.

Due to space constraints in this extended abstract, we omit
some proofs.

2 Preliminaries
In this section, we will formally introduce the hyper-
heuristic algorithms and the problem classes we will analyse
in this paper, and briefly state some widely-known mathe-
matical tools for the runtime analysis of randomised search
heuristics that we will use throughout the paper.

Algorithms
We will analyse the Move Acceptance hyper-heuristic pre-
viously considered in (Lehre and Özcan 2013). In each it-
eration, one bit chosen uniformly at random will flip and,
with probability p the ALLMOVES (AM) acceptance opera-
tor is used, while with probability 1− p the ONLYIMPROV-
ING (OI) acceptance operator is used. Algorithm 1 shows its
pseudocode.

We also consider the MAHHIE variant of Algorithm 1
whereby the IE acceptance operator is used instead of the OI
operator. Thus, in MAHHIE, the AM acceptance operator is

2323

used with probability p, and the IE acceptance operator is
used with probability 1− p.

The problem classes we consider are all functions of uni-
tation, where changing the number of 1-bits in the bit-string
by 1 (as is done by the FLIPRANDOMBIT mutation oper-
ator of Algorithm 1) will always change the fitness value,
i.e., there are no plateaus of constant fitness. Under these
conditions, we point out that all the statements made in the
paper for the MAHHOI hyper-heuristic will also hold for the
MAHHIE hyper-heuristic. In the rest of this paper, we will
focus the analysis on the MAHHOI hyper-heuristic.

Benchmark Function Classes
We will present a runtime analysis of the MAHHOI hyper-
heuristic on three benchmark problem classes defined over
n-bit strings – ONEMAX, CLIFFd, JUMPm – commonly
used in the theory of randomised search heuristics to evalu-
ate their performance. These problem classes are artificially
constructed with the purpose of reflecting and isolating com-
mon difficulty profiles that are known to appear in classical
combinatorial optimisation problems and are expected to ap-
pear in real-world optimisation.

The ONEMAX problem class is a class of unimodal func-
tions which provide a consistent fitness gradient leading to
the global optimum. The class displays the typical function
optimisation feature that improving solutions are harder to
identify as the optimum is approached. It is generally used
to evaluate and validate the hillclimbing performance of ran-
domised search heuristics. The function is defined as fol-
lows:

ONEMAX(x) :=

n∑
i=1

xi.

In the above definition the global optimum is placed in the
1n bit-string for convenience of the analysis i.e., fitness in-
creases with the number of 1-bits. The results we derive will
hold for any instance in the function class, i.e., the opti-
mum may be any bit string and the fitness function returns
the Hamming distance to the global optimum. This class of
functions is known to be the easiest among all functions with
a unique global optimum for unary unbiased black box algo-
rithms (mutation-based EAs) (Lehre and Witt 2012).

We also consider two similar multi-modal problem
classes, where the optimisation algorithm will need to es-
cape from a local optimum in order to reach the global opti-
mum. The two classes differ in whether the fitness function
guides the search toward or away from the global optimum
once the search process does escape the local optimum.

The CLIFFd class of functions was originally proposed as
an example where non-elitist evolutionary algorithms out-
perform elitist ones (Jägersküpper and Storch 2007). Func-
tions within the class generally lead the optimisation pro-
cess to a local optimum, from which a fitness-decreasing
mutation can be taken to find another fitness-improving
slope leading to the global optimum. An example instance
is shown in Figure 1. We define the CLIFFd class of func-
tions (for 1 < d < n/2) as follows:

0 20 40 60 80 100
0

20

40

60

Global
Optimum

|x|1

C
L

IF
F 3

5
(x

)

Figure 1: CLIFFd(x) with n = 100 and d = 35.

0 20 40 60 80 100
0

50

100

150 Global Optimum

|x|1

JU
M

P 3
5
(x

)

Figure 2: JUMPm(x) with n = 100 and m = 35.

CLIFFd(x) :=

{
ONEMAX(x) if |x|1 ≤ n− d,
ONEMAX(x)− d+ 1/2 otherwise.

As for ONEMAX, the global optimum is placed at the 1n bit
string to simplify notation. The parameter d controls both
the fitness decrease from the local optimum to the lowest
point on the slope leading to the global optimum and the
length of this second slope. This class of problems captures
real-world problems where local optima have narrow basins
of attraction: if it is able to escape from the local optimum, a
search heuristic has good chances of identifying a new basin
of attraction.

The JUMPm class of functions is similar to CLIFFd, but
has both fitness gradients leading toward the local optima:
thus, to find the global optimum, the search algorithm should
not only take a fitness-decreasing mutation to escape the lo-
cal optimum, but also disregard the fitness gradient in fur-
ther iterations. An example instance is shown in Figure 2.
We define the JUMPm class of functions (for 1 < m < n/2)
as follows:

JUMPm(x) :=

n+m if |x|1 = n,

m+ ONEMAX(x) if |x|1 ≤ n−m,
n− ONEMAX(x) otherwise.

As for ONEMAX, the global optimum is placed at the 1n bit
string to simplify notation. Compared to CLIFFd, this class
of functions features a local optimum with a much broader
basin of attraction, making it more difficult for the search
heuristics to escape the basin and locate the global optimum.

Mathematical Analysis Tools
We now present some well known drift analysis theorems
often used to bound the expected runtime of a randomised

2324

search heuristic by considering its drift (i.e., its expected de-
crease in distance from the optimum in each step). We will
apply these theorems throughout the paper for our analyses
using the Hamming distance as a measure of distance to the
optimum (or another set of target solutions), and write ∆(i)
to refer to the drift conditioned on the parent solution con-
taining i 1-bits.

The following Additive Drift Theorem provides upper and
lower bounds on the expected runtime given, respectively,
lower and upper bounds on the drift which hold throughout
the process.

Theorem 1 (Additive Drift Theorem (He and Yao 2001)).
Let {Xt}t≥0 be a sequence of random variables over a finite
set of states S ⊆ R+

0 and let T be the random variable that
denotes the first point in time for whichXt = 0. If there exist
δu ≥ δl > 0 such that for all t ≥ 0, we have

δu ≥ E(Xt −Xt+1 | Xt) ≥ δl,

then the expected optimisation time E(T) satisfies

X0/δu ≤ E(T | X0) ≤ X0/δl, and
E(X0)/δu ≤ E(T) ≤ E(X0)/δl.

If the drift changes considerably throughout the process,
then the following Variable Drift Theorem provides sharper
upper bounds on the runtime.

Theorem 2 (Variable Drift Theorem (Johannsen 2010)).
Let (Xt)t≥0 be a stochastic process over some state space
S ⊆ {0}∪ [xmin, xmax], where xmin > 0. Let h(x) be an in-
tegrable, monotone increasing function on [xmin, xmax] such
that E(Xt − Xt+1 | Xt ≥ xmin) ≥ h(Xt). Then it holds
for the first hitting time T := min{t | Xt = 0} that

E(T | X0) ≤ xmin

h(xmin)
+

∫ X0

xmin

1

h(x)
dx.

The Negative Drift Theorem allows to derive exponen-
tial lower bounds on the runtime when the drift is negative
in large enough areas of the search space (Oliveto and Witt
2011; 2012). The Simplified Drift Theorem with Scaling is
a generalised version of the Negative Drift Theorem that al-
lows the negative drift ε to be sub-constant in magnitude.

Theorem 3 (Simplified Drift Theorem with Scaling (Oliveto
and Witt 2015)). Let Xt, t ≥ 0 be real-valued random vari-
ables describing a stochastic process over some state space.
Suppose that there exist an interval [a, b] ⊆ R and, possibly
depending on ` := b − a, a drift bound ε := ε(`) > 0, as
well as a scaling factor r := r(`) such that for all t ≥ 0 the
following conditions hold:

1. E(Xt+1 −Xt | X0, . . . , Xt; a < Xt < b) ≥ ε,
2. P (|Xt+1 − Xt| ≥ jr | X0, . . . , Xt; a < Xt) ≤ e−j for

all j ∈ N0,
3. 1 ≤ r2 ≤ ε`/(132 log(r/ε)).

Then for the first hitting time T ∗ := min{t ≥ 0 :

Xt ≤ a | X0 > b} it holds that P (T ∗ ≤ eε`/(132r2)) =

O(e−ε`/(132r2)).

3 Unimodal Functions
We begin the study of MAHHOI by analysing its perfor-
mance on unimodal functions. Since in this setting accept-
ing worsening moves is never required, the hyper-heuristic
cannot outperform the elitist algorithms. Nevertheless, The-
orem 6 shows that MAHHOI can still be very efficient when
optimising ONEMAX, even with p > 0. We first introduce
Theorem 4 and Theorem 5, which show that the parameter p
should not be too large.
Theorem 4. The runtime of MAHHOI on ONEMAX(x),
with p ≥ (

√
n log2 n)/n, is at least nΩ(logn) with probabil-

ity at least 1− n−Ω(logn).
For ONEMAX, the larger the value of p, the greater the

probability of accepting a move away from the global op-
timum and the greater the expected runtime of the hyper-
heuristic. Applying the standard Negative Drift Theorem
(Oliveto and Witt 2011; 2012) for MAHHOI with any con-
stant value of p gives the following result.
Theorem 5. The runtime of MAHHOI on ONEMAX, with
p = Θ(1), is at least 2Ω(n) with probability at least 1 −
2−Ω(n).

We now provide an upper bound on p for which the hyper-
heuristic is efficient.
Theorem 6. The expected runtime of MAHHOI on ONE-
MAX, with p < 1/(n− 1), is at most

E(Tp) ≤
n

1− p(n− 1)
+

n

1 + p
· ln
(

n

1− p(n− 1)

)
.

If p = 0, we have the well-studied Randomised Local
Search (RLS) algorithm, and Theorem 6 gives an expected
runtime of E(T0) ≤ n+n lnn = O(n log n). For p = 1/n,
combining Theorem 6 with a separate argument regarding
the time needed to reach a fitness of n from a fitness of n−
1 (using e.g. Lemma 8) yields a O(n log n) bound on the
expected runtime. For p = 1

(1+ε)n with any constant ε > 0,
applying Theorem 6 directly shows that any ONEMAX style
hillclimbs can be completed in expected time O(n log n).
Corollary 7. The expected runtime of MAHHOI on ONE-
MAX, with p = 1

(1+ε)n , for any constant ε > 0, is
O(n log n).

For the remainder of the paper, we consider MAHHOI
with p = 1

(1+ε)n . We will show how with this param-
eter value, as well as hill-climbing efficiently, the hyper-
heuristics can escape from difficult local optima effectively.

4 When the Hyper-Heuristic is Efficient
We now analyse the CLIFFd (1 < d < n/2) class of bench-
mark functions. Recall that CLIFFd features a local optimum
that the hyper-heuristic must escape before climbing a fit-
ness gradient toward the global optimum. We refer to the lo-
cal optimum at i = n− d as the ‘cliff’, two ONEMAX style
hillclimbs as the ‘first slope’ and ‘second slope’ respectively
(see Figure 1), and use d to denote the ‘length of the cliff’.

To find the global optimum of the CLIFFd function, it is
necessary to escape the local optimum, by either dropping

2325

down from the cliff and accepting a worse candidate solu-
tion and then climbing up the second slope, or making a pro-
hibitive jump to the global optimum on the other side of the
cliff (this is possible with standard bit mutation, by requiring
expected exponential time in the length of the cliff, but not
with local mutations).

We now consider the performance of MAHHOI on
CLIFFd. Clearly, with p = 1, MAHHOI reduces to a ran-
dom walk across the fitness landscape. Similarly, if p = 0,
with probability at least 1/2, the bit-string is initialised with
at most n/2 1-bits, and will hillclimb to the top of the cliff.
There is no improving step from this position and the global
optimum cannot be reached. By the law of total expectation,
the expected runtime will be infinite. We will show that us-
ing MAHHOI with p = 1

(1+ε)n , which has been shown to
hillclimb efficiently (Corollary 7), will still allow worsen-
ing moves with sufficiently high probability to be able to
move down from the cliff and reach the global optimum in
expected polynomial time.

Theorem 9 bounds the expected runtime of MAHHOI on
CLIFFd from above. We begin, however, by introducing a
helper Lemma, which was proved in (Droste, Jansen, and
Wegener 2001), for trajectory based algorithms which can
only change the number of 1-bits in the bit-string by 1.
The lemma was subsequently used to analyse the perfor-
mance of the (1+1) EA for noisy OneMax for small noise
strength (Droste 2004). Unlike in noisy optimisation, where
the noise represents uncertainty with the respect to the true
fitness of solutions, in hyper-heuristics the AM operator is
intended to be helpful to the optimisation process by allow-
ing the algorithm to escape from local optima.

Lemma 8. (Droste, Jansen, and Wegener 2001, Lemma 3)
Let E(T+

i) be the expected time to reach a state with i + 1
1-bits, given a state with i 1-bits, and p+

i and p−i be the
transition probabilities to reach a state with, respectively,
i+ 1 and i− 1 1-bits. Then:

E(T+
i) =

1

p+
i

+
p−i
p+
i

· E(T+
i−1).

Within the context of non-elitist local search algorithms,
such as MAHHOI, the transition probability p+

i (p−i) refers
to the probability of making a local mutation which in-
creases (respectively decreases) the number of 1-bits in the
offspring solution and accepting that solution.

Theorem 9. The expected runtime of MAHHOI on
CLIFFd, with p = 1

(1+ε)n for any constant ε > 0, is

O
(
n log n+ n3

d2

)
.

Proof. Let i denote the number of 1-bits in the bit-string at
any time t > 0. We wish to bound the expected runtime
from above by separately bounding four ‘stages’ of the op-
timisation process, each starting once all earlier stages have
ended, and ending once a solution with at least certain num-
ber of 1-bits has been constructed for the first time during the
optimisation process (i.e., the HH may go backwards after-
wards yet will remain in the same stage): the first stage ends
when i ≥ n− d is reached, the second when i ≥ n− d+ 1,

the third when i ≥ n − d + 2, and the fourth when i = n,
i.e., the optimum has been constructed. We use T1, . . . , T4 to
denote the number of iterations the algorithm spends in each
of these stages, and note that by definition of these stages,
the number of iterations T before the optimum is reached is
T = T1 + T2 + T3 + T4, and by linearity of expectation,

E(T) = E(T1) + E(T2) + E(T3) + E(T4). (1)

In the first stage, while i < n − d, CLIFFd resembles
the ONEMAX function, and we can use the upper bound for
the expected runtime of MAHHOI on ONEMAX with p =

1
(1+ε)n from Theorem 6. Hence, E(T1) = O(n log n).

The second stage begins with i ≥ n − d, and ends once
i ≥ n−d+1. When i = n−d, there are no improving moves.
If the OI operator is selected, there will be no change in the
candidate solution. Hence, any move must come from use of
the AM operator, which is selected with probability 1

(1+ε)n .
A mutation step may either increase the number of 1-bits in
the bit-string with probability d/n, or decrease the number
of 1-bits with probability (n − d)/n. We use Lemma 8 to
boundE(T2), the expected time to jump down from the cliff,

E(T2) = E(T+
n−d) =

n2(1 + ε)

d
+
n− d
d
· E(T+

n−d−1).

(2)

We now must bound E(T+
n−d−1). At i = n − d − 1, the

drift is as follows:

∆(n− d− 1) =
d+ 1

n
− 1

(1 + ε)n
· n− d− 1

n

=
n(d+ ε(d+ 1)) + d+ 1

n2(1 + ε)
,

as flipping any one of the (d+ 1) remaining 0-bits increases
the fitness by 1 and is accepted by either operator, and flip-
ping any one of the (n−d−1) 1-bits decreases the fitness by
1 and is only accepted if the ALLMOVES operator is chosen,
which occurs with probability p = 1/((1 + ε)n).

Clearly, for all 0 ≤ i ≤ n − d − 1, the drift is bounded
from above by the drift at i = n− d− 1, while the distance
to the required point from i = n−d−1 is 1. By the Additive
Drift Theorem (Theorem 1), we have

E(T+
n−d−1) ≤ 1/∆(n− d− 1)

=
n2(1 + ε)

n(d+ ε(d+ 1)) + d+ 1
= O

(n
d

)
.

We can now return to bounding E(T2) in Equation 2:

E(T2) =
n2(1 + ε)

d
+
n− d
d
· E(T+

n−d−1)

=
n2(1 + ε)

d
+
n− d
d
·O
(n
d

)
= O

(
n2

d

)
. (3)

The third stage begins with i ≥ n − d + 1, and ends
once i ≥ n − d + 2. When i = n − d + 1, all moves are
improving moves and all moves will be accepted, regardless
of the choice of the OI or AM operator. With probability

2326

(d − 1)/n, the accepted move decreases the number of 1-
bits to i = n− d i.e., the hyper-heuristic returns to the local
optimum. With probability (n−d+1)/n, the accepted move
instead increases the number of 1-bits to i = n− d+ 2. We
again use Lemma 8 to bound E(T3), the expected time to
take one step up the second slope. Noting that E(T+

n−d) =

O(n2/d) by Equation 3, we get

E(T3) = E(T+
n−d+1) =

n

d− 1
+
n− d+ 1

d− 1
· E(T+

n−d)

=
n

d− 1
+
n− d+ 1

d− 1
·O
(
n2

d

)
= O

(
n3

d2

)
.

If d = 2, the CLIFFd function will have been optimised
at this point. However, for d ≥ 3, it is necessary to climb
further up the second slope. If d = 3, we point out that
E(T4) = E(T+

n−d+2), and by applying Lemma 8 bound

E(T+
n−d+2) =

n

d− 2
+

1

(1 + ε)n
·
n− d+ 2

d− 2
· E(T+

n−d+1)

=
n

d− 2
+

1

(1 + ε)n
·
n− d+ 2

d− 2
·O
(
n3

d2

)
= n/(d− 2) +O

(
n3/d3

)
.

For d > 3, we know that i = n− d+ 2 and i = n− d+ 3
are points on the second slope, and by applying Lemma 8
bound

E(T+
n−d+3) =

n

d− 3
+

1

(1 + ε)n
·
n− d+ 3

d− 3
· E(T+

n−d+2)

=
n

d− 3
+

1

(1 + ε)n
·
n− d+ 3

d− 3
·O
(
n3

d3

)
= n/(d− 3) +O

(
n3/d4

)
.

For d > 4 this trend will continue as MAHHOI progresses
closer towards the global optimum; in particular, for k < d,
we will have E(T+

n−d+k) = n
d−k +O

(
n3

dk

)
.

Hence, E(T4) =
∑d−1
k=2E(T+

n−d+k). The terms in
the summation will be asymptotically dominated by the
O(n3/d3) term in E(T+

n−d+2) if d is sub-linear, giv-
ing E(T4 | d = o(n)) ≤ d ·O(n3/d3) = O(n3/d2). How-
ever, if d is linear in the problem size, the first terms will
dominate, and we will have:

E(T4 | d = Θ(n)) = O(1) +

d−1∑
i=2

n

d− i
≤ O(1) +

d−1∑
i=0

n

d− i

= O(1) + n ·
d∑

j=1

1

j
= O(n logn).

Combining the bounds for the sub-linear and linear d, we
conclude that E(T4) = O

(
n log n+ n3

d2

)
.

We now return to our overall runtime bound from Equa-
tion 1 and complete the proof:

E(T) = E(T1) + E(T2) + E(T3) + E(T4)

= O

(
n log n+

n2

d
+
n3

d2
+ n log n+

n3

d2

)
= O

(
n log n+ n3/d2

)
.

Algorithm 2 METROPOLIS Algorithm (Metropolis et al.
1953)

1: Choose x ∈ {0, 1}n uniformly at random, set α(n) ≥ 1
2: while termination criteria not satisfied do
3: x′ ← FLIPRANDOMBIT(x)
4: ∆f ← f(x′)− f(x)
5: if ∆f ≥ 0 then x← x′

6: else Choose r ∈ [0, 1] uniformly at random
7: if r ≤ α(n)∆f then x← x′

Theorem 9 gives an expected runtime bound of MAHHOI
on CLIFFd of O

(
n log n+ n3/d2

)
. This bound is small-

est when d is large, suggesting that the algorithm is fastest
when the cliff is hardest for elitist algorithms, i.e., a lin-
ear cliff length, d = Θ(n), gives an expected runtime of
O(n log n). This runtime asymptotically matches the best
case expected performance of an artificial immune system,
which escapes the local optimum with an ageing operator
(alsoO(n log n) in expectation (Corus, Oliveto, and Yazdani
2017)), which is the best runtime known for hard CLIFFd
functions (for problem-independent search heuristics). We
suspect MAHHOI is faster in practice (i.e., by decreasing
the leading constants in the runtime), but leave this proof for
future work. Mutation based EAs have a runtime of Θ(nd)
for d ≤ n/2 (Paixão et al. 2017); for d = Θ(n), this will
give at least exponential runtime in the length of the cliff.
Steady-State Genetic Algorithms which use crossover have
recently been proven to be faster by at least a linear factor
(Dang et al. 2018), but would still require exponential ex-
pected runtimes for large cliff lengths.

The worst-case scenario for MAHHOI is a constant cliff
length, giving a runtime ofO(n3). This means that the (1+1)
EA will outperform MAHHOI if d < 3, but will be slower
for any 3 < d ≤ n/2, with a performance gap that increases
exponentially with the length of the cliff. For CLIFFd, only
an upper bound on the expected runtime of the non-elitist
(1,λ) EA is available in the literature: O(n25) if λ is neither
too large nor too small (Jägersküpper and Storch 2007).

We can also compare the performance of MAHHOI
on CLIFFd with a well-studied non-elitist algorithm. The
METROPOLIS algorithm (Algorithm 2) accepts worsening
moves with probability α(n)f(y)−f(x), for some α(n) ≥ 1,
and accepts all improvements (Metropolis et al. 1953). The-
orem 10 shows that MAHHOI will considerably outperform
METROPOLIS on CLIFFd for all d > 3.

Theorem 10. The expected runtime of METROPOLIS on

CLIFFd is at least min

{
1
2 ·

n−d+1
d−1 ·

(
n

logn

)d−3/2

, nω(1)

}
.

We have proven that while METROPOLIS cannot optimise
hard CLIFFd variants in polynomial time, MAHHOI is ex-
tremely efficient for hard cliffs, and has an expected runtime
of O(n3) in the worst case.

5 When the Hyper-Heuristic is Inefficient
We now consider the JUMPm function class (1 < m < n/2)
as an example of a multimodal function where MAHHOI

2327

has a harder time escaping the local optimum. Unlike
CLIFFd, the fitness decreases on the second slope, making
it harder to traverse.

In order to optimise the JUMPm function (Figure 2), it is
first necessary to reach the local optimum at the top of the
slope. Then, either a jump to the global optimum is made,
which requires exponential expected time in the length of
the jump for unbiased mutation operators, or a jump is made
down to the slope of decreasing fitness, which must be tra-
versed before the global optimum is found.

Theorem 11. The runtime of MAHHOI on JUMPm, with
p = 1

(1+ε)n , is at least Ω(n log n+ 2cm), for some constant
c > 0 and any constant ε > 0, with probability at least
1− 2−Ω(m).

The following theorem provides an upper bound on the
expected runtime by considering the expected time for the
MAHHOI to accept m consecutive worsening moves from
the local to the global optimum.

Theorem 12. The expected runtime of MAHHOI on
JUMPm, with p = 1

(1+ε)n , for any constant ε > 0, is
O
(
n log n+ n2m−1/m

)
.

Using global mutations to jump can achieve faster ex-
pected runtimes. The expected runtime of the (1+1) EA
on JUMPm is Θ(nm) (Droste, Jansen, and Wegener 2002),
and a bound on Steady State (µ+1) Genetic Algorithms of
O(nm−1) has recently been proved (Dang et al. 2018), both
outperforming our upper bound for MAHHOI. Recent work
has shown that exponential speedups are achieved by an Ar-
tificial Immune System and an Evolutionary Algorithm and
Genetic Algorithm (GA) with heavy-tailed mutation oper-
ators (Corus, Oliveto, and Yazdani 2018; Friedrich, Quin-
zan, and Wagner 2018; Doerr et al. 2017) (however, the ex-
pected runtime is still exponential in m). A compact GA has
super-polynomial speedups over these algorithms for super-
constant jump lengths when m = o(n) (Hasenöhrl and Sut-
ton 2018). In particular for logarithmic jump lengths the al-
gorithm optimises JUMPm in expected polynomial time. We
point out that steady state GAs with diversity mechanisms
that enhance the power of crossover can optimise JUMPm in
expected timeO(mn log n+4m) for jumps up tom = n/8)
(Dang et al. 2016) and in Θ(n log n + 4m) with an unre-
alistically small crossover probability of O(n/m) (Kötzing,
Sudholt, and Theile 2011).

Concerning algorithms that use non-elitism to escape
from local optima, we will now show that METROPOLIS has
worse performance than MAHHOI on JUMPm. The large fit-
ness difference between the two points at i = n − m and
i = n −m + 1 makes METROPOLIS unlikely to accept the
i = n−m+1 point when α(n) is set high enough to enable
efficient hill-climbing of the first slope.

Theorem 13. The runtime of METROPOLIS on JUMPm(x)
is 2Ω(n), with probability at least 1− 2−Ω(n).

Unlike METROPOLIS, MAHHOI does not consider the
magnitude of the fitness difference between two solutions in
its acceptance operators. This allows it to optimise JUMPm
with smaller jump sizes, such as m = Θ(1), in expected

polynomial time, while METROPOLIS requires exponential
time in expectation in all cases.

6 Conclusions
We have rigorously analysed the performance of the Move
Acceptance Hyper-Heuristic (MAHHOI) for multimodal
optimisation problems. We have shown that setting the pa-
rameter value to p ≤ 1/((1 + ε)n), for any constant ε >
0, allows to hillclimb the ONEMAX function in expected
O(n log n) runtime as desired. On the other hand, for too
large parameter values we have shown how the runtime be-
comes exponential.

We have also shown that MAHHOI performs well on mul-
timodal landscapes where the candidate solution identifies a
gradient of increasing fitness after leaving a local optimum.
The CLIFFd function class was analysed to provide such an
example where MAHHOI exhibits very good performance,
matching the best runtime known for problem-independent
search heuristics, for instances that are prohibitive for elitist
Evolutionary Algorithms and METROPOLIS.

On multimodal functions with long slopes of decreasing
fitness that have to be traversed, MAHHOI does not per-
form as well. In particular, we analysed the JUMPm function
class to provide such an example, proving that MAHHOI
has a runtime that is exponential in the size of the ‘jump’,
with overwhelming probability. However, also the estab-
lished non-elitist METROPOLIS algorithm was shown to be
inefficient on this benchmark function, with an even worse
runtime (i.e., at least exponential in the problem size, with
overwhelming probability). The difference is particularly
dramatic for small jumps (i.e.,m = Θ(1)), where MAHHOI
is able to find the global optimum in expected polynomial
time, because unlike METROPOLIS, its acceptance operators
do not consider the magnitude of the fitness difference be-
tween the parent and offspring solutions.

All the statements given in the paper for MAHHOI also
hold for MAHHIE, a variant of MAHHOI which chooses
the IMPROVINGANDEQUAL acceptance operator with prob-
ability 1− p, and the ALLMOVES acceptance operator with
probability p.

Various avenues can be explored in future work. Firstly,
analysing more sophisticated move acceptance operators
would give more insight into the behaviour and performance
of hyper-heuristics commonly used in literature, such as
Monte Carlo approaches (Ayob and Kendall 2003). Also,
implementing learning mechanisms within the MAHHOI,
such that it could ‘learn’ to prefer a certain operator
in certain parts of the fitness landscape similarly to the
hyper-heuristic introduced in (Doerr et al. 2018) for muta-
tion operator selection, should be considered. Furthermore,
MAHHOI should be analysed on classical problems from
combinatorial optimisation with real-world applications. Fi-
nally, more comprehensive hyper-heuristics that choose be-
tween multiple parameter sets, including the population size,
should be analysed.

Acknowledgements This work was supported by the EP-
SRC under Grant No. EP/M004252/1.

2328

References
Alanazi, F., and Lehre, P. K. 2014. Runtime analysis of se-
lection hyper-heuristics with classical learning mechanisms.
In Proc. of CEC ‘14, 2515–2523. IEEE.
Ayob, M., and Kendall, G. 2003. A monte carlo hyper-
heuristic to optimise component placement sequencing for
multi head placement machine. In Proc. of InTech ‘03, 132–
141.
Bilgin, B.; Özcan, E.; and Korkmaz, E. E. 2007. An exper-
imental study on hyper-heuristics and exam timetabling. In
Proc. of PATAT ‘07, 394–412. Springer.
Burke, E. K.; Hyde, M.; Kendall, G.; Ochoa, G.; Özcan,
E.; and Woodward, J. R. 2010. A classification of
hyper-heuristic approaches. In Handbook of Metaheuristics.
Springer. 449–468.
Burke, E. K.; Gendreau, M.; Hyde, M.; Kendall, G.; Ochoa,
G.; Özcan, E.; and Qu, R. 2013. Hyper-heuristics: A survey
of the state of the art. J. Op. Res. Soc. 1695–1724.
Corus, D.; Oliveto, P. S.; and Yazdani, D. 2017. On the
runtime analysis of the opt-IA artificial immune system. In
Proc. of GECCO ’17, 83–90. ACM.
Corus, D.; Oliveto, P. S.; and Yazdani, D. 2018. Fast ar-
tificial immune systems. In Proc. of PPSN ‘18, 67–78.
Springer.
Cowling, P.; Kendall, G.; and Soubeiga, E. 2001. A hyper-
heuristic approach to scheduling a sales summit. In Proc. of
PATAT ‘01, 176–190. Springer.
Cowling, P.; Kendall, G.; and Soubeiga, E. 2002. Hyper-
heuristics: A tool for rapid prototyping in scheduling and
optimisation. In Proc. of EvoWorkshops ‘02, 1–10. Springer.
Dang, D.-C.; Friedrich, T.; Kötzing, T.; Krejca, M. S.;
Lehre, P. K.; Oliveto, P. S.; Sudholt, D.; and Sutton, A. M.
2016. Escaping local optima with diversity mechanisms and
crossover. In Proc. of GECCO ’16, 645–652. ACM.
Dang, D.; Friedrich, T.; Kötzing, T.; Krejca, M. S.; Lehre,
P. K.; Oliveto, P. S.; Sudholt, D.; and Sutton, A. M. 2018.
Escaping local optima using crossover with emergent diver-
sity. IEEE Trans. Evol. Comp. 22(3):484–497.
Doerr, B.; Le, H. P.; Makhmara, R.; and Nguyen, T. D. 2017.
Fast genetic algorithms. In Proc. of GECCO ’17, 777–784.
ACM.
Doerr, B.; Lissovoi, A.; Oliveto, P. S.; and Warwicker, J. A.
2018. On the runtime analysis of selection hyper-heuristics
with adaptive learning periods. In Proc. of GECCO ’18,
1015–1022. ACM.
Doerr, B.; Sudholt, D.; and Witt, C. 2013. When do evolu-
tionary algorithms optimize separable functions in parallel?
In Proc. of FOGA ’13, 51–64. ACM.
Droste, S.; Jansen, T.; and Wegener, I. 2001. Dynamic pa-
rameter control in simple evolutionary algorithms. In Proc.
of FOGA ‘01. ACM. 275 – 294.
Droste, S.; Jansen, T.; and Wegener, I. 2002. On the analysis
of the (1+1) evolutionary algorithm. Th. Comp. Sci. 51–81.
Droste, S. 2004. Analysis of the (1+1) EA for a noisy one-
max. In Proc. of GECCO ’04, 1088–1099. Springer.

Friedrich, T.; Quinzan, F.; and Wagner, M. 2018. Escaping
large deceptive basins of attraction with heavy-tailed muta-
tion operators. In Proc. of GECCO ’18, 293–300. ACM.
Hasenöhrl, V., and Sutton, A. M. 2018. On the runtime dy-
namics of the compact genetic algorithm on jump functions.
In Proc. of GECCO ’18, 967–974. ACM.
He, J., and Yao, X. 2001. Drift analysis and average
time complexity of evolutionary algorithms. Artif. Intel.
127(1):57–85.
Jägersküpper, J., and Storch, T. 2007. When the plus strategy
outperforms the comma strategy and when not. In Proc. of
FOCI ’07, 25–32. IEEE.
Johannsen, D. 2010. Random combinatorial structures and
randomized search heuristics. Ph.D. Dissertation, Univer-
sita̋t des Saarlandes, Saarbrűcken.
Kötzing, T.; Sudholt, D.; and Theile, M. 2011. How
crossover helps in pseudo-boolean optimization. In Proc.
of GECCO ’11, 989–996. ACM.
Lehre, P. K., and Özcan, E. 2013. A runtime analysis of
simple hyper-heuristics: To mix or not to mix operators. In
Proc. of FOGA ’13, 97–104. ACM.
Lehre, P. K., and Witt, C. 2012. Black-box search by unbi-
ased variation. Algorithmica 623–642.
Lissovoi, A.; Oliveto, P. S.; and Warwicker, J. A. 2018.
Simple Hyper-heuristics Optimise LeadingOnes in the Best
Runtime Achievable Using Randomised Local Search Low-
Level Heuristics . ArXiv e-prints.
Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.;
Teller, A. H.; and Teller, E. 1953. Equation of state cal-
culations by fast computing machines. J. of Chem. Phys.
1087–1092.
Oliveto, P. S., and Witt, C. 2011. Simplified drift analy-
sis for proving lower bounds in evolutionary computation.
Algorithmica 369–386.
Oliveto, P. S., and Witt, C. 2012. Erratum: Simplified drift
analysis for proving lower bounds in evolutionary computa-
tion. CoRR abs/1211.7184.
Oliveto, P. S., and Witt, C. 2015. Improved time complexity
analysis of the simple genetic algorithm. Th. Comp. Sci.
605:21–41.
Özcan, E.; Bilgin, B.; and Korkmaz, E. E. 2006. Hill
climbers and mutational heuristics in hyperheuristics. In
Proc. of PPSN ‘06, 202–211. Springer.
Paixão, T.; Pérez Heredia, J.; Sudholt, D.; and Trubenová, B.
2017. Towards a runtime comparison of natural and artificial
evolution. Algorithmica 681–713.
Qian, C.; Tang, K.; and Zhou, Z.-H. 2016. Selection hyper-
heuristics can provably be helpful in evolutionary multi-
objective optimization. In Proc. of PPSN ‘16, 835–846.
Springer.

2329

