
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Evolving Action Abstractions
for Real-Time Planning in Extensive-Form Games

Julian R. H. Mariño,1 Rubens O. Moraes,2 Claudio Toledo,1 Levi H. S. Lelis2

1Departamento de Sistemas de Computação, ICMC, Universidade de São Paulo, Brazil
2Departamento de Informática, Universidade Federal de Viçosa, Brazil

julianmarino@usp.br, rubens.moraes@ufv.br, claudio@icmc.usp.br, levi.lelis@ufv.br

Abstract

A key challenge for planning systems in real-time multi-
agent domains is to search in large action spaces to decide
an agent’s next action. Previous works showed that hand-
crafted action abstractions allow planning systems to focus
their search on a subset of promising actions. In this paper we
show that the problem of generating action abstractions can
be cast as a problem of selecting a subset of pure strategies
from a pool of options. We model the selection of a subset
of pure strategies as a two-player game in which the strategy
set of the players is the powerset of the pool of options—
we call this game the subset selection game. We then present
an evolutionary algorithm for solving such a game. Empiri-
cal results on small matches of µRTS show that our evolu-
tionary approach is able to converge to a Nash equilibrium
for the subset selection game. Also, results on larger matches
show that search algorithms using action abstractions derived
by our evolutionary approach are able to substantially outper-
form all state-of-the-art planning systems tested.

Introduction
Real-time planning in multi-agent scenarios such as real-
time strategy (RTS) games are challenging for current
search-based systems. In such domains search algorithms
have to choose an action from an often large number of op-
tions, and the time allowed for planning is in the order of
milliseconds. A promising approach for dealing with large
action spaces in the context of real-time planning is the use
of action abstractions to reduce the action space (Churchill
and Buro 2013). Instead of accounting for all actions avail-
able to an agent during search, algorithms searching with
action abstractions consider only a subset of the legal ac-
tions. Churchill and Buro (2013) used domain knowledge
through a set of strategies to induce action abstractions,
where a strategy is a function mapping a state to an ac-
tion. Churchill and Buro’s idea was to only consider dur-
ing search the actions returned by a strategy from a set
of expert-designed options, with all the other actions be-
ing ignored. Several algorithms were introduced for search-
ing in action-abstracted state spaces (Justesen et al. 2014;
Wang et al. 2016; Lelis 2017; Moraes and Lelis 2018).

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The main drawback of these approaches is that they are
limited to a small number of hard-coded expert-designed
strategies. That is, the action-abstracted space from which a
search algorithm derives a strategy in real time is limited to
a small number of handcrafted strategies, which often limit
the behavior of the agent controlled by the system. In this
paper we introduce an approach to automate the generation
of action abstractions for two-player extensive form games
while still using the knowledge encoded in expert-designed
strategies. Our approach generates a large pool of strategies
Z from a small set of options I designed by domain experts.
This is achieved by defining the strategies in I as rule-based
strategies, which are strategies composed by a set of rules,
that are themselves defined by a Boolean expression and an
action to be performed by the agent. For example, in RTS
games, a Boolean expression of a rule could be “controls 3
worker units”, where the number 3 is a parameter of the ex-
pression, and the action the agent performs if the expression
returns true could be “construct a base”. By changing the
parameter values of rule-based strategies we are able to gen-
erate a large pool of strategies Z , and any non-empty subset
of Z can be used to induce an action abstraction.

We cast the problem of generating an action abstraction
from Z as a two-player simultaneous-move game which we
name the subset selection game (SSG). In the SSG each
player selects a subset of Z , A and B, which are then used
to induce an action abstraction for each player. The payoff
of the SSG is defined by the result of the original two-player
extensive-form game played by two versions of a planning
system: one using the action abstraction induced by A and
another using the action abstraction induced by B.

We introduce an evolutionary algorithm for solving the
SSG and evaluate it in the domain of µRTS, an RTS game
developed for research purposes. Empirical results on small
µRTS matches show that our evolutionary approach is able
to converge to a Nash equilibrium profile for the SSG. Re-
sults in medium-sized and large µRTS matches show that
two search-based planning systems using action abstractions
derived by our method are able to outperform all state-of-
the-art planning systems tested in our experiments.

Related Works
All previous works that used strategies to induce action
abstractions (Churchill and Buro 2013; Wang et al. 2016;

2330

Lelis 2017; Moraes and Lelis 2018; Tavares et al. 2018) re-
lied on a limited number of strategies, with six being the
largest number of strategies considered. Instead of using
only strategies designed by experts, we use a large set of
strategies generated from an initial set of expert-designed
strategies. Puppet Search (PS) (Barriga, Stanescu, and Buro
2017b) uses an approach similar to ours for generating
strategies from a small set of rule-based strategies. Instead
of searching in the actual space of the problem, PS searches
in the parameter space of a set of strategies. Our approach
differs from PS in that we generate novel strategies as a pre-
processing step, while PS searches for novel strategies as it
plays the game. Strategy Tactics (STT) (Barriga, Stanescu,
and Buro 2017a) is an enhanced version of PS which com-
bines PS’s search in the parameter space with a search in the
game’s actual space.

Strategy Creation through Voting (SCV) also generates
a large set of strategies from a small number of expert-
designed ones (Silva et al. 2018). In contrast with our ap-
proach, SCV’s strategies are not used to induce action ab-
stractions, they are used to play the game directly.

Spronck et al. (2006) introduced a reinforcement learn-
ing method for exploring sequences of rules to define strate-
gies. Others have evolved strategies (Canaan et al. 2018;
Ponsen et al. 2006). In contrast with these works that de-
rive strategies to play a game directly, we derive a set of
strategies to induce action abstractions.

Action abstractions have also been applied to the domain
of poker (Sandholm 2015). Action abstractions for poker
are fundamentally different from our action abstractions.
While most of the action abstractions for poker are manu-
ally crafted by human experts, a few works describe methods
to automatically find a discretization of the continuous bet
sizing in no-limit poker (Hawkin, Holte, and Szafron 2011;
2012; Brown and Sandholm 2014). By contrast, our action
abstraction scheme is used to select a subset of actions from
a discrete set of options. Action abstractions in poker are
used to reduce the size of the game so that the abstracted
game can be solved in an offline procedure, while we use
action abstractions to search for a strategy in real time.

Background
Our evolutionary approach is designed to automatically
craft action abstractions to real-time zero-sum simultaneous-
moves extensive-form games, which can be defined by a tu-
ple ∇ = (N ,S, sinit,A,R, T). Here,
• N = {i,−i} is the set of players.
• S = D ∪ F is the set of states, where D denotes the set

of non-terminal states and F the set of terminal states.
• sinit ∈ D is the start state of the game.
• A = Ai×A−i is the set of joint actions.Ai(s) is the set

of legal actions that player i can perform in state s.
• Ri : F → R is a utility function with Ri(s) =
−R−i(s), for any s ∈ F , since the game is zero sum.

• The transition function T : S × A × A−i → S deter-
mines the successor state for a state s and a set of join
actions taken at s.

The game is represented by a game tree rooted at sinit in
which each node in the tree represents a state in S and every
edge represents a joint action in A. For states sk, sj ∈ S,
there exists an outgoing edge from sk to sj if there exists
ai ∈ Ai and a−i ∈ A−i such that T (sk, ai, a−i) = sj .
Nodes representing states in F are leaf nodes. We call a de-
cision point for player i a state s in the tree such that i is the
player to act in s. Since we consider real-time settings in this
paper, each system playing the game is allowed a planning
time in the order of milliseconds in every decision point.

A pure strategy is a function σi : S → Ai for player
i, mapping a state s to an action a. In simultaneous-moves
games one might have to play a mixed strategy to opti-
mize the player’s payoffs (Gintis 2000). A mixed strategy
is a function σi : S × Ai → [0, 1] for player i that maps
a state s and an action a to the probability of the player
i taking action a at state s. We denote as Σi and Σ−i the
set of all strategies for i and −i. A player strategy profile
σ = (σi, σ−i) defines the strategy of both players.

The optimal value of the game rooted at state s is denoted
by V ∗(s). We denote an optimal profile σ∗ = (σ∗i , σ

∗
−i),

known as a Nash equilibrium profile, which yields V ∗(s).
Backward induction methods (Ross 1971) can be used to
find optimal profiles. However, depending on the problem’s
size, finding optimal profiles becomes impractical due to the
computational cost required to compute such a profile. An
approach for handling very large extensive-form games is by
employing action abstraction schemes to reduce the number
of actions available at nodes in the game tree. One then de-
rives strategies by searching in the action-abstracted game
tree (Churchill and Buro 2013).

An action abstraction (or abstraction for short) for player
i is defined as a function mapping the set of legal actions
A(s) to a subsetA′(s) ofA(s). Previous works have shown
that one can build abstractions through a collectionP of pure
strategies (Churchill and Buro 2013). The abstracted set of
legal actions of player i at state s is defined as the set of
actions returned by the strategies in P ,

A′P(s) = {σi(s)|σi ∈ P} .

Once an abstraction is defined, real-time planning algo-
rithms derive a strategy for the player by searching in the
abstracted game tree in every decision point of the game.

Generation of Action Abstractions
as a Two-Player Zero-Sum Game

Previous works have employed a small pool of hand-crafted
pure strategies to derive an action abstraction to reduce the
size of the game tree. By contrast, in this paper we generate a
large pool Z of pure strategies for the game by changing the
parameter values of a small set I of expert-designed rule-
based strategies. Then, we select a subsetA of Z that is then
used to define an action abstraction for the game. The subset
A is selected for player i assuming that the opponent −i is
also able to select a subset B of Z to define −i’s action ab-
straction. Let V ∗(s,A,B) be the optimal value of the game
rooted at state s if i and −i use action abstractions induced

2331

by A and B, respectively, defined by,

V ∗(s,A,B) = max
σi∈ΣA

i

min
σ−i∈ΣB

−i

∑
ai∈A(s)

∑
a−i∈A−i(s)

σi(s, ai)·

σ−i(s, a−i) · V (T (s, ai, a−i), A,B) .
(1)

The base of the recurrence is defined by V ∗(s,A,B) =
Ri(s), if s ∈ F . Here, ΣAi and ΣBi are the set of all pos-
sible strategies for i and −i when i is restricted by an action
abstraction induced by A and −i is restricted by an action
abstraction induced by B. V ∗(s) differs from V ∗(s,A,B)
in that the latter is the optimal value of the game while play-
ers i and−i account only for actions derived from strategies
in ΣAi and ΣBi , respectively, for every s. The former is the
optimal value computed while accounting for all legal ac-
tions A(s), i.e., the un-abstracted game tree.

We model the problem of selecting a subset of strate-
gies to induce action abstractions as a two-player zero-sum
simultaneous-move game in which player i chooses a subset
A that maximizes the game value, while player −i chooses
a subset B that minimizes the game value. We call such
a game the subset selection game (SSG). Note that if the
players optimize V ∗(sinit, A,B) in the SSG, thenA = B =
Z is a trivial optimal solution, since the value of V ∗ can only
increase for larger setsA, and only decrease for larger setsB
in zero-sum games (Moraes and Lelis 2018). However, the
solution A = B = Z is unlikely to be effective in practice
as it might yield game trees that are too large to be practical,
specially for planning in games with real-time constraints.
Instead of choosing A and B that optimize V ∗(sinit, A,B),
in the SSG we choose A and B that solves the following,

max
A∈2Z

min
B∈2Z

V (sinit, A,B) . (2)

Here, V (sinit, A,B) is an approximation of V ∗(sinit, A,B)
as computed by a search algorithm using abstractions in-
duced by A and B, for players i and −i, respectively. We
write V (A,B) instead of V (sinit, A,B) whenever sinit is
clear from the context. By optimizing V (sinit, A,B) instead
of V ∗(sinit, A,B), we account for real-time constraints and
imperfect search schemes. For example, if A = Z and B is
a much smaller subset, then despite player i having access
to a larger set of actions in the game, V (sinit, A,B) might
still be negative. This is because B allows the search proce-
dure deriving a strategy for −i to focus on a promising set
of actions, while i’s search might spend all its time available
for planning evaluating unpromising actions.

Our formulation of the SSG is simplified in the sense that
we assume the existence of a solution with pure strategies
(i.e., subsets of Z), although one might need to play a mixed
strategy to solve simultaneous-move games. We further ob-
serve that although we use the maxmin value in Equation 2
as the value of the SSG, we could have used the minmax
value, as the maxmin and minmax values are equal in finite,
two-player, zero-sum games (v. Neumann 1928).

An Evolutionary Algorithm for SSG
In this section we describe an evolutionary algorithm for

solving the SSG. A high-level description of the approach is

Algorithm 1 Evolutionary Algorithm for Solving SSG

Require: Set Z of strategies, number of generations l, fit-
ness function Ψ, population size n, elitist parameter e,
tournament parameter t, mutation parameter u.

Ensure: Individual A.
1: k ← 0
2: P ← INIT(Z, n)
3: while k < l do
4: EVALUATE(P,Ψ)
5: M ← SELECT(P, n, e, t)
6: M ← CROSSOVER(M)
7: M ← MUTATION(M,Z, u)
8: P ′ ← ELITISM(P, e)
9: P ← P ′ ∪M

10: k ← k + 1
11: EVALUATE(P,Ψ)
12: return argmaxA∈P Ψ(A)

presented in Algorithm 1. The algorithm receives as input a
set Z of pure strategies from which one can induce abstrac-
tions, a number of generations l, a fitness function Ψ, a pop-
ulation size n, an elitist parameter e, a tournament param-
eter t, and a mutation parameter u ∈ [0, 1]. The algorithm
returns a subset of Z . In our evolutionary approach, subsets
of Z are called individuals and a population P is a set of in-
dividuals. In our implementation, individuals are treated as
totally-ordered subsets of Z , as the order in which the pure
strategies are placed in an individual affects the result of the
genetic operators we describe below. Function INIT(Z, n)
returns n random subsets of Z of random size (line 2) as the
initial population of the procedure.

A generation is defined by an iteration of the while
loop (line 3). In every generation, a set M of individ-
uals are selected to produce another set of individuals
through crossover and mutation operators (lines 5–7). Func-
tion SELECT(P, n, e, t) selects a set M of individuals with
a tournament (Talbi 2009). That is, t individuals from P
are randomly selected, and amongst them, the one with
largest Ψ-value is added to M ; this process is repeated until
|M | = n−e, which ensures that the next population has size
n, as later in the process, ELITISM adds e individuals to M .

Function CROSSOVER(M) implements a recombination
procedure in which two individuals p1 and p2 of M are ran-
domly selected to generate novel individuals. p1 and p2 are
randomly divided in two disjoint parts: p1,1 and p1,2, and
p2,1 and p2,2. Individuals p′1 and p′2 are generated by append-
ing p1,1 to p2,2 and p2,1 to p1,2, respectively. Individuals p′1
and p′2 are then added to an initially empty set M ′. This pro-
cess is repeated until |M ′| = |M |, when M ′ is returned and
attributed to M (line 6). Function MUTATION(M,Z, u) it-
erates through each strategy σ in each individual in M and
replaces σ by a random σ′ ∈ Z with probability u.

Function ELITISM(P, e) selects the subset P ′ of P with e
individuals with the largest Ψ-value (line 8). The population
of the next generation is determined by the union of M and
P ′. Since |M | = n−e and |P ′| = e, the population is always
of size n. Once the procedure has completed l generations, it

2332

returns the individual in P with the largest Ψ-value (line 12).
The Ψ-value of an individual A in P is computed as,

Ψ(A,P) =
∑

B∈P∧B 6=A

V (sinit, A,B) .

The value of V (sinit, A,B) is computed by playing the ac-
tual game∇ (e.g., RTS match) with a search algorithm using
the abstraction induced by A against the same search algo-
rithm using an abstraction induced by B. The V -value is the
final score of the game; in our implementation we use 1, 0,
and −1 if the player controlled by the search algorithm us-
ing the abstraction induced by A wins, draws, or loses the
match, respectively. The Ψ-value of A is the sum of the V -
values of A with each B 6= A in the population.

Evolutionary Stable Strategies
In our experiments we use the concept of Evolutionary Sta-
ble Strategies (ESS) for symmetric games, introduced by
Maynard Smith and Price (1973), to evaluate the solutions
encountered by our approach for SSG. A two-player game
is symmetric if it has the same set of strategies for both play-
ers and if the utilities of the game are symmetric, i.e., players
payoffs are the same if they are “player 1” or “player 2”. Our
SSGs have the same set of strategies for both players (the
powerset of Z), but there could be asymmetries in the util-
ity function of the SSG, i.e., the result of a match played by
the same search algorithm using different abstractions. For
example, in RTS games one of the players could be in advan-
tage depending on the location she starts the game. Instead
of computing the value of V directly with a single match,
we mitigate possible asymmetries by computing V as the
average result of two matches in which we swap the roles
of “player 1” and “player 2” in the matches. This procedure
allows us to ensure that our SSG is symmetric.

A pure strategy A is an ESS if a population composed of
A (population in the sense of setP in Algorithm 1) cannot be
“invaded” by another strategyB during an evolutionary pro-
cess. That is, ifB appears in the population, then it is quickly
eliminated through the evolutionary process for being “less
fit to survival” than A. Formally, we have the following def-
inition adapted from Maynard Smith and Price (1973).
Definition 1 (ESS) Let ∇ be a zero-sum extensive-form
game with start state sinit. Let A be a strategy for the SSG
defined over∇ and a set of strategies Z for∇. Strategy A is
an Evolutionary Stable Strategy (ESS) if the following con-
ditions hold, for any strategy B 6= A of the SSG.

V (A,A) ≥ V (B,A) (3)
V (A,A) = V (B,A)⇒ V (A,B) > V (B,B) (4)

If Equation 3 is satisfied, then profile (A,A) is a Nash
equilibrium profile for the SSG. Equation 4 is a stability
condition that guarantees that newly inserted strategies (mu-
tants) are repealed by the ESS. That is, even if a mutant B is
as good as the A against A, then B is still repealed for being
strictly worse than A against B. In our experiments we are
particularly interested in observing if the populations in our
evolutionary approach present the characteristics of an ESS,
i.e., if the population is composed solely of a single strategy
and if other strategies are quickly eliminated.

Generation of Novel Strategies from
Expert-Designed Rule-Based Strategies

Here we define rule-based strategies and how a small num-
ber of them can be used to generate a large set of strategies.

Definition 2 A rule-based strategy σr for ∇ is defined by a
totally-ordered set of rules E = (B,Ar), where,

• B : S → {0, 1} is a function that returns, for state
s, the result of a Boolean expression that depends on a
set of parameters {C1, · · · , Ch}. Here, each Cj can as-
sume Kj different values Cj = {v1

j , · · · , v
Kj

j }, and CT =

{(v1, · · · , vn) ∈ C1 × · · · × Cn} is the set of possible
combinations of value assignments for the parameters.

• Ar : S → A is a function that receives a state s as input
and returns a legal action a to be played in s.

σr is used to play∇ by iteratively invoking the B function of
each rule E in σr, for each decision point s in the game. One
then executes in s the action returned by Ar(s) for the first
rule E whose B function returns true. The order in which the
B functions are invoked is defined by σr’s total ordering.

A rule-based strategy σr can be used to define a possi-
bly large set of strategies by using different parameter val-
ues (v1, · · · , vn) in CT in each rule E of σr. For example,
a rule-based strategy for an RTS game could have the fol-
lowing rule E : “if controlling 2 combat units, then attack the
enemy”. Here, B is “controlling 2 combat units”, where the
number of units is a parameter C that can assume any value
v > 0. The action a of E is “attack the enemy”. By chang-
ing the parameter value from 2 to 3, one generates another
instantiation of the rule-based strategy to play the game.

In our experiments we use a small set of expert-designed
rule-based strategies to automatically generate a large set
of strategies by changing the parameter values of the initial
strategies. The resulting strategies compose our set Z .

Empirical Methodology
Problem Domain All our experiments are run on µRTS,
an RTS game developed for research (Ontañón 2013).
µRTS allows one to test algorithms without having to
deal with engineering problems encountered in commercial
video games. Moreover, there is an active community us-
ing µRTS as research testbed, with competitions being or-
ganized (Ontañón et al. 2018), which helps organizing all
methods in a single codebase.1 In µRTS each player starts
the game controlling a set of worker units on a gridded map.
Workers can be used to collect resources, build structures,
and battle the opponent. In some of the maps, players also
start with a structure called base, which is used to train work-
ers and to store resources. In addition to the base, another
structure workers can build is called barracks, which can be
used to train combat units. µRTS has the following combat
units: light, ranged, and heavy. Combat units differ in how
much damage they can take before being removed from the
game, how much damage they can inflict to other units, and
how close to an opponent unit u they must be to attack u.

1https://github.com/santiontanon/microrts

2333

A player wins a µRTS match if she is able to remove all the
other player’s units from the game. Every algorithm is al-
lowed 100 milliseconds for planning in each decision point.

Set Z of Strategies We use an initial set I of rule-based
strategies for µRTS as defined by the strategies of Silva
et al. (2018). Their strategies can be described as 3 rule-
based strategies with different parameter sets. We call their
strategies Rush, Defense, and Military. As an example, the
Boolean expression of a rule of the Rush strategy verifies if
the player has a minimum number n of units of a given type
before attacking the opponent. The parameters for this rule
are the type of units trained and the number of units required
to trigger an attack. Silva et al. used 4 strategies derived from
Rush, all of them with n = 1. Their Rush strategies differed
only on the type of unit trained, with one strategy training
each of the types: worker, light, ranged, and heavy—these
strategies are named Worker Rush (WR), Light Rush (LR),
Ranged Rush (RR), and Heavy Rush (HR). One can gen-
erate novel rush strategies by changing not only the type of
unit trained, but also the value of n. Similarly, one can define
novel Defense and Military strategies by changing their pa-
rameters. In this paper we vary the parameters of Rush, De-
fense, and Military to generate 100 strategies of each type,
which results in a Z set of 300 strategies.2

Search Algorithms We use Portfolio Greedy Search
(PGS) (Churchill and Buro 2013) and Stratified Strategy
Selection (SSS) (Lelis 2017) in our experiments. We use
PGS and SSS because both algorithms were developed to
search in action-abstracted state spaces induced by strate-
gies. Note, however, that one could use other algorithms
such as A3N (Moraes et al. 2018) to search in our action-
abstracted spaces. We denote as PGS∗ and SSS∗ the search
algorithms using an action abstraction derived by our evo-
lutionary procedure. When deriving PGS∗’s action abstrac-
tion, we use PGS to compute the values of V in the evo-
lutionary procedure. Similarly, we use SSS to compute the
values of V when deriving SSS∗’s action abstraction.

As evaluation function for PGS, PGS∗, SSS, and SSS∗,
we perform two random and independent play-outs with 200
game cycles of length from the state being evaluated. The
evaluated value is the average value of the states reached
through the play-outs according to the built-in SimpleSqrtE-
valuationFunction3 function of µRTS (Ontañón 2017).

Maps µRTS matches can be played in maps of different
sizes. We test our action abstractions in maps of size x × x
with x ∈ {8, 24, 32, 64}, where the map of 64× 64 is a map
from Blizzard’s StarCraft. All maps we use are symmetric,
meaning that the players are indifferent to being assigned
the role of “player 1” or “player 2”. In addition to being
algorithmic dependent, all action abstractions are map de-
pendent. That is, we run our evolutionary approach to gen-
erate an action abstraction for a given search algorithm and
map. Every match played is limited by a number of game

2See our codebase for details of how the 300 strate-
gies are generated: https://github.com/julianmarino/
evolutionary-action-abstractions.git

cycles and gameplay time. We use (4000, 20), (6000, 20),
(7000, 25), and (12000, 30) as the limit values in our exper-
iments, where the first number specifies the limit in game
cycles and the second number the limit in minutes for maps
of size x of 8, 24, 32, and 64, respectively.

Experiment Sets Our empirical evaluation is divided into
two parts. In the first part we apply our evolutionary algo-
rithm for solving the SSG in a µRTS map of size 8 × 8,
which is small enough for us to compute a Nash equilibrium
profile for the SSG. This experiment allows us to verify that
our approach is able to converge to an ESS. We use SSS as
the search algorithm and sets Z of size 8, 10, and 15. The
setsZ are also derived from the Rush, Defense, and Military
rule-based strategies and all sets include the WR strategy.

In the second part we test the performance of PGS∗ and
SSS∗ against state-of-the-art methods. We use in our exper-
iments the MCTS version of Puppet Search (PS) (Barriga,
Stanescu, and Buro 2017b), Strategy Tactics (STT) (Bar-
riga, Stanescu, and Buro 2017a), which was the winner
of the 2017 µRTS competition (Ontañón et al. 2018), Ad-
versarial Hierarchical Task Network (AHT) (Ontañón and
Buro 2015), Naı̈veMCTS (Ontañón 2017), Strategy Cre-
ation Through Voting (SCV) (Silva et al. 2018), the four
instantiations of the Rush strategy explained above, WR,
LR, HR and RR (Stanescu et al. 2016), which are known
to perform well in µRTS (Ontañón et al. 2018). Also, we
include in our comparison versions of PGS and SSS that
use an action abstraction induced by the set {WR, LR, HR,
RR}, which we denote as PGSr and SSSr, where “r” stands
for Rush. We also use versions of PGS and SSS that use
an action abstraction induced by 9 strategies, which are de-
rived from the same Rush, Defense, and Military rule-based
strategies used to generate our set Z . We denote the vari-
ants of PGS and SSS that use the action abstraction induced
by these 9 strategies as PGSs and SSSs, where “s” refers
to SCV, as these 9 strategies are those used by SCV (Silva
et al. 2018). Namely, PGSs and SSSs use the same 4 Rush
strategies used with PGSr and SSSr, 4 Defense strategies,
and 1 Military strategy; see Silva et al. (2018) for details. As
explained before, the action abstractions we use with PGS∗
and SSS∗ are defined by our evolutionary approach with a
Z set with 300 strategies, for all maps tested.

We compare an algorithm to another by simulating several
matches between the two algorithms. Although all our maps
are symmetric, to guarantee fairness, in our experiments a
system always plays half of the simulated matches as “player
1” and the other half as “player 2”.

Evolutionary Parameters In the first experiment we use a
mutation probability u of 0.05, size of the population n of
100, the number of generations l of 20, and the size e of the
elite population is set to 25. Since the maps are much larger
in the second experiment, we set n = 20, l = 30, and e = 5.

Empirical Results
First Part: Convergence to an ESS
Due to the real-time constraints, the order in which the
strategies are used to induce an abstraction matters to search

2334

Figure 1: Fraction of the population representing WR.

algorithms. For example, let σr1 and σr2 be two rule-based
strategies used to induce an abstraction. The abstraction in-
duced with {σr1, σr2} could be different from the abstraction
induced with {σr2, σr1} as, depending on the game state, the
search algorithm might be able to evaluate only the action
given by the first strategy, which could be the action given
by strategy σr1 or σr2 , depending on the abstraction’s order-
ing. This means that, instead of having the powerset of Z
as the strategy set for the SSG, one has all permutations of
all subsets of Z as the strategy set for the SSG. Our evolu-
tionary procedure already deals with this combinatorial ex-
plosion as the individuals in the population are treated as
totally ordered subsets of Z .

In this first experiment we show that WR is likely to be
a strictly dominant strategy for the SSG defined by the set
Z of size 8. For that, we tested SSS with an abstraction in-
duced by each permutation of subsets of the set Z against
SSS with an abstraction induced by WR. Since SSS uses a
stochastic evaluation function, we repeated each match 50
times. Ignoring matches that finish in a draw (i.e., matches
that reach the map’s maximum number of game cycles or
time limit), SSS with an abstraction induced by WR is able
to win more matches than lose against SSS with any other
permutation, with p < .001, for the largest p, according to
two-sided binomial tests. Thus, with high probability, (WR,
WR) is a Nash equilibrium profile for the SSG with |Z| = 8.

Figure 1 shows the fraction of WR in the population in 20
generations for the three SSGs tested. The plot suggests that
WR is stable after generation 4 for all SSGs. We repeated
this experiment 5 times for |Z| = 8 and the fraction of WR
in the population quickly approached one in all runs. Fig-
ure 1 shows a representative run of our system for that SSG.

Second Part: Comparison with the State of the Art
Since our action abstractions are generated by a stochastic
approach, we perform 5 independent runs of the experiment
described in this section and report the average percentage
of victories. In this experiment we follow a previous work
(Ontañón 2017) and draws are counted as a 0.5 victory for
both systems. In each run of this experiment we have each
system play every other system 100 times on a given map.

Table 1 shows the average percentage of victories of the

PGSr PGSs PGS∗ SSSr SSSs SSS∗

M
ap

24
×

24

PS 81.8 81.6 99.8 57.1 75.2 99.2
AHT 100.0 99.8 96.8 100.0 99.2 95.6
STT 97.4 91.8 99.8 44.9 87.6 98.6
NS 98.9 98.9 100.0 86.5 98.0 100.0
RR 100.0 100.0 100.0 81.2 100.0 100.0
HR 100.0 100.0 100.0 97.0 99.8 100.0
WR 60.4 90.3 78.8 44.8 82.6 66.6
LR 92.9 88.6 100.0 19.8 84.8 99.2
SCV 99.8 99.2 98.2 95.0 98.2 97.4
PGSr - 42.4 99.6 34.7 40.7 93.5
PGSs 57.6 - 97.0 43.0 45.0 91.4
PGS∗ 0.4 3.0 - 5.4 1.6 41.7
SSSr 65.3 57.0 94.6 - 40.7 90.5
SSSs 59.3 55.0 98.4 59.3 - 93.2
SSS∗ 6.5 8.6 58.3 9.5 6.8 -

PGSr PGSs PGS∗ SSSr SSSs SSS∗

M
ap

32
×

32

PS 37.9 48.4 99.8 52.1 47.8 99.6
AHT 100.0 100.0 100.0 100.0 100.0 100.0
STT 84.8 22.7 100.0 88.6 23.4 100.0
NS 99.2 99.3 100.0 99.6 98.9 100.0
RR 100.0 100.0 100.0 100.0 100.0 100.0
HR 98.8 99.2 100.0 99.8 98.0 100.0
WR 100.0 100.0 94.2 100.0 100.0 100.0
LR 1.8 8.2 96.8 16.2 7.2 99.0
SCV 11.9 29.4 86.5 56.5 27.8 91.5
PGSr - 55.2 99.6 96.0 55.7 99.6
PGSs 44.8 - 99.6 97.2 51.0 100.0
PGS∗ 0.4 0.4 - 1.0 0.0 51.6
SSSr 4.0 2.8 99.0 - 2.4 99.8
SSSs 44.3 49.0 100.0 97.6 - 100.0
SSS∗ 0.4 0.0 48.2 0.2 0.0 -

PGSr PGSs PGS∗ SSSr SSSs SSS∗

M
ap

64
×

64

PS 0.3 0.0 83.8 0.0 0.0 77.5
AHT 100.0 100.0 99.5 100.0 100.0 100.0
STT 25.2 0.3 95.2 20.7 2.0 91.0
NS 100.0 100.0 100.0 100.0 100.0 100.0
RR 87.7 100.0 100.0 94.7 98.3 100.0
HR 99.7 100.0 100.0 99.3 100.0 100.0
WR 60.5 82.0 98.8 75.7 72.3 97.7
LR 54.3 78.0 100.0 59.0 66.0 100.0
SCV 1.5 1.5 86.0 9.3 1.8 73.8
PGSr - 50.3 100.0 68.0 50.7 100.0
PGSs 49.7 - 100.0 67.0 45.3 100.0
PGS∗ 0.0 0.0 - 0.0 0.0 36.8
SSSr 32.0 33.0 100.0 - 39.5 100.0
SSSs 49.3 54.7 100.0 60.5 - 100.0
SSS∗ 0.0 0.0 62.8 0.0 0.0 -

Table 1: Average percentage of matches won by the column
player against the row player for maps of different sizes.

column player against the row player for the three maps
used in our experiment. As an example of how to read the
table, PGS∗ wins on average 98.4 percent of its matches
against SSSs in the 24 × 24 map. We highlight the back-
ground of cells showing the results of both PGS∗ and SSS∗,
the two search methods using action abstractions derived by
our evolutionary method. We also present as column play-
ers the four baselines, which are the same search algorithms

2335

but using handcrafted actions abstractions: PGSr, PGSs,
SSSr, and SSSs. The numbers are truncated to one deci-
mal place. All PGS∗ and SSS∗ results are significant with
p < .05 according to pairwise comparisons performed with
unpaired t-tests. Each t-test compares the average percentage
of matches won by a column player against a row player.

Comparison with Baselines We start by comparing PGS∗
and SSS∗ with their baselines: PGSr, PGSs, SSSr, and
SSSs. One observes that PGS∗ and SSS∗ are able to substan-
tially outperform the baselines in direct matches. This can
be observed in the table of results by looking at PGS∗’s and
SSS∗’s highlighted rows. SSSr is the baseline that wins the
largest number of matches against either PGS∗ and SSS∗,
and that is only 9.5% of the matches played against SSS∗ in
the 24×24 map. The percentage of matches won by a base-
line against one of our methods reduces as one increases the
size of the map. In particular, PGS∗ and SSS∗ win all their
matches against the baselines in maps of size 64×64.

PGS∗ and SSS∗ can also be compared with the baselines
by observing the average winning percentage of the PGS and
SSS variants against the other approaches. In general, PGS∗
and SSS∗ win more matches against other approaches than
the baselines. A notable exception are the results against
WR in the 24×24 map, where the baselines PGSs and SSSs
win more matches than PGS∗ and SSS∗. This is because the
strategies used by PGSs and SSSs are quite effective against
WR, but less effective in general—PGS∗ and SSS∗ are much
stronger than PGSs and SSSs against the other methods.
These results highlight that the action abstractions derived
by our approach can be far superior to those derived from
existing strategies. This might be because existing strategies
(e.g., those used in SCV) are designed to play the game di-
rectly, and not to be combined with other strategies through
action abstractions. Since we use a large set of strategies, our
approach might encounter strategies that if combined to in-
duce an action abstraction, provide a search algorithm with
a set of promising and complementary actions.

Comparison with the State of the Art STT was the win-
ner of the 2017 µRTS competition (Ontañón et al. 2018).
Both PGS∗ and SSS∗ substantially outperform STT in all
maps tested, with 91% being the smallest average percent-
age of victories obtained by one of our approaches, which
occurred in matches played by SSS∗ in the 64×64 map. Our
approaches also outperform by a large margin PS, which is a
previous version of STT. Our scheme for generating our set
Z is similar to the search performed by PS and STT as they
also alter the parameter values of expert-designed strategies.
One possible explanation for these results is that our ap-
proach of using a set of strategies to induce an action ab-
straction as a preprocessing step can be more effective than
the online searching for parameter values. We believe this
to be true because our evolutionary method filters out weak
strategies while solving the SSG, thus allowing the planning
systems to focus their search on more promising actions. By
contrast, PS and STT might use the limited time available
for planning to evaluate weak strategies.

SCV (Silva et al. 2018) and LR also performed quite well

in the 2017 µRTS competition (Ontañón et al. 2018). PGS∗
and SSS∗ are able to outperform both of them also by a large
margin. The comparison with SCV is important because the
rule-based strategies we use to generate our set Z is derived
from the strategies used in SCV. Moreover, SCV also gen-
erates a large set of strategies from a small set of options.
The superior performance of our approaches against SCV
suggests that our system for generating a large set of strate-
gies and thus selecting a subset to induce action abstractions
can be superior to other schemes that generate a large set of
strategies but use them to play the game directly.

Limitations
Although our evolutionary method for generating action ab-
stractions allowed existing algorithms to substantially out-
perform state-of-the-art methods in the problem domain of
µRTS, our approach still has limitations, which point to in-
teresting directions of future research. Although we are able
to generate a large number of strategies from a small number
of existing ones, the strategies we generate to composeZ are
still somewhat restricted to the initial set of expert-designed
strategies (e.g., the strategies we generate by changing the
parameters of rule-based strategies are still restricted to the
actions from the initial set of strategies). We expect to gen-
erate stronger action abstractions with our evolutionary ap-
proach should the setZ contained a larger diversity of strate-
gies. Another limitation of our approach is due to the fact
that our approach considers only pure strategies for the SSG
(i.e., a single subset of strategies from Z is returned af-
ter the last generation of our method). Since the SSG is a
simultaneous-move game, one might need to play a mixed
strategy to optimize her payoffs. We intend to investigate
the use of mixed strategies for the SSG in future works.

Conclusions
In this paper we showed that the problem of generating ac-
tion abstractions for extensive-form games can be cast as a
problem of selecting a subset of strategies from a pool Z of
options. We then modeled the subset selection problem as a
two-player game, which we named SSG. We presented an
evolutionary procedure to solve SSGs. Another contribution
of this paper was to show that a large set Z of strategies
can be generated by a small set of what we called rule-based
strategies, by changing the parameter values of the strate-
gies. Empirical results on a small map of µRTS showed that
our method is able to converge to what is likely to be an
optimal solution to the SSG. Results on larger maps showed
that PGS and SSS using action abstractions generated by our
approach was able to outperform versions of the same al-
gorithms using existing action abstractions. Our results also
showed that PGS and SSS with our action abstractions out-
performed all state-of-the-art systems tested, including the
best performing methods from the 2017 µRTS competition.

Acknowledgements This research was partially sup-
ported by CNPq, Capes, and FAPEMIG. The research was
carried out using the computational resources of the Center
for Mathematical Sciences Applied to Industry (CeMEAI)

2336

funded by FAPESP (grant 2013/07375-0), and the cluster
Jupiter from Universidade Federal de Viçosa. We thank the
anonymous reviewers for great suggestions.

References
Barriga, N. A.; Stanescu, M.; and Buro, M. 2017a. Combin-
ing strategic learning and tactical search in real-time strategy
games. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence and Interactive Digital Entertainment, 9–
15. AAAI.
Barriga, N. A.; Stanescu, M.; and Buro, M. 2017b. Game
tree search based on non-deterministic action scripts in real-
time strategy games. IEEE Transactions on Computational
Intelligence and AI in Games 69–77.
Brown, N., and Sandholm, T. 2014. Regret transfer and
parameter optimization. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, 594–601.
Canaan, R.; Shen, H.; Torrado, R.; Togelius, J.; Nealen, A.;
and Menzel, S. 2018. Evolving agents for the hanabi 2018
cig competition. In Proceedings of the IEEE Conference on
Computational Intelligence and Games, 1–8. IEEE.
Churchill, D., and Buro, M. 2013. Portfolio greedy search
and simulation for large-scale combat in StarCraft. In Pro-
ceedings of the Conference on Computational Intelligence
in Games, 1–8. IEEE.
Gintis, H. 2000. Game Theory Evolving: A Problem-
centered Introduction to Modeling Strategic Behavior. Eco-
nomics / Princeton University Press. Princeton University
Press.
Hawkin, J. A.; Holte, R.; and Szafron, D. 2011. Automated
action abstraction of imperfect information extensive-form
games. In Proceedings of the AAAI Conference on Artificial
Intelligence, 681–687.
Hawkin, J. A.; Holte, R.; and Szafron, D. 2012. Using
sliding windows to generate action abstractions in extensive-
form games. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, 1924–1930.
Justesen, N.; Tillman, B.; Togelius, J.; and Risi, S. 2014.
Script- and cluster-based UCT for StarCraft. In IEEE Con-
ference on Computational Intelligence and Games, 1–8.
Lelis, L. H. S. 2017. Stratified strategy selection for unit
control in real-time strategy games. In International Joint
Conference on Artificial Intelligence, 3735–3741.
Maynard Smith, J., and Price, G. R. 1973. The logic of
animal conflict. Nature 246:15–18.
Moraes, R. O., and Lelis, L. H. S. 2018. Asymmetric action
abstractions for multi-unit control in adversarial real-time
games. In Proceedings of the AAAI Conference on Artificial
Intelligence, 876–883. AAAI.
Moraes, R. O.; Mariño, J. R. H.; Lelis, L. H. S.; and Nasci-
mento, M. A. 2018. Action abstractions for combinatorial
multi-armed bandit tree search. In Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment, 74–80. AAAI.

Ontañón, S., and Buro, M. 2015. Adversarial hierarchical-
task network planning for complex real-time games. In Pro-
ceedings of the International Joint Conference on Artificial
Intelligence, 1652–1658.
Ontañón, S.; Barriga, N. A.; Silva, C. R.; Moraes, R. O.; and
Lelis, L. H. S. 2018. The first microrts artificial intelligence
competition. AI Magazine 39(1):75–83.
Ontañón, S. 2013. The combinatorial multi-armed ban-
dit problem and its application to real-time strategy games.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence and Interactive Digital Entertainment, 58–64. AAAI.
Ontañón, S. 2017. Combinatorial multi-armed bandits for
real-time strategy games. Journal of Artificial Intelligence
Research 58:665–702.
Ponsen, M.; Munoz-Avila, H.; Spronck, P.; and Aha, D. W.
2006. Automatically generating game tactics through evolu-
tionary learning. AI Magazine 27(3):75–84.
Ross, S. M. 1971. Goofspiel – the game of pure strategy.
Journal of Applied Probability 8(3):621–625.
Sandholm, T. 2015. Abstraction for solving large
incomplete-information games. In Proceedings of the AAAI
Conference on Artificial Intelligence, 4127–4131.
Silva, C. R.; Moraes, R. O.; Lelis, L. H. S.; and Gal, Y. 2018.
Strategy generation for multi-unit real-time games via vot-
ing. IEEE Transactions on Games.
Spronck, P.; Ponsen, M.; Sprinkhuizen-Kuyper, I.; and
Postma, E. 2006. Adaptive game ai with dynamic script-
ing. Machine Learning 63(3):217–248.
Stanescu, M.; Barriga, N. A.; Hess, A.; and Buro, M. 2016.
Evaluating real-time strategy game states using convolu-
tional neural networks. In Proceedings IEEE Conference
on Computational Intelligence and Games, 1–7. IEEE.
Talbi, E.-G. 2009. Metaheuristics: from design to imple-
mentation, volume 74. John Wiley & Sons.
Tavares, A. R.; Anbalagan, S.; Marcolino, L. S.; and
Chaimowicz, L. 2018. Algorithms or actions? a study
in large-scale reinforcement learning. In Proceedings of
the International Joint Conference on Artificial Intelligence,
2717–2723.
v. Neumann, J. 1928. Zur theorie der gesellschaftsspiele.
Mathematische Annalen 100(1):295–320.
Wang, C.; Chen, P.; Li, Y.; Holmgård, C.; and Togelius, J.
2016. Portfolio online evolution in StarCraft. In Proceedings
of the Conference on Artificial Intelligence and Interactive
Digital Entertainment, 114–120. AAAI.

2337

