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Abstract

We study the ability of a simple mutation-only evolution-
ary algorithm to solve propositional satisfiability formulas
with inherent community structure. We show that the com-
munity structure translates to good fitness-distance correla-
tion properties, which implies that the objective function pro-
vides a strong signal in the search space for evolutionary
algorithms to locate a satisfying assignment efficiently. We
prove that when the formula clusters into communities of size
s ∈ ω(logn) ∩ O(nε/(2ε+2)) for some constant 0 < ε < 1,
and there is a nonuniform distribution over communities, a
simple evolutionary algorithm called the (1+1) EA finds a sat-
isfying assignment in polynomial time on a 1− o(1) fraction
of formulas with at least constant constraint density. This is
a significant improvement over recent results on uniform ran-
dom formulas, on which the same algorithm has only been
proven to be efficient on uniform formulas of at least loga-
rithmic density.

Introduction
Evolutionary algorithms are a broad class of incomplete
randomized search heuristics that are sometimes applied to
tackling difficult optimization problems that arise in prac-
tice. We study the performance of a simple evolutionary al-
gorithm tasked with finding a satisfying assignment to struc-
tured (non-uniform) propositional formulas expressed as the
conjunction of m Boolean disjunctive clauses of size ex-
actly k over n variables. A series of recent papers (Sut-
ton and Neumann 2014; Doerr, Neumann, and Sutton 2017;
Buzdalov and Doerr 2017) have derived rigorous running
time bounds on a variety of evolutionary algorithms ap-
plied to solving propositional formulas generated uniformly
at random.

One criticism of the uniform random model is that it in-
adequately characterizes propositional formulas that arise
from practical applications. Industrial SAT instances are far
more complex, and contain complicated structural charac-
teristics. Among these are modularity (Giráldez-Cru and
Levy 2016), heterogeneity (Ansótegui, Bonet, and Levy
2009), self-similarity (Ansótegui et al. 2014), and local-
ity (Giráldez-Cru and Levy 2017). Several non-uniform for-
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mula distributions have been proposed to model the above
characteristics better.

In this paper, we are interested in extending the analysis
to structured formulas that exhibit features that are statisti-
cally closer to industrial satisfiability problems. We conduct
an analysis of the (1+1) EA over a generalization of the com-
munity attachment model of Giráldez-Cru and Levy (2016)
for modular SAT formulas. Figure 1 illustrates the constraint
graph structure for an industrial formula (from bounded
model checking), a formula generated by the community at-
tachment model, and a formula generated uniformly at ran-
dom.

We show that the (1+1) EA can solve in polynomial time
a 1 − o(1) fraction of satisfiable formulas drawn from the
community attachment model with constraint density (aver-
age degree) that is at least a sufficiently large constant, pro-
vided that the density within communities is nonuniform.
This bound covers a larger region of the constraint den-
sity spectrum than previous results on evolutionary algo-
rithms on the uniform random model. In particular, analo-
gous results were proved for the (1+1) EA on the uniform
random model, but only for formulas of density at least
Ω(log n) (Doerr, Neumann, and Sutton 2017). For polylog-
arithmic densities, a more complicated evolutionary algo-
rithm called the (1+(λ,λ)) GA yields a

√
log n speed up on

formulas with density ω(log2 n), and even further improve-
ments on asymptotically larger densities when the popula-
tion size is adapted (Buzdalov and Doerr 2017).

Randomized search heuristics such as WalkSAT (Selman,
Kautz, and Cohen 1994), Schöning’s algorithm (Schöning
1999) and evolutionary algorithms are incomplete in the
sense that they can only locate a satisfying assignment if
it exists, and not decide an unsatisfiable formula. A perfor-
mance guarantee on satisfiable formulas for such algorithms
allows for the construction of a Monte Carlo decision algo-
rithm with one-sided error (Sutton and Neumann 2014). It
therefore suffices to derive time bounds only on satisfiable
formulas.

Ideally, given an instance distribution, one would like to
derive performance guarantees over the distribution condi-
tioned on satisfiability. This is sometimes referred to as fil-
tering (Kautz et al. 2001). Unfortunately, filtering is dif-
ficult in practice (as it requires a complete solver to de-
cide satisfiability), and creates complicated dependencies
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(a) Industrial formula (b) Community attachment (c) Uniform random

Figure 1: Constraint graphs for different formulas partitioned into community components by the Gephi tool (Bastian, Hey-
mann, and Jacomy 2009). The industrial formula is a bounded model checking instance. The synthetic formulas both have
n = 1162, m = 3738 and k = 3. The community attachment formula has s = 83 and p = 0.696.

that are difficult to control in analysis. To address this, pre-
vious work analyzing the running time of evolutionary algo-
rithms on the random propositional satisfiability model (Sut-
ton and Neumann 2014; Doerr, Neumann, and Sutton 2017;
Buzdalov and Doerr 2017) investigate the fitness-distance
correlation on the random planted model, in which formulas
are forced to be satisfiable by hiding some satisfying assign-
ment within the formula. For reasonably dense formulas,
this corresponds to the uniform random filtered model, i.e.,
the uniform model conditioned on satisfiability (Doerr, Neu-
mann, and Sutton 2017). We point out that random planted
formulas are easy to solve for classical algorithms (Krivele-
vich and Vilenchik 2006), but our goal is to advance the the-
oretical analysis of incomplete search heuristics on random
satisfiability models.

To derive performance guarantees on satisfiable
community-structured formulas, we investigate a planted
modular satisfiability model. In this model, we choose
uniformly at random an assignment x? from the set of all
assignments. For each k-set of Boolean variables, we only
allow clauses from the 2k − 1 unique clauses on those
variables that are satisfied by x? (rather than the original
2k). Similar to the uniform model, for reasonably dense
formulas the planted modular SAT model converges to
the filtered modular SAT model. The proof of this claim
is a straightforward adaptation of the analogous proof for
the uniform model (Doerr, Neumann, and Sutton 2017,
Theorem 4), and we omit it for space.

Formally, we consider propositional k-CNF formulas F
over n Boolean variables:

F =

m∧
i=1

(`i,1 ∨ `i,2 ∨ · · · ∨ `i,k)

where `i,j is one of the n variables or its negation. The set of
n variables corresponds to the set [n] := {1, 2, . . . , n}, and
we will refer to these sets interchangeably. Let s := s(n) be

a divisor of n. The community attachment model (Giráldez-
Cru and Levy 2016) is defined as the set of all propositional
k-CNF formulas F(n,m, k, s, p) that are constructed as fol-
lows. Partition [n] into t = n/s disjoint subsets Γ1, . . . ,Γt
where

Γ` = {s(`− 1) + 1, s(`− 1) + 2, . . . , s`}.
We call a k-CNF clause localized if it contains only k lit-
erals that involve variables from the same community. We
call a clause separated if it does not contain any pairs of lit-
erals that involve variables from the same community. Each
clause is generated by drawing a localized clause with prob-
ability p uniformly at random, and a separated clause uni-
formly at random with probability 1 − p. Note that, ex-
cept when k = 2, the model does not contain uniform
random k-SAT as a special case. When k = 2, setting
p = (s − 1)/(n − 1) recovers the uniform random 2-SAT
model. Empirically, the model correlates better to industrial
formulas in the sense that solvers that specialize on indus-
trial instances perform better on highly modular instances
than on formulas that are closer to uniform (Giráldez-Cru
and Levy 2016).

In real world data, the density of communities is not uni-
form. For example, the density of each community for the
industrial bounded model checking formula shown on the
left of Figure 1 is charted in Figure 2. To address this phe-
nomenon, we generalize the community attachment model
of Giráldez-Cru and Levy (2016). In particular we define a
distribution 0 ≤ π` ≤ 1 for ` ∈ [t] such that

∑t
`=1 π` = 1.

A localized clause is chosen from community ` with proba-
bility π`. The original community attachment model is re-
covered with the uniform distribution π` = 1/t for all
` ∈ [t].

Let F be a propositional formula on n vertices expressed
as the conjunction of m disjunctive clauses. The constraint
graph of F is an undirected graph G = (V,E) whose n
vertices V represent the variables of F , and (u, v) ∈ E if
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Figure 2: Relative density of communities in industrial
bounded model checking instance in Figure 1a. For a com-
munity of size s, the community density is the fraction of(
s
2

)
pairs that are connected by an edge.

and only if u and v appear as literals together in a clause
of F . The constraint graph of a formula is an important tool
to understanding the structure of the formula, and how that
structure might be exploited by SAT solvers.

The modularity of G (Newman and Girvan 2004) mea-
sures the strength of division into communities. Given a par-
tition Γ of V into communities Γ1,Γ2, . . ., the modularity
of G with respect to Γ is the fraction of edges within a com-
munity minus the expected fraction if the edges were ran-
domly distributed. Given a community Γ` ∈ Γ, denote as
E(Γ`) ⊆ E the set of edges within the community. The
modularity of G with respect to Γ is

Q(G,Γ) =
∑
Γ`∈Γ

(
|E(Γ`)|
|E|

−
(∑

v∈Γ`
deg(v)

2|E|

)2
)
.

The modularity of G is Q(G) = maxΓQ(G,Γ). For a
community-structured SAT formula F ∈ F (n,m, k, s, p),
the expected modularity of the underlying constraint graph
of F is bounded by E(Q(G)) ≥ p− s/n (Giráldez-Cru and
Levy 2016, Theorem 2).

The (1+1) EA is a basic randomized search heuristic that
functions as a kind of degenerate case for more complicated
evolutionary techniques. It maintains a population size of
one, and produces a single offspring via a mutation opera-
tion in each generation. Selection is performed by compar-
ing the offspring to its parent. The parent is replaced only if
the offspring is at least as fit as the parent. The mutation op-
eration changes the current individual in a minimal way. In
the case of length-n binary strings, the state of each variable
is negated with probability 1/n. In this way, the (1+1) EA,
illustrated in Algorithm 1 operates similarly to a simple local
search hill-climber (such as GSAT), with the distinction that
in each step, larger jumps in the search space are possible.
The probability that mutation produces a jump of Hamming
distance d falls off as a degree-d polynomial in n. The dis-
tinction between the (1+1) EA and a simple hill-climber is
small, but important. Current running time bounds for local
search-like heuristics on logarithmically dense formulas of
the uniform model depend on the ability of the algorithm to
change more than one variable at a time (Doerr, Neumann,
and Sutton 2017).

Algorithm 1: (1+1) EA
1 Choose x uniformly at random from {0, 1}n;
2 while stopping criterion not met do
3 y ← x;
4 foreach i ∈ {1, . . . , n} do
5 With probability 1/n, yi ← (1− yi);
6 if f(y) ≥ f(x) then x← y;

Search space of planted modular formulas
As is usual with evolving assignments to propositional sat-
isfiability formulas, we consider each full assignment to n
Boolean variables as strings over a binary alphabet. This al-
lows us to identify each assignment with a fitness function
f : {0, 1}n → {0, 1, . . . ,m} such that f(x) counts the num-
ber of clauses satisfied by the assignment corresponding to
the binary string x.

Similar to previous analyses on propositional satisfiabil-
ity (Sutton and Neumann 2014; Doerr, Neumann, and Sut-
ton 2017; Buzdalov and Doerr 2017), we will rigorously
characterize the fitness-distance correlation in typical fitness
landscapes induced by f together with the Hamming met-
ric on {0, 1}n. Fitness-distance correlation was introduced
decades ago as a measure of difficulty for evolutionary al-
gorithms (Jones and Forrest 1995), and describes the relat-
edness of fitness values to the distance to an optimal solu-
tion. In the context of planted formulas, we prove that the
fitness of a point is strongly correlated to the distance from
the planted solution (although a search algorithm may dis-
cover a different satisfying assignment before reaching the
planted solution).

In the community attachment model, it will be useful to
partition the fitness function by contribution from differ-
ent communities. We take f`(x) to be the count of local-
ized clauses from community ` that are satisfied by x, and
fsep(x) to be the count of separated clauses satisfied by x.
Thus

f(x) = fsep(x) +

t∑
`=1

f`(x). (1)

Furthermore, when I ⊆ [t], we take fI(x) to mean the con-
tribution

∑
`∈I f`(x) to f from the localized clauses in the

communities indexed by I.
In the following section, we introduce a number of defini-

tions and preliminary lemmas that support the main result.

Preliminaries
We define the following distance notation, keeping in mind
that x? corresponds to a fixed but arbitrary planted assign-
ment.
Definition 1. For x, y ∈ {0, 1}n, we denote the Hamming
distance of x and y as d(x, y). For a community Γ` ⊆ [n],
we denote

d(x, y; Γ`) = |{i ∈ Γ` : xi 6= yi}|
to be the Hamming distance of x and y restricted to commu-
nity Γ`. Finally, when working with a planted solution x?,
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we often simply use d(x) and d(x; Γ`) to denote d(x, x?)
and d(x, x?; Γ`), respectively.

We require the following definition that characterizes bi-
nary strings that are in some sense not too far from the
planted solution when restricted to any community.
Definition 2. For a formula in Fx?(n,m, k, s, p), we say a
point x ∈ {0, 1}n is ε-balanced with respect to the formula
if d(x; Γ`) ≤ s(1/2 + ε) for every ` ∈ {1, 2, . . . , n/s}.

As expected, so long as s is not too small, most strings
in {0, 1}n are ε-balanced. Moreover, we will also implicitly
use the straightforward fact that the ε-balance property is
closed under steps toward the planted solution.
Lemma 1. For every fixed 0 < ε < 1/2, if F is a formula in
Fx?(n,m, k, s, p) with each s = ω(log n), then a uniformly
chosen string from {0, 1}n is ε-balanced with respect to F
with probability 1− e−Ω(s).

Proof. Let x ∈ {0, 1}n be chosen uniformly at random.
Thus for any i ∈ [n], Pr(xi = x?i ) = 1/2. For an arbitrary
partition Γ`, the probability that d(x; Γ`) > (1 + 2ε) s2 is at
most exp(−2sε2/3). Applying a union bound over all t < n
communities, x violates ε-balance in at least one community
with probability at most exp(−2sε2/3+ln t) = e−Ω(s).

We also define the following expression to count the
clauses in a particular clause set that have a different sat-
isfiability state between two assignments.
Definition 3. Let C be a set of clauses. For any x, y ∈
{0, 1}n, denote as ∆xy(C) the number of clauses in C that
are unsatisfied by x but satisfied by y.

Finally, we will make use of the following simple propo-
sition to count types of clauses in a formula.
Proposition 1. Let d ≤ k ≤ s be integers. Then

d∑
r=1

r

(
d

r

)(
s− d
k − r

)
=
dk

s

(
s

k

)
Proof. Since r

(
d
r

)
= d
(
d−1
r−1

)
, we can rewrite the sum on the

LHS as

d

d∑
r=1

(
d− 1

r − 1

)(
s− d
k − r

)
= d

d−1∑
r=0

(
d− 1

r

)(
s− d

k − (r + 1)

)
= d

(
s− 1

k − 1

)
,

where we have applied the Chu-Vandermonde iden-
tity (Gould 1956).

Fitness signal from localized clauses
For a particular community Γ`, denote as C` the set of all
legal k-CNF clauses formed from Γ` that are satisfied by
x?. For all ` ∈ {1, 2, . . . , t}, |C`| = (2k − 1)

(
s
k

)
since there

are 2k ways to negate variables chosen from any k-set of Γ`,
but exactly one of them is unsatisfied by x?.

We count the potential contribution to the increase in fit-
ness of any legal clause inC` for all the points that are closer
to the planted solution.

Lemma 2. Consider a community Γ` and let x ∈ {0, 1}n
be arbitrary. Let C` denote the set of localized clauses for
Γ` that are satisfied by a planted assignment x?. Then∑

y:d(x)−d(y)=1

∆xy(C`) =
d(x; Γ`)k

s

(
s

k

)
.

Proof. Let I ⊆ Γ` be the index set corresponding to the
positions in x that differ from x? in community Γ`. A
clause in C` is unsatisfied by x but satisfied by some y with
d(x) − d(y) = 1 if (1) all its literals are false under x, and
(2) it contains a literal l such that the variable associated
with l appears in I. If it contains r ≤ |I| literals with asso-
ciated variables indexed by elements of I, then that clause
contributes exactly r times to the sum of ∆xy(C`) over the
Hamming neighbors of x that are closer to x?.

Such a k-clause can be constructed by choosing the r vari-
ables from I and the remaining k− r variables from Γ` \ I.
The negation of the k variables in the clause is the unique
negation pattern on the k chosen variables so that the clause
is not satisfied by x. There are

(|I|
r

)(
s−|I|
k−r

)
ways to choose

a k-set that corresponds to a clause that contributes r to the
sum, and the total contribution of all such clauses to the sum
is given by Proposition 1. Since |I| = d(x; Γ`), the RHS of
the claim follows from the proposition.

To ensure that we have not over- or under-counted, note
that each of these clauses contain r > 0 literals, each of
which must be true under some y with d(y) = d(x)− 1. For
any one of these literals, there is a unique i ∈ |I| that cor-
responds to the variable that must be flipped to move from
x to y. Since d(x; Γ`) − d(y; Γ`) = 1, yi = x?i , and so that
literal is also true under x?. It must therefore be the case that
each of the clauses we have counted above are also satisfied
by x?, and are hence all valid clauses in C`.

We also need to count the potential contribution to the de-
crease in fitness of any legal clause in C` for all the points
that are one step closer to the planted solution. This is cap-
tured by the following lemma.

Lemma 3. Consider a community Γ` and let x ∈ {0, 1}n
be arbitrary. Let C` denote the localized clauses for Γ` that
are satisfied by a planted assignment x?. Then∑
y:d(x)−d(y)=1

∆yx(C`) = d(x; Γ`)
((

s−1
k−1

)
−
(
s−d(x;Γ`)
k−1

))
.

Proof. For each k-set of variables from Γ`, there is only one
way to negate the variables to produce a unique clause (up
to commutativity) that is not satisfied by an assignment y.
There are d(x; Γ`) bitstrings y with d(x) − d(y) = 1 that
differ from x in exactly one position i ∈ Γ`, and for each of
these,

(
s−1
k−1

)
ways to choose the remaining k − 1 variables

to appear in a clause. However,
(
s−d(x;Γ`)
k−1

)
of these clauses

are not allowed because all k corresponding positions differ
from x?, and hence such a clause would not be satisfied by
x?, and is therefore not a legal clause of C`. Subtracting the
count of these clauses yields the RHS of the claim.
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Lemma 4. Let F be a planted modular formula from
Fx?(n,m, k, s, p) with k, ε = Θ(1), and let I ⊆ [t]. With
probability

1− exp

(
−Ω

(
mp

s

∑
`∈I

π`d(x; Γ`)

))
,

the following bound holds at every ε-balanced point x.

∑
y:d(x)−d(y)=1

fI(y)− fI(x) = Θ

(
mp

s

∑
`∈I

π`d(x,Γ`)

)
.

Proof. Fix x to be an arbitrary ε-balanced point. Let N =
{y : d(x) − d(y) = 1}. Note that x?, x and N are fixed
for the remainder of the proof. We define two sequences of
m random variables over the probability space of randomly
constructed formulas F from Fx?(n,m, k, s, p). Let αi de-
note the i-th clause of F and let {Y1, Y2, . . . , Ym} be the
sequence

Yi =

{
0 if αi is separated or true under x,
|{y ∈ N : αi is true under y}| otherwise.

If αi is localized, Yi counts the total number of times that αi
switches from false to true in the set of Hamming neighbors
of x that are strictly closer to the planted solution. Similarly,
we define the sequence {Z1, Z2, . . . , Zm} as

Zi =

{
0 if αi is separated or false under x,
|{y ∈ N : αi is false under y}| otherwise.

Since a clause can be false under only one configuration of
its k variables, Zi ∈ {0, 1}. When αi is localized, Zi indi-
cates the presence of an element of N for which αi switches
from true to false. As each of the m clauses is chosen in-
dependently, both {Yi : i ∈ [m]} and {Zi : i ∈ [m]} are
sequences of independent random variables. For any ` ∈ I,
we choose clause αi from C` with probability pπ`. Further-
more, the probability thatαi is chosen from the set of clauses
that change from false to true when moving from any x to
y is exactly ∆xy(C`)/|C`|, and we calculate the expectation
as follows.

E(Yi) = p
∑
`∈I

π`
|C`|

∑
y:d(x;Γ`)−d(y;Γ`)=1

∆xy(C`)

=
p

(2k − 1)
(
s
k

) ∑
`∈I

π`d(x; Γ`)k

s

(
s

k

)
, by Lemma 2

=
pk

(2k − 1)s

∑
`∈I

π`d(x; Γ`).

Similarly,

E(Zi) = p
∑
`∈I

π`

|C`|

∑
y:d(x;Γ`)−d(y;Γ`)=1

∆yx(C`)

= p

(2k−1)
(
s
k

)∑
`∈I π`d(x; Γ`)

((
s−1
k−1

)
−
(
s−d(x;Γ`)

k−1

))
,

which holds by Lemma 3. Furthermore, since x is supposed to be ε-
balanced, d(x; Γ`) ≤ s(1/2 + ε), and thus

E(Zi) ≤ p

(2k−1)
(
s
k

)∑
`∈I π`d(x; Γ`)

((
s−1
k−1

)
−
(
s(1/2−ε)
k−1

))
=

p
∑

`∈I π`d(x;Γ`)

(2k−1)

(
k
s
− k(1/2−ε)k−1

s
+O

(
1
s2

))
=

pk
∑

`∈I π`d(x;Γ`)

(2k−1)s
(1− (1/2− ε)k−1 +O(1/s)).

Note that the total fitness change in localized clauses in-
dexed by I moving from x to all y ∈ N is equivalent to the
difference in the sums of the random variables that count lo-
calized clauses that switch state between x and all y ∈ N .
In other words,∑

y:d(x)−d(y)=1

fI(y)− fI(x) =

m∑
i=1

(Yi − Zi) .

As 0 ≤ Yi ≤ k and 0 ≤ Zi ≤ 1, setting Y =
∑m
i=1 Yi/k

and Z =
∑m
i=1 Zi, for any arbitrary constant 0 < δ < 1

the probability Y ∈ [(1 − δ)E(Y/k), (1 + δ)E(Y )] and
Z ∈ [0, (1 + δ)E(Z)] is bounded as claimed by applying
a multiplicative Chernoff bound, completing the proof.

Efficiently solving constant-density formulas
The result of Lemma 4 estimates the probability that a
small local mutation can detect a move in the direction of
the planted solution. In the original community attachment
model, π` = 1/t, that is, a localized clause is chosen uni-
formly over all communities. We consider a slight general-
ization in which communities are no longer required to be
uniform in density. This generalization is arguably more re-
alistic, as it more closely matches the variability in commu-
nity density observed in real-world data (see Figure 2). For
any small constant 0 < ε < 1, we partition the communities
so that a nonempty set I ⊆ [t] of communities are dense
in the sense that π` = Ω(1/t1−ε) for each ` ∈ I and the
remaining are sparse so that π` = O(1/t1+ε) for ` ∈ [t] \I.
Theorem 1. Let 0 < ε < 1 be any small constant. Let
s ∈ ω(log n) ∩ O(nε/(2ε+2)), set p = 1 − O(1/n1+ε) and
k = Θ(1). Let ∅ ( I ⊆ [t] with

π` =

{
Ω
(

1
t1−ε

)
for ` ∈ I,

O
(

1
t1+ε

)
for ` ∈ [t] \ I.

For constraint densities m/n ≥ c where c is a sufficiently
large constant, all but a vanishing fraction of planted mod-
ular formulas F in Fx?(n,m, k, s, p) are solved in polyno-
mial expected time by the (1+1) EA.

Proof. We first argue that all but a fast-vanishing fraction of
formulas inFx?(n,m, k, s, p) have a good drift condition on
fI . Let x ∈ {0, 1}n be an arbitrary ε-balanced string. Define

N = {y : d(x)− d(y) = 1∧ xi 6= yi =⇒ ∃` ∈ I, i ∈ Γ`}
to be the set of

∑
`∈I d(x; Γ`) neighbors that are closer

to x? in some dense community indexed by I. Applying
Lemma 4, the bound∑

y∈N
fI(y)− fI(x) = Θ

(
m

st1−ε

∑
`∈I

d(x,Γ`)

)
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holds with probability

1− exp

(
−Ω

(
m

st1−ε

∑
`∈I

d(x; Γ`)

))
.

Since fI is independent of any bit not in
⋃
`∈I Γ`, apply-

ing a union bound over all ε-bounded length-|I|t substrings
indexed by

⋃
`∈I Γ` lying at distance d from the substring of

x? indexed by
⋃
`∈I Γ`, we find this strong drift condition

holds with probability at least

1−
n∑
d=1

(
|I|t
d

)
exp

(
−Ω(dnε

2

)
)
≥ 1− exp

(
−Ω(nε

2

)
)
.

Here we have used the fact that m/(st1−ε) = Ω(nε
2

).
We now show that the fitness contribution from other

clauses is small. The expected number of separated clauses
in the entire formula is bounded as cn(1 − p) = O(1/nε)
which exceeds a constant only with probability o(1) by
Markov’s inequality. Therefore, with probability 1 − o(1),
at every ε-balanced point,∑

y∈N
f(y)− f(x) ≥

∑
y∈N

fI(y)− fI(x)−O(1)

= Ω

(
nε

2 ∑
`∈I

d(x,Γ`)

)
.

Let d =
∑
`∈I d(x; Γ`). Recall that N is the set of all Ham-

ming neighbors of x that are closer to x? by some variable in
a dense community (those indexed by I). A simple proof by
induction on distance in dense communities from the planted
solution (see Lemma 6 of (Doerr, Neumann, and Sutton
2017)) yields that fI(x) + fsep(x) = O(d) since m/n =
Θ(1). As any Hamming neighbor of x is generated by stan-
dard mutation with probability

(
1− 1

n

)n−1 1
n ≥ e

−1/n, we
can bound the drift of fI + fsep at every ε-balanced point x
by

1

en

∑
y∈N

max {0, f(y)− f(x)} = Ω

(
dnε

2

n

)

= Ω

(
fI(x) + fsep(x)

n1−ε2

)
.

(2)

As long as the the (1+1) EA never generates a point that is
not ε-balanced with respect to the dense communities, there
is sufficient drift toward the planted solution in the length-
|I|t substring induced by the dense communities. The initial
point is drawn uniformly at random, so Lemma 1 guarantees
an ε-balanced string with probability at least 1 − e−Ω(nε).
Finally, as long the current point x of the (1+1) EA is ε-
balanced, the probability of reaching a non-ε-balanced point
within any polynomial number of iterations is superpolyno-
mially close to zero by using Lemma 4 together with the
negative drift theorem (Oliveto and Witt 2011; 2012) at ev-
ery dense community. Applying the multiplicative drift the-
orem (Doerr, Johannsen, and Winzen 2012), the dense com-
munities are solved in expected time O(n1−ε2 log n).

It remains to bound the time until the remaining variables
are solved. Fix ` ∈ [t] \ I to be the index to an arbitrary
sparse community, and let {Xi : 1 ≤ i ≤ m} be the in-
dicator random variable for localized clauses from Γ`. The
expected number of localized clauses in the community is
E (
∑m
i=1Xi) = cnπ` = O

(
1

nε/2

)
, since for sparse commu-

nities we have π` = O(t−(1+ε)) and we have assumed the
community-size bound of s = O(nε/(2ε+2)).

Finally, we apply a standard Chernoff bound to the sum
of indicator random variables to ensure that the sum only
exceeds a constant b > 1 with probability O(1/nbε). Thus
each of the O(t) sparse communities contribute at most b
localized clauses to f with O(1/nε) probability. Since we
have assumed there are only a constant number of separated
clauses in total, the total number of clauses associated with
bits in Γ` is a constant, and each of the remaining com-
munity substrings can be optimized in O(tnO(1)) = nO(1)

time, concluding the proof.

Experiment Results
In order to characterize the leading constants and demon-
strate the tightness of the bound, we perform a number of nu-
merical experiments to measure the run time of the (1+1) EA
on the community attachment model. Since our proofs only
require the constraint density to be a sufficiently large but
unspecified constant, we generate run length distribution
(RLD) curves of the (1+1) EA as a function of constraint
density to observe its behavior. In Figure 3, we fix n = 1000,
s = 100 and p = 3/4 and vary m to plot the empirical RLD
curves.

On the standard uniform planted model there is a crit-
ical constant density near which the performance of the
(1+1) EA degrades significantly (Doerr, Neumann, and Sut-
ton 2017). There is likely to be a similar effect in the com-
munity attachment model, and we conjecture that the perfor-
mance degradation as density decreases is an expression of
this effect. According to the RLD curves of Figure 3, the
density of m/n = 5e is sufficiently large to escape this
deterioration. We therefore choose this constant to be large
enough of a density for our run time experiments.

For each s = {100, 110, 120, . . . , 1000}, we generate 10
modular formulas using the community attachment model
with n = s3/2 and m/n = 5e. On each formula, we mea-
sure the run time of the (1+1) EA for 10 trials. To estab-
lish a segmentation into dense and sparse communities, we
identify bt(1−ε)c communities as dense and choose local-
ized clauses uniformly from dense communities with prob-
ability 1− t−ε. The remaining communities are chosen uni-
formly with probability t−ε. Thus a localized clause from
a particular dense community is generated with probability
(1 − t−ε)/bt(1−ε)c = Ω(1/t(1−ε)) and from a particular
sparse community with probability t−ε/(t − bt(1−ε)c) =
O(1/t1+ε) as required by the proof of Theorem 1. We
conjecture, however, that the asymptotic behavior of the
(1+1) EA does not depend strongly on this condition. Nor
do we believe that the requirement for vanishing separated
clauses is necessary.

In Figure 4, we plot the median run time divided by n lnn
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Figure 3: Empirical run length distributions on community
attachment model, controlling for density. The curves are
created by 100 runs of the (1+1) EA at each constraint den-
sity value m/n ∈ {2e, 3e, 4e, 5e}. Each formula contains
n = 1000 variables, community size s = 100, and localized
clause probability p = 3/4.

measured in the experiments for p ∈ {3/4, 1/4} and ε =
1/5. We also compare the run time of the (1+1) EA solving
formulas generated with the community attachment model
over uniform communities.

Empirically, the median run time converges to roughly
3.1 · n lnn, thus our time bound for solving the dense com-
munities appears to be closer to the truth, even when the
count of separated clauses is non-vanishing. We also find
support for our conjecture that the uniformity of communi-
ties does not change the asymptotic behavior dramatically,
and overall, the running time seems to be largely invariant
to localized clause probability.

Conclusions
The uniform random SAT model has been studied intensely
for decades. Recently, several works have introduced non-
uniform models that produce formulas exhibiting structural
features that correspond better to real-world industrial in-
stances. In this paper we push the field of run time analysis
of randomized search heuristics toward these non-uniform
models by conducting a rigorous analysis of the running
time of the (1+1) EA on the recently proposed community
attachment random SAT model, which has tunable modu-
larity. We prove that, as long as the the community size is
polynomially smaller than the number of variables, the EA
can be efficient down to constant constraint densities. This
can be contrasted to the uniform random model, on which
the best known results require a density of Ω(log n). Our
analysis leverages the fact that in the community-structured
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Figure 4: Median run time of the (1+1) EA divided by n lnn
as a function of n on formulas sampled from the commu-
nity attachment model, p ∈ {3/4, 1/4}, and m = 5en. Both
non-uniform communities (ε = 1/5) and uniform communi-
ties are plotted. The error bars denote the interquartile range.
The statistics are taken from 10 runs each on 10 random for-
mulas generated for each value of n = s3/2 varying com-
munity size s from 100 to 1000.

formulas the fitness signal uncovered by mutations concen-
trates around the frequency of dense localized clauses, rather
than at the overall constraint density. Nevertheless, we con-
jecture that the asymptotic behavior of the EA is similar on
constant-density uniform formulas.
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