
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Fuzzy-Classification Assisted Solution Preselection in Evolutionary Optimization

Aimin Zhou,1 Jinyuan Zhang,1∗ Jianyong Sun,2 Guixu Zhang1

1East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
2Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an, Shaanxi, 710049, China
{amzhou, gxzhang}@cs.ecnu.edu.cn, jyzhang@stu.ecnu.edu.cn, jy.sun@xjtu.edu.cn

Abstract

In evolutionary optimization, the preselection is an efficient
operator to improve the search efficiency, which aims to fil-
ter unpromising candidate solutions before fitness evalua-
tion. Most existing preselection operators rely on fitness val-
ues, surrogate models, or classification models. Basically,
the classification based preselection regards the preselection
as a classification procedure, i.e., differentiating promising
and unpromising candidate solutions. However, the differ-
ence between promising and unpromising classes becomes
fuzzy as the running process goes on, as all the left solu-
tions are likely to be promising ones. Facing this challenge,
this paper proposes a fuzzy classification based preselection
(FCPS) scheme, which utilizes the membership function to
measure the quality of candidate solutions. The proposed
FCPS scheme is applied to two state-of-the-art evolutionary
algorithms on a test suite. The experimental results show the
potential of FCPS on improving algorithm performance.

Introduction
Sophisticated optimization problems are faced in a variety
of real-world applications, and are arisen from scientific to
engineering areas (Polak 1997). Generally, an optimization
problem can be formulated as:

min
x∈Ω

f(x) (1)

where x = (x1, · · · , xn)ᵀ is a decision variable vector, Ω =∏n
i=1[ai, bi] defines the feasible region of the search space,

and f : Rn → R denotes the objective function.
When optimization problems are friendly, i.e., the objec-

tive and/or constraints are linear or convex, the linear pro-
gramming or convex optimization methods are of great in-
terests (Polak 1997). However real-world applications are
usually more complicated where the objective and/or con-
straints might be nonlinear, non-convex or even without
closed forms (Szu 1986; Yuille and Rangarajan 2002). For
these problems, traditional optimization methods may be-
come inefficient, or even fail to work. To this end, derivative-
free or heuristic optimization methods, which do not make
strong assumptions about the problems to optimize, have

∗Corresponding author
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

attracted much attention (Wang et al. 2013; Mallipeddi
and Suganthan 2014; Qian, Yu, and Zhou 2015). Among
them, the evolutionary algorithms (EAs) (Back, Fogel, and
Michalewicz 1997) is a kind of promising one, which in-
cludes genetic algorithms (GAs), particle swarm optimiza-
tion (PSO), differential evolution (DE) (Das and Suganthan
2011), estimation of distribution algorithms (EDAs) (Lar-
raaga and Lozano 2001), to name a few. Evolutionary op-
timization method is a kind of population based iterative
heuristic optimization paradigm that uses a population of so-
lutions to approximate the optimum of (1).

As a kind of fitness value driven method, EAs do not
use the (approximated) derivatives to generate candidate so-
lutions. Instead, they sample candidate solutions by using
the current solutions, evaluate the candidate solutions, and
select promising ones into the next generation. Therefore,
the selection operations play an vital role in EAs. Gener-
ally, there are three types of selection, i.e. the mating selec-
tion, the preselection, and the environmental selection. The
mating selection chooses parent solutions for sampling can-
didate solutions. The environmental selection chooses the
promising solutions to the next generation. Preselection may
have different meanings (Mahfoud 1992), and it refers to se-
lect promising ones from a set of candidate solutions in this
paper.

In evolutionary optimization, the preselection operator
can help to improve algorithm performance significantly if
it is correctly used (Emmerich et al. 2002; Jin 2011), in
which case the unpromising candidate solutions can be dis-
carded before the fitness evaluations and thus the compu-
tational resources can be saved. A key issue with preselec-
tion is on how to measure qualities of candidate solutions,
i.e., to judge whether a candidate solution is promising or
not. According to the quality measurement, the preselec-
tion operators can be roughly classified into three categories:
(1) fitness based approaches (Wang, Cai, and Zhang 2011;
Li, Zhou, and Zhang 2014), (2) surrogate model based ap-
proaches (Jin 2003; 2011; Chen, Xie, and Zou 2013), and
(3) classification based approaches (Lu, Tang, and Yao 2011;
Lu and Tang 2012; Yu, Qian, and Hu 2016; Hu, Qian, and
Yu. 2017; Zhang, Zhou, and Zhang 2018; Wang, Qian, and
Yu 2018).

Classification based preselection (CPS) (Zhang, Zhou,
and Zhang 2018) regards the selection as a classification

2403



procedure, where the chosen candidate solutions belong to
the ‘promising’ class, and the discarded ones to the ‘un-
promising’ class. In this approach, the visited solutions are
used to build a classification model and to predict the qual-
ities, i.e., ‘promising’ or ‘unpromising’, of the candidate
solutions, instead of fitness values as done by the fitness
and surrogate model based approaches, and the promising
ones are then chosen out. Therefore, this approach might be
more natural in evolutionary optimization. By using a binary
classification model (Zhang, Zhou, and Zhang 2018), CPS,
which actually is a binary-class classification based prese-
lection (BCPS), needs to prepare a training data set with two
classes. However, in EAs, after several generations, all left
solutions in the current population are likely to be promis-
ing ones, and the gap between the promising solutions and
the unpromising ones will become unclear and fuzzy. In the
community of classification, there exits a type of so called
fuzzy classification methods (Keller, Gray, and Givens 1985;
Derrac, Garcia, and Herrera 2014), which usually judge the
data quality according to the membership function (Klir and
Yuan 1995) when the features of the data are fuzzy. Thus
applying the fuzzy classification models to assist the pres-
election procedure might be more suitable than the binary
classification models.

Following this idea, this paper proposes a fuzzy classifi-
cation based preselection (FCPS) strategy for evolutionary
optimization. For a FCPS assisted EA, a fuzzy classifica-
tion model is built firstly according to the current solutions.
Then for each parent solution, a set of candidate solutions
are sampled by the variation operator. Finally for each par-
ent solution, a candidate solution with the maximal fuzzy
membership degree to the ‘promising’ class is chosen for
fitness evaluation. The major contributions are as follows.

• The fuzzy classification model is introduced to assist the
preselection, named as FCPS, in evolutionary optimiza-
tion.

• The FCPS strategy is applied to two state-of-the-art EAs,
and the experimental studies demonstrate its advantages.

The rest of the paper is organized as follows. The next
section presents the basic idea of the FCPS strategy, and
introduces the FCPS assisted EA framework. After that,
CPS assisted EAs are empirically studied on some test in-
stances (Yao, Liu, and Lin 1999). Finally, the paper is con-
cluded with some marks for future work.

Fuzzy Classification based Preselection
This section introduces the three main components, i.e.,
training set definition, model building, and candidate solu-
tion labeling and selection, when implementing FCPS and a
general EA framework with FCPS.

Training Set Definition
In current population, each solution x is with an objective
value (fitness) f(x). In classification, each training sample
x, i.e., the solution in our case, is with a label l. Therefore,
it needs to assign each solution x a label l ∈ {+1,−1},
where +1 denotes a ‘promising’ sample and −1 denotes a

‘unpromising’ sample. By this way, the current population
will be partitioned into two training classes.

This paper uses the following training set definition strate-
gies (Zhang, Zhou, and Zhang 2018), which are also illus-
trated in Figure 1.

Figure 1: Training set definition strategies

• Mean fitness separation (MS): the solutions with the ob-
jective values less than the mean fitness value, are as-
signed label +1, and the others are assigned label −1.

• First quartile fitness separation (Q1S): the best 25% so-
lutions are assigned label +1, and the others are assigned
label −1.

• Median fitness separation (Q2S): the best 50% solutions
are assigned label +1, and the other ones are assigned
label −1.

• Third quartile fitness separation (Q3S): the best 75% so-
lutions are assigned label +1, and the others are assigned
label −1.

Model Building
Fuzzy classification (Derrac, Garcia, and Herrera 2014) is
a fuzzy rule-based classification model. In real world ap-
plications, a large number of concepts may generally not
be described precisely, and in some situations, it does not
need to accurately describe the relevant concepts of things.
Based on such observations, Zadeh proposed fuzzy math-
ematics based on fuzzy set theory in 1965 (Zadeh 1965;
Zadeh, Klir, and Yuan 1996). As one of the popular meth-
ods in fuzzy mathematics field, fuzzy classification is often
applied in a fuzzy environment by using precise methods to
model and classify imprecise and vague data.

As with many other fuzzy mathematics methods, fuzzy
membership function (Klir and Yuan 1995) is used in the
fuzzy classification to facilitate classification process in a
fuzzy manner. The membership function is defined by the
true value of the fuzzy function (Klir and Yuan 1995), indi-
cating the membership degree of the data that is to be classi-
fied belonging to a certain category. According to the fuzzy
membership degree, the fuzzy classification groups the data
with the same characteristics into fuzzy sets. In other words,
the determination of the membership function reveals the
result of the fuzzy classification. In addition, the member-
ship function is related to each particular practical problem,

2404



which is required to be constructed given the actual problem
at hand.

Let
m = Fclass(x)

denote a fuzzy classification model for a binary classifi-
cation problem, where x is a feature vector, and m =
(m1,m2) is the membership degree vector that belongs to
the two classes.

Some commonly used fuzzy classification models are
based on neural networks, K nearest neighbors (KNN),
etc. (Keller, Gray, and Givens 1985; Derrac, Garcia, and
Herrera 2014). This paper uses the fuzzy KNN (FKNN) to
do classification, which uses the fuzzy similarity rather than
the distance in original KNN to do classification (Derrac,
Garcia, and Herrera 2014).

Candidate Solution Labeling and Selection
In FCPS, for each parent solution x, M candidate solutions,
Y = {y1, y2, · · · , yM}, are sampled. The candidate solution
with the maximal membership degree belongs to ‘promis-
ing’ class is chosen.

FCPS Assisted EA
A general FCPS assisted EA is shown in Algorithm 1.

Algorithm 1: FCPS-EA Framework
// Initialization

1 Initialize the population P = {x1, x2, · · · , xN};
// Main loop

2 while termination condition is not satisfied do
// Training Set definition

3 Assign each individual x ∈ P a label l ∈ {+1,−1};
// Model building

4 Train a fuzzy classifier model m = Fclass(x)
based on the data set {< x, l > |x ∈ P};

5 foreach x ∈ P do
// Candidate solution generation

6 Sample candidate solutions
Y = {y1, · · · , yM};
// Candidate solutions labeling

and selection
7 Predict the membership of y ∈ Y by

m = Fclass(y);
8 Let V ⊆ Y contain candidate solutions with

maximal membership degree belongs to
‘promising’ class;

9 Randomly choose y ∈ V as offspring x;
// Environmental selection

10 if f(y) < f(x) then
11 Set x = y;
12 end
13 end
14 end

In each generation, FCPS-EA maintains:

• a set of N solutions P = {x1, x2, · · · , xN}, and

• their objective values f(x1), f(x2), · · · , f(xN ).

Some components in Algorithm 1 are explained as follows.

• Initialization: In Line 1, N solutions are uniformly and
randomly sampled from Ω to initialize the population P .

• Stopping condition: The algorithm stops when the num-
ber of function evaluations exceeds the given maximum
number FES in Line 2.

• Training set definition: In Line 3, each solution in the cur-
rent population is assigned a label l ∈ {+1,−1} where
l = +1 denotes the solution is a ‘promising’ one and
l = −1 denotes the solution is a ‘unpromising’ one.

• Model building: In Line 4, a fuzzy classifier is trained
based on the labeled samples.

• Candidate solution generation: In Line 6, a set of M can-
didate solutions are sampled with a reproduction operator.

• Candidate solution labeling and selection: In Lines 7-
9, the fuzzy membership degree of the candidate solu-
tions belong to ‘promising’ class is computed according
to fuzzy membership function of the fuzzy classifier and
the ones with maximal membership degrees are chosen
out. And finally a solution is randomly selected from the
‘promising’ candidate set as the offspring solution.

• Environmental selection: In Lines 10-12, the better ones
between the current and candidate solutions are selected
into the next generation according to the objective func-
tion values.

Experimental Study
Algorithms in Study

The proposed FCPS strategy is integrated into two state-of-
the-art evolutionary optimization algorithms, i.e., the com-
posite differential evolution (CoDE) (Wang, Cai, and Zhang
2011) and the hybrid estimation of distribution algorithm
with cheap and expensive local search (EDA/LS) (Zhou,
Sun, and Zhang 2015) to study its performance.

CoDE CoDE (Wang, Cai, and Zhang 2011) is a multi-
operator based DE. It utilizes three mutation schemes. i.e.,
“DE/rand/1/bin”, “DE/rand/2/bin”, and “current-to-rand/1”,
along with three groups of control parameters in candidate
solution generation. In each generation, three combinations
of mutation and parameter are used to generate three candi-
date solutions for each parent, and the one with best fitness
value is chosen as the real offspring solution. The details of
the algorithm are referred to (Wang, Cai, and Zhang 2011).

EDA/LS EDA/LS (Zhou, Sun, and Zhang 2015) is a hy-
brid EDA that employees both cheap and expensive local
search methods. Its basic idea is to use both global statisti-
cal information and individual location information for so-
lution generation. The details of the algorithm are referred
to (Zhou, Sun, and Zhang 2015).

2405



Table 1: Statistical results for the median, mean and standard deviation values of the results obtained by CoDE, EDA/LS, and
their variants on f1-f13 after 300, 000 FES over 30 independent runs.

median meanstd median meanstd median meanstd
FCPS-CoDE BCPS-CoDE CoDE

f1 1.86e-145[1] 1.30e-143[1]3.04e−143 5.69e-104[2] 1.37e-102[2](-)4.19e−102 2.02e-67[3] 4.88e-67[3](-)7.01e−67

f2 4.83e-77[1] 1.64e-76[1]2.55e−76 2.41e-53[2] 3.93e-53[2](-)5.47e−53 1.44e-35[3] 2.53e-35[3](-)4.15e−35

f3 9.84e-36[1] 5.84e-34[1]1.76e−33 9.16e-26[2] 9.14e-25[2](-)2.03e−24 7.13e-17[3] 9.63e-16[3](-)4.53e−15

f4 8.86e-29[1] 4.53e-27[1]1.43e−26 2.51e-23[2] 1.51e-22[2](-)4.25e−22 5.37e-16[3] 8.89e-16[3](-)9.94e−16

f5 8.69e-06[3] 2.66e-01[3]1.01e+00 7.83e-24[1] 2.39e-01[2](+)9.56e−01 5.54e-13[2] 7.97e-02[1](+)5.64e−01

f6 0.00e+00[1] 0.00e+00[1]0.00e+00 0.00e+00[1] 0.00e+00[1](∼)0.00e+00 0.00e+00[1] 0.00e+00[1](∼)0.00e+00

f7 1.62e-03[1] 1.81e-03[1]7.43e−04 1.97e-03[2] 2.14e-03[2](-)7.93e−04 2.94e-03[3] 2.84e-03[3](-)9.36e−04

f8 0.00e+00[1] 6.71e+01[3]1.06e+02 0.00e+00[1] 4.74e+00[2](∼)2.34e+01 0.00e+00[1] 2.37e+00[1](∼)1.67e+01

f9 1.99e+00[3] 2.22e+00[3]1.40e+00 0.00e+00[1] 5.97e-01[2](+)7.52e−01 0.00e+00[1] 0.00e+00[1](+)0.00e+00

f10 4.44e-15[1] 4.44e-15[1]0.00e+00 4.44e-15[1] 4.44e-15[1](∼)0.00e+00 4.44e-15[1] 4.44e-15[1](∼)0.00e+00

f11 0.00e+00[1] 1.31e-03[3]4.79e−03 0.00e+00[1] 7.39e-04[2](∼)2.69e−03 0.00e+00[1] 1.97e-04[1](∼)1.39e−03

f12 1.57e-32[1] 1.57e-32[1]5.53e−48 1.57e-32[1] 1.57e-32[1](∼)5.53e−48 1.57e-32[1] 2.07e-03[3](∼)1.47e−02

f13 1.35e-32[1] 3.66e-04[3]2.01e−03 1.35e-32[1] 2.20e-04[2](∼)1.55e−03 1.35e-32[1] 1.35e-32[1](∼)1.11e−47

+/-/∼ 2/5/6 2/5/6

FCPS-EDA/LS BCPS-EDA/LS EDA/LS
f1 3.09e-153[1] 5.57e-153[1]6.59e−153 2.26e-140[2] 3.08e-139[2](-)1.90e−138 3.59e-130[3] 5.63e-130[3](-)7.39e−130

f2 5.47e-81[1] 6.48e-81[1]4.87e−81 5.58e-70[2] 7.65e-70[2](-)6.72e−70 9.54e-65[3] 1.08e-64[3](-)7.42e−65

f3 9.25e-38[1] 1.08e-35[1]3.10e−35 1.73e-37[2] 1.17e-34[3](∼)6.18e−34 3.70e-37[3] 1.96e-35[2](∼)6.41e−35

f4 9.95e-47[1] 1.31e-46[1]9.62e−47 3.44e-45[2] 1.12e-39[3](-)7.91e−39 2.01e-42[3] 3.99e-40[2](-)2.80e−39

f5 1.94e-29[3] 1.33e-01[3]7.28e−01 1.12e-29[1] 2.27e-29[1](∼)3.07e−29 1.74e-29[2] 2.48e-29[2](∼)2.97e−29

f6 0.00e+00[1] 0.00e+00[1]0.00e+00 0.00e+00[1] 0.00e+00[1](∼)0.00e+00 0.00e+00[1] 0.00e+00[1](∼)0.00e+00

f7 2.03e-03[1] 2.13e-03[1]5.50e−04 2.22e-03[3] 2.24e-03[2](-)5.95e−04 2.19e-03[2] 2.27e-03[3](-)6.18e−04

f8 0.00e+00[1] 0.00e+00[1]0.00e+00 0.00e+00[1] 0.00e+00[1](∼)0.00e+00 0.00e+00[1] 0.00e+00[1](∼)0.00e+00

f9 0.00e+00[1] 0.00e+00[1]0.00e+00 0.00e+00[1] 1.99e-02[3](∼)1.41e−01 0.00e+00[1] 0.00e+00[1](∼)0.00e+00

f10 4.44e-15[1] 4.44e-15[1]0.00e+00 4.44e-15[1] 4.44e-15[1](∼)0.00e+00 4.44e-15[1] 4.44e-15[1](∼)0.00e+00

f11 0.00e+00[1] 3.29e-04[3]1.80e−03 0.00e+00[1] 0.00e+00[1](∼)0.00e+00 0.00e+00[1] 0.00e+00[1](∼)0.00e+00

f12 1.57e-32[1] 1.57e-32[1]5.53e−48 1.57e-32[1] 1.57e-32[1](∼)5.53e−48 1.57e-32[1] 1.57e-32[1](∼)5.53e−48

f13 1.35e-32[1] 1.35e-32[1]1.11e−47 1.35e-32[1] 1.35e-32[1](∼)1.11e−47 1.35e-32[1] 1.35e-32[1](∼)1.11e−47

+/-/∼ 0/4/9 0/4/9

0 1000 2000 3000 4000
10

−150

10
−100

10
−50

10
0

10
50

FES(x90)

m
ea

n 
f

 

 
FCPS−CoDE
BCPS−CoDE
CoDE

(a) f1

0 1000 2000 3000 4000
10

−5

10
0

10
5

10
10

FES(x90)

m
ea

n 
f

 

 
FCPS−CoDE
BCPS−CoDE
CoDE

(b) f5

0 1000 2000 3000 4000
10

−4

10
−2

10
0

10
2

10
4

FES(x90)

m
ea

n 
f

 

 
FCPS−CoDE
BCPS−CoDE
CoDE

(c) f7

0 1000 2000 3000 4000
10

−15

10
−10

10
−5

10
0

10
5

FES(x90)

m
ea

n 
f

 

 
FCPS−CoDE
BCPS−CoDE
CoDE

(d) f10

Figure 2: The mean function value of the best individuals obtained by CoDE and its variants versus FES on 4 instances over 30
independent runs.

1e−10 1e−20 1e−30 1e−40 1e−50 1e−60 1e−70
0

2

4

6

8

10

12

14

16

18
x 10

4

 

 
FCPS−EDA/LS
BCPS−EDA/LS
EDA/LS

(a) f1
1e−05 1e−10 1e−15 1e−20 1e−25

0

1

2

3

4

5

6

7

8

9
x 10

4

 

 
FCPS−EDA/LS
BCPS−EDA/LS
EDA/LS

(b) f5
1 1e−01 1e−02

0

0.5

1

1.5

2

2.5
x 10

4

 

 
FCPS−EDA/LS
BCPS−EDA/LS
EDA/LS

(c) f7
1 1e−05 1e−10

0

1

2

3

4

5

6
x 10

4

 

 
FCPS−EDA/LS
BCPS−EDA/LS
EDA/LS

(d) f10

Figure 3: Bar plots of the median FES obtained by EDA/LS and its variants when achieve the same values on 4 instances over
30 independent runs.

2406



Experimental Settings
The first 13 benchmark functions from the YLL test
suite (Yao, Liu, and Lin 1999) are employed for empirical
study. Among the test problems, f1-f4 are unimodal, f5 is
unimodal when n = 2 and n = 3, and is multimodal when
n > 3, f6 is a step function, f7 is with white noise, and
f8-f13 are multimodal. All the test instances have an opti-
mal objective value 0. The definitions of these functions are
referred to (Yao, Liu, and Lin 1999).

The variable dimensions are n = 30 for all instances. The
population size is N = 150 for EDA/LS and its variants, and
N = 30 for CoDE and its variants. The stop condition is fit-
ness evaluations (FES) = 300,000 for all of the algorithms.
Each algorithm is executed on each test instance for 30 in-
dependent runs. For FCPS based approaches, the number of
candidate solutions is M = 4. The other control parameters
are the same as in the original algorithms (Zhou, Sun, and
Zhang 2015; Wang, Cai, and Zhang 2011).

In the experiments, FCPS is also compared with BCPS.
As suggested in (Zhang, Zhou, and Zhang 2018), the classi-
fication and regression trees (CART) based BCPS approach
performs best than other binary classification models, be-
sides K nearest neighbor (KNN). Thus, in this paper in order
to evidence the efficiency of FCPS model, the CART model
is employed. The MS strategy is used for training set defini-
tion.

In the following subsections, CoDE and EDA/LS, their
variants with FCPS, i.e., FCPS-CoDE and FCPS-EDA/LS,
and their variants with BCPS (Zhang, Zhou, and Zhang
2018), i.e., BCPS-CoDE and BCPS-EDA/LS, are empiri-
cally studied.

The Wilcoxon rank sum test is used to compare the ex-
perimental results, where “+”, “−”, or “∼” in the tables in-
dicate the value obtained by an algorithm is smaller than,
greater than, or similar to that obtained by its FCPS based
version at 95% significance level. The value in the brackets
denote the corresponding rank value in the tables.

Experimental Results
Table 1 summarizes the median, mean and standard devia-
tion of the results obtained by CoDE, EDA/LS and their vari-
ants on the 13 YLL test instances after 300,000 FES over 30
runs respectively. Table 2 records the rank values obtained
by the algorithms. The experimental results are summarized
as follows.

CoDE and its variants: The results in Table 1 suggest
that on f1-f4, f7, FCPS-CoDE performs better than CoDE;
on f6, and f8, f10 − f13, the two algorithms obtain sim-
ilar results; and on f5, f9, FCPS-CoDE performs worse
than CoDE. On f1 − f4, f7, FCPS-CoDE performs better
than BCPS-CoDE; on f5 and f9, BCPS-CoDE outperforms
FCPS-CoDE; and on other 6 instances, the two algorithms
obtain similar results.

EDA/LS and its variants: The results in Table 1 suggest
that on f3, f5, f6, and f8 − f13, FCPS-EDA/LS, BCPS-
EDA/LS, and EDA/LS obtain similar results; and on f1, f2,
f4, f7, FCPS-EDA/LS gets the best results.

The Wilcoxon rank sum test also shows that on most of
the instances, the FCPS variant works no worse than the

original algorithms and the corresponding BCPS variants.
The rank values in Table 2 also suggest that according to

Table 2: Statistical results of rank values in Table 1.

median mean
Rank 1 2 3 mean 1 2 3 mean
FCPS-CoDE 11 0 2 1.31 8 0 5 1.77
BCPS-CoDE 8 5 0 1.38 3 10 0 1.77
CoDE 7 1 5 1.85 7 0 6 1.92
FCPS-EDA/LS 12 0 1 1.15 11 0 2 1.31
BCPS-EDA/LS 8 4 1 1.46 7 3 3 1.69
EDA/LS 7 2 4 1.77 7 3 3 1.69

both the median value and the mean value, the FCPS vari-
ants of CoDE and EDA/LS always achieve the best mean
rank values.

Figure 2 plots the run time performance of FCPS-CoDE,
BCPS-CoDE and CoDE on four test instances. It shows that
on f1,f7, f10 FCPS-CoDE in red curve converges faster than
BCPS-CoDE and CoDE. On f5 BCPS-CoDE is the fastest
one.

Figure 3 plots the median FES obtained by FCPS-
EDA/LS, BCPS-EDA/LS and EDA/LS when achieve the
same values on four representative test instances f1, f5,
f7, f10. The figure suggests on all of the test instances
FCPS-EDA/LS always uses the smallest numbers of FES to
achieve the fitness values.

The above results indicate that the FCPS assisted ap-
proaches work no worse than the original algorithms and
the BCPS based approaches on most of the 13 test instances.
This also suggests that FCPS could be regarded as a general
strategy to improve the performances of existing EAs.

Influence of Training Set Definition Strategies
This section studies the 4 training data set definition strate-
gies. In this study, CoDE is chosen as the basic optimizer in
the experiments.

The statistical results for FCPS-CoDE with the 4 training
set definition strategies on 4 test instances after 300,000 FEs
over 30 independent runs are shown in Figure 4.

Figure 4 shows FCPS-CoDE with Q1S, Q2S, and Q3S
perform similarly and are worse than FCPS-CoDE with MS.
This suggests that the population can be stably partitioned
into two classes by the mean objective value of the current
population. The reason might be that MS is statistically more
stable than the other three strategies. To this end, the MS
strategy might be a promising choice.

Comparison between FCPS and BCPS Strategies
This section investigates why the fuzzy classification model
works better than the binary classification model. The fol-
lowing experiment is conducted. For a given population,
both FKNN and CART models are built, then the models
are used to predict the quality of the newly generated candi-
date solutions, and finally an offspring solution is chosen
according to each of the model. The two offspring solu-
tions are compared according to the real function values, and
the number of win solutions achieved by the FKNN model

2407



0 1 2 3

x 10
5

10
−150

10
−100

10
−50

10
0

10
50

FES

m
ea

n 
f

 

 
MS
Q

1
S

Q
2
S

Q
3
S

(a) f1

0 1 2 3

x 10
5

10
−30

10
−20

10
−10

10
0

10
10

FES

m
ea

n 
f

 

 
MS
Q

1
S

Q
2
S

Q
3
S

(b) f4

0 1 2 3

x 10
5

10
0

10
1

10
2

10
3

FES

m
ea

n 
f

 

 
MS
Q

1
S

Q
2
S

Q
3
S

(c) f9

0 2 4 6

x 10
4

10
−10

10
−5

10
0

10
5

FES

m
ea

n 
f

 

 
MS
Q

1
S

Q
2
S

Q
3
S

(d) f11

Figure 4: The run time performance of FCPS-CoDE with 4 training set definition strategies on 4 instances over 30 independent
runs.

Table 3: The median, mean, max, min of win numbers obtained by FKNN-CoDE comparing to those of CART-CoDE in each
generation.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13

mean 22 22 21 21 26 20 15 20 20 25 20 20 29
median 22 22 21 21 30 20 15 20 20 25 20 20 30
max 30 29 29 29 30 28 25 29 30 30 29 29 30
min 11 12 11 11 12 10 5 10 10 10 10 10 12
win generations 9971 9967 9914 9950 9960 9830 5998 9841 9805 9995 9799 9715 9990

Table 4: The statistical results obtained by FCPS, SVM, GP, RBF, and Btree assisted CoDE on f1 − f13.

FCPS SVM GP Btree RBF
median[rank] median[rank] median[rank] median[rank] median[rank]

f1 1.86e-145[1] 5.15e-49[5] 2.42e-54[3] 1.20e-107[2] 4.44e-53[4]
f2 4.83e-77[1] 2.23e-31[3] 3.65e-31[4] 3.41e-55[2] 5.05e-31[5]
f3 9.84e-36[1] 3.72e-09[5] 6.31e-18[3] 3.09e-27[2] 1.82e-15[4]
f4 8.86e-29[1] 8.57e-11[4] 9.61e-12[3] 8.11e-24[2] 3.35e-10[5]
f5 8.69e-06[4] 5.86e-12[2] 1.16e-05[5] 1.25e-25[1] 1.36e-10[3]
f6 0.00e+00[1] 0.00e+00[1] 0.00e+00[1] 0.00e+00[1] 0.00e+00[1]
f7 1.62e-03[2] 1.64e-03[3] 1.27e-03[1] 2.04e-03[4] 3.24e-03[5]
f8 0.00e+00[1] 1.18e+02[5] 0.00e+00[1] 0.00e+00[1] 0.00e+00[1]
f9 1.99e+00[5] 0.00e+00[1] 0.00e+00[1] 0.00e+00[1] 0.00e+00[1]
f10 4.44e-15[1] 7.99e-15[2] 7.99e-15[2] 7.99e-15[2] 7.99e-15[2]
f11 0.00e+00[1] 0.00e+00[1] 0.00e+00[1] 0.00e+00[1] 0.00e+00[1]
f12 1.57e-32[1] 1.57e-32[1] 1.57e-32[1] 1.57e-32[1] 1.57e-32[1]
f13 1.35e-32[1] 1.35e-32[1] 1.35e-32[1] 1.35e-32[1] 1.35e-32[1]
mean
rank 1.62 2.62 2.08 1.62 2.62

0 0.5 1 1.5 2 2.5 3

x 10
5

10
−150

10
−100

10
−50

10
0

10
50

FES(x10)

m
e

a
n

 f

 

 
FCPS

SVM

GP

Btree

RBF

(a) f1

0 0.5 1 1.5 2 2.5 3

x 10
5

10
−30

10
−20

10
−10

10
0

10
10

FES(x10)

m
e

a
n

 f

 

 
FCPS

SVM

GP

Btree

RBF

(b) f5

0 0.5 1 1.5 2 2.5 3

x 10
5

10
−4

10
−2

10
0

10
2

10
4

FES(x10)

m
e

a
n

 f

 

 
FCPS

SVM

GP

Btree

RBF

(c) f7

0 0.5 1 1.5 2 2.5 3

x 10
5

10
−15

10
−10

10
−5

10
0

10
5

FES(x10)

m
e

a
n

 f

 

 
FCPS

SVM

GP

Btree

RBF

(d) f10

Figure 5: The mean runtime performance of FCPS, SVM, GP, RBF, Btree assisted CoDE on 4 instances.

2408



Table 5: The median, mean, max, min of win numbers obtained by FKNN-CoDE comparing to those of Btree-CoDE in each
generation.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13

mean 22 23 22 23 26 18 16 19 19 24 19 19 29
median 22 23 22 22 26 18 15 19 19 24 19 18 30
max 30 30 30 29 30 28 25 29 29 30 28 29 30
min 10 11 12 11 12 8 5 7 6 13 8 8 14
win generations 9934 9984 9986 9973 9983 9249 5807 9252 9323 9995 9273 9121 9996

is recorded 1. This comparison is applied to each genera-
tion. The test instances f1 − f13 are chosen for empirical
study. CoDE is chosen as the basic optimizer in the exper-
iments. The population size is 30. The experimental results
are shown in Table 3.

From Table 3, it can be seen that 16.67%-100.00% off-
spring solutions chosen by the FKNN model are better than
those chosen by the CART model, and on the contrary, only
0.00%-83.33% offspring solutions chosen by the CART
model are better than those chosen by the FKNN model. The
median and mean values are quite consistent. According to
the mean values, 50%-96.67% offspring solutions chosen by
the FKNN model are better than those chosen by the CART
model. It is clear that except f7, in over 97% generations,
more than 50.00% offspring solutions chosen by the FKNN
model are better than those chosen by the CART model on
all the other test instances. This suggests that the FKNN per-
forms better than CART on choosing offspring solutions.

Comparison between Fuzzy Classification and
Surrogate Models
This section compares FCPS and surrogate model based pre-
selection (SPS) assisted CoDE. The surrogate model em-
ployed in this section are SVM, GP, Btree, RBF. For sim-
plicity, the name of the model is directly used to represent
CoDE with the corresponding strategy.

Table 4 summarizes the median results obtained by FCPS,
SVM, GP, Btree, RBF assisted CoDE on the 13 YLL test in-
stances after 300,000 FES over 30 independent runs respec-
tively.

The rank values in Table 4 suggest that FCPS and Btree
assisted CoDE achieve the best mean rank value.

Figure 5 plots the mean run time performance of FCPS,
SVM, GP, Btree, RBF assisted CoDE on 4 test instances.
The figure presents that on f1,f10, FCPS assisted CoDE in
red curve converges faster than the others, and the Btree
assisted CoDE performs the second best. On f5 Btree as-
sisted CoDE performs the best, and on f7, GP assisted
CoDE is faster than the others, and FCPS and Btree as-
sisted CoDE perform similarly. Thus it can be concluded
that FCPS assisted CoDE outperforms the surrogate model
assisted CoDE. And for the surrogate models, the Btree
model is the best one.

In order to investigate why the fuzzy classification model
works better than the surrogate model, the following experi-
ment is conducted. For a given population, both FKNN and

1The number of win solutions achieved by CART-CoDE equals
to the population size minus that achieved by FKNN-CoDE.

Btree models are built, then the models are used to predict
the quality of the newly generated candidate solutions, and
finally an offspring solution is chosen according to each of
the models. The two offspring solutions are compared ac-
cording to the real function values, and the number of win
solutions achieved by the FKNN model is recorded 2. This
comparison is applied to each generation. The test instances
f1 − f13 are chosen to do the experiment. The population
size is 30. The experimental results are shown in Table 5.

From Table 5, it can be seen that 16.67%-100.00% off-
spring solutions chosen by the FKNN model are better
than those chosen by the Btree model, and on the contrary,
only 0.00%-83.33% offspring solutions chosen by the Btree
model are better than those chosen by the FKNN model. The
median and mean values are quite consistent. According to
the mean values, 53.33%-96.67% offspring solutions cho-
sen by the FKNN model are better than those chosen by the
Btree model. It is also clear that except f7, in over 91.00%
generations, more than 50.00% offspring solutions chosen
by the FKNN model are better than those chosen by the
Btree model on all the other test instances. This suggests the
FKNN performs better than Btree on choosing offspring so-
lutions. It can also be concluded that FCPS can significantly
improve the performance of EAs than surrogate models.

Conclusions
This paper proposed a fuzzy classification based preselec-
tion (FCPS) strategy for evolutionary optimization. FCPS
applies a fuzzy classification model instead of a binary clas-
sification model to assist preselection. To apply FCPS in
EAs, firstly a fuzzy classification model is built according to
the current solutions that belong to the ’promising’ and ’un-
promising’ training data sets. Then, for each parent solution,
a set of candidate solutions are sampled by the variation op-
erator. Finally, a solution belongs to the ‘promising’ class
with maximal membership degree according to the fuzzy
classification model is chosen as the offspring solution.

FCPS is applied to two state-of-the-art algorithms, i.e.,
CoDE (Wang, Cai, and Zhang 2011), EDA/LS (Zhou,
Sun, and Zhang 2015), and studied on 13 YLL test in-
stances (Yao, Liu, and Lin 1999). The CART based BCPS
scheme is also employed for comparison study. The exper-
imental results suggest that on most cases, the FCPS based
approach works better than the BCPS based approach and
the original algorithm. Some more discussions have also

2The number of win solutions achieved by Btree-CoDE equals
to the population size minus that achieved by FKNN-CoDE.

2409



proved that the fuzzy classification model is more efficient
than the CART model and surrogate model on prediction in
evolutionary optimization.

Some future work to improve the performance of FCPS-
EA could be in following ways: (a) find a more proper way
to combine fuzzy classification with EAs, and (b) reduce the
computational cost in fuzzy classification building.

Acknowledgments
This work is supported by the National Natural Sci-
ence Foundation of China (No. 61731009, 61673180, and
61703382), and the Fundamental Research Funds for the
Central Universities.

References
Back, T.; Fogel, D. B.; and Michalewicz, Z. 1997. Hand-
book of Evolutionary Computation. CRC Press.
Chen, Y.; Xie, W.; and Zou, X. 2013. How can surrogates in-
fluence the convergence of evolutionary algorithms? Swarm
and Evolutionary Computation 12:18–23.
Das, S., and Suganthan, P. N. 2011. Differential evolution:
A survey of the state-of-the-art. IEEE Transactions on Evo-
lutionary Computation 15(1):4–31.
Derrac, J.; Garcia, S.; and Herrera, F. 2014. Fuzzy nearest
neighbor algorithms: Taxonomy, experimental analysis and
prospects. Information Sciences 260:98–119.
Emmerich, M.; Giotis, A.; Ozdemir, M.; Back, T.; and Gi-
annakoglou, K. 2002. Metamodel-assisted evolution strate-
gies. In International Conference on Parallel Problem Solv-
ing from Nature (PPSN’ 02), 361–370.
Hu, Y.-Q.; Qian, H.; and Yu., Y. 2017. Sequential
classification-based optimization for direct policy search. In
Proceedings of the 31st AAAI Conference on Artificial Intel-
ligence (AAAI’ 17), 2029–2035.
Jin, Y. 2003. A comprehensive survey of fitness approxima-
tion in evolutionary computation. Soft Computing 9(1):3–
12.
Jin, Y. 2011. Surrogate-assisted evolutionary computation:
Recent advances and future challenges. Swarm and Evolu-
tionary Computation 1(2):61–70.
Keller, J. M.; Gray, M. R.; and Givens, J. A. 1985. A fuzzy k-
nearest neighbor algorithm. IEEE Transactions on Systems,
Man, and Cybernetics (4):580–585.
Klir, G., and Yuan, B. 1995. Fuzzy sets and fuzzy logic,
volume 4. New Jersey: Prentice hall.
Larraaga, P., and Lozano, J. A. 2001. Estimation of Distribu-
tion Algorithms: A New Tool for Evolutionary Computation,
volume 2. Springer Science & Business Media.
Li, Y.; Zhou, A.; and Zhang, G. 2014. An MOEA/D with
multiple differential evolution mutation operators. In Pro-
ceedings of the 2014 IEEE Congress on Evolutionary Com-
putation (CEC’ 14), 397–404.
Lu, X.-F., and Tang, K. 2012. Classification- and regression-
assisted differential evolution for computationally expensive
problems. Journal of Computer Science and Technology
27(5):1024–1034.

Lu, X.; Tang, K.; and Yao, X. 2011. Classification-assisted
differential evolution for computationally expensive prob-
lems. In Proceedings of the 2011 IEEE Congress on Evo-
lutionary Computation (CEC’ 11), 1986 – 1993.
Mahfoud, S. W. 1992. Crowding and preselection revis-
ited. In International Conference on Parallel Problem Solv-
ing From Nature (PPSN’ 92), 27–36.
Mallipeddi, R., and Suganthan, P. N. 2014. Unit commit-
ment - a survey and comparison of conventional and nature
inspired algorithms. International Journal of Bio-Inspired
Computation 6(2):71–90.
Polak, E. 1997. Optimization: algorithms and consistent
approximations. Springer-Verlag New York.
Qian, C.; Yu, Y.; and Zhou, Z.-H. 2015. Pareto ensemble
pruning. In Proceedings of the 29th AAAI Conference on
Artificial Intelligence (AAAI’15), 2935–2941.
Szu, H. H. 1986. Non-convex optimization. In Real-Time
Signal Processing IX. International Society for Optics and
Photonics, volume 698, 59–68.
Wang, Z.; Zoghi, M.; Hutter, F.; Matheson, D.; and De Fre-
itas, N. 2013. Bayesian optimization in high dimensions
via random embeddings. In Proceedings of the 23rd Inter-
national Joint Conference on Artificial Intelligence (IJCAI’
13), 1778–1784.
Wang, Y.; Cai, Z.; and Zhang, Q. 2011. Differential evo-
lution with composite trial vector generation strategies and
control parameters. IEEE Transactions on Evolutionary
Computation 15:55–66.
Wang, H.; Qian, H.; and Yu, Y. 2018. Noisy derivative-free
optimization with value suppression. In Proceedings of the
32nd AAAI Conference on Artificial Intelligence (AAAI’ 18),
1447–1454.
Yao, X.; Liu, Y.; and Lin, G. 1999. Evolutionary program-
ming made faster. IEEE Transactions on Evolutionary Com-
putation 3(2):82–102.
Yu, Y.; Qian, H.; and Hu, Y.-Q. 2016. Derivative-free opti-
mization via classification. In Proceedings of the 30th AAAI
Conference on Artificial Intelligence (AAAI’ 16), 2286–
2292.
Yuille, A. L., and Rangarajan, A. 2002. The concave-convex
procedure (cccp). In Advances in neural information pro-
cessing systems 14 (NIPS’01), 1033–1040.
Zadeh, L. A.; Klir, G. J.; and Yuan, B. 1996. Fuzzy sets,
fuzzy logic, and fuzzy systems: Selected papers. Advances
in Fuzzy Systems - Applications and Theory.
Zadeh, L. A. 1965. Fuzzy logic and its applications. New
York, NY, USA.
Zhang, J.; Zhou, A.; and Zhang, G. 2018. Preselection via
classification: A case study on global optimization. Interna-
tional Journal of Bio-Inspired Computation 11(4):267–281.
Zhou, A.; Sun, J.; and Zhang, Q. 2015. An estimation of
distribution algorithm with cheap and expensive local search
methods. IEEE Transactions on Evolutionary Computation
19(6):807–822.

2410


