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Abstract

There is currently a great expansion of the impact of machine
learning algorithms on our lives, prompting the need for ob-
jectives other than pure performance, including fairness. Fair-
ness here means that the outcome of an automated decision-
making system should not discriminate between subgroups
characterized by sensitive attributes such as gender or race.
Given any existing differentiable classifier, we make only
slight adjustments to the architecture including adding a new
hidden layer, in order to enable the concurrent adversarial op-
timization for fairness and accuracy. Our framework provides
one way to quantify the tradeoff between fairness and accu-
racy, while also leading to strong empirical performance.

1 Introduction
Automated decision support has become widespread, raising
concerns about potential unfairness. Here, following earlier
work, unfairness means discriminating against a particular
group of people due to sensitive group characteristics such
as gender or race (Grgic-Hlaca et al. 2018b; Hardt, Price,
and Srebro 2016; Kusner et al. 2017; Louizos et al. 2016;
Zafar et al. 2017c; 2017a; Zemel et al. 2013). Fairness con-
cerns have been considered in applications including pre-
dictive policing (Brennan, Dieterich, and Ehret 2009), re-
cidivism prediction (Chouldechova 2017) and credit scor-
ing (Khandani, Kim, and Lo 2010). The current trend in the
literature on fairness is to begin with a notion (definition)
of fairness, and then to construct a model which automates
the detection and/or eradication of unfairness accordingly.
Common definitions of fairness consider whether or not a
decision is related to sensitive attributes, such as gender.

Most state-of-the-art machine learning algorithms for fair-
ness build from scratch a model’s architecture tailored for a
specific fairness notion. In contrast, we propose a method
that slightly modifies the architecture of the model which
was to be optimized solely for accuracy. We learn a fair rep-
resentation together with a new performance function acting
on it, with the goal of concurrently optimizing for both fair-
ness and performance (accuracy). Our method is based on an
adversarial framework, which allows explicitly measuring
the tradeoff between fairness and accuracy. Our approach
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is general, in that it may be applied to any differentiable dis-
criminative model. We establish a fairness paradigm where
the architecture of a deep discriminative model, optimized
for accuracy, is modified such that fairness is imposed (the
same paradigm could be applied to a deep generative model
in future work). Beginning with an ordinary neural network
optimized for prediction accuracy of the class labels in a
classification task, we propose an adversarial fairness frame-
work performing a change to the network architecture, lead-
ing to a neural network that is maximally uninformative
about the sensitive attributes of the data as well as predic-
tive of the class labels. In this adversarial learning frame-
work, there is no need for a separate network architecture
representing the adversary, thus we avoid the well-known
difficulties which may arise from double-network adversar-
ial learning (Goodfellow 2016; Goodfellow et al. 2014).

We make the following contributions: 1) We propose a
fairness algorithm by modifying the architecture of a poten-
tially unfair model to simultaneously optimize for both ac-
curacy and fairness with respect to sensitive attributes (Sec-
tion 2); 2) We quantify the tradeoff between the accuracy
and fairness objectives (Section 2); 3) We propose a vari-
ation of the adversarial learning procedure to increase di-
versity among elements of each minibatch of the gradient
descent training, in order to achieve a representation with
higher fidelity. This variation may be of independent inter-
est since it is applicable generally to adversarial frameworks
(Section 2.2); 4) We develop a novel generalization bound
for our framework illustrating the theoretical grounding be-
hind the relationship between the label classifier and the ad-
versary’s ability to predict the sensitive attribute value (Sec-
tion 3); and 5) We experiment on two fairness datasets com-
paring against many earlier approaches to demonstrate state-
of-the-art effectiveness of our methods (Section 4).

2 Fair Learning by Modifying
an Unfair Model

We aim to adapt a classifier that was to learn solely to pre-
dict the data labels into a fair classifier without reconstruct-
ing its architecture from scratch. Our strategy is to add a
term to the optimization objective to simultaneously maxi-
mize both fairness and accuracy. This term imposes fairness
by establishing a fair representation of the input data which
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is invariant to changes in the sensitive attribute values. To
optimize this invariance, an adversary is included at the top
of the model in the form of a classifier which tries to predict
the sensitive attribute value. For a deep model, this can be
implemented via: (i) adding another classifier at the top of
the network such that we have two classifiers: the original
label predictor and the new predictor of sensitive attribute
value(s); and (ii) adding a network layer just under the clas-
sifiers (now the top hidden layer) that aims at maximizing
the performance of the label predictor, while minimizing the
performance of the sensitive attribute predictor by reversing
the gradients of the latter in the backward phase of the gra-
dient descent training. See Figure 1 for an illustration.

2.1 Fair adversarial discriminative (FAD) model
We consider data D = {(xi,yi, si)}ni=1, where xi, yi and
si refer to the input features, the ground truth label and the
sensitive attribute(s), respectively. Denote by ŷi the corre-
sponding label estimate. Typically speaking, ŷi is predicted
by a potentially unfair discriminative classifier possibly rep-
resented by a neural network whose input is features x and
sensitive attributes s. The goal of fairness is to ensure that
the prediction of y is not dependent on these attributes s
(Zafar et al. 2017c). A naive approach is to simply dis-
card s and let classifier f have input x - this has some
proponents in terms of process (Grgic-Hlaca et al. 2018a;
2018b) but suffers since x might include significant infor-
mation about s. For example, an address attribute in x might
give a strong indication about race s.

We achieve fairness through the adversarial construction
illustrated in Figures 1 and 2, as follows. Define the em-
pirical classification loss of the label classifier f ′(x′) as
L(ŷ,y) = L(f ′(x′),y) = 1

|D|
∑|D|
i=1 Err(f ′(x′i),yi), and

similarly the classification loss of the classifier φ′, predict-
ing the value of the sensitive attribute s, as L(φ′(x′), s) =
1
|D|
∑|D|
i=1 Err(φ′(x′i), si). A simplified view of the ar-

chitecture of our fairness adversarial discriminative (FAD)
framework is displayed in Figure 1. We extend the original
architecture of the potentially unfair predictor, by adding a
new layer g that produces a fair data representation x′, and
adding a new predictor φ′ aiming to predict the sensitive
attribute s. Denoting by w the weight vector of a network
layer, the backpropagation forward pass proceeds normally
in FAD. During the backward pass (dotted lines), however,
the gradient from the loss of the s classifier ∂L(φ′(x′),s)

∂wφ′
is

multiplied with a negative sign so that g adversarially aims
at increasing the loss of φ′, resulting in a representation x′

maximally invariant to the change in values of s. Since the
rest of the FAD training proceeds normally, the classifier f ′
should also make x′ maximally informative about the orig-
inal prediction task, depicted by y. The idea of reversing a
layer’s gradient with respect to the layer below in the back-
ward pass was used in domain adaptation to develop invari-
ant representations to changes between the source and target
domains (Ajakan et al. 2014; Ganin and Lempitsky 2015;
Ganin et al. 2016).

In our fairness paradigm, we aim at the following: i)

achieving fairness; ii) quantitatively evaluating how much
fairness we achieve, and; iii) quantifying the impact of such
fairness on accuracy, i.e. computing the difference in accu-
racy between the proposed fair model and a corresponding
(potentially unfair) model. In Figure 2, another schematic di-
agram of the proposed modifications is displayed. The pre-
dictor φ′(x′) depicts a classifier predicting the s value from
x′. The ability to accurately predict s given x′ signifies a
high risk of unfairness since this means that the sensitive at-
tributes may be influential in any decision making process
based on x′. Adversarially through g, the non-sensitive fea-
tures x are transformed into a representation x′ which at-
tempts to break any dependence on the sensitive attributes
s. As such, the optimization objective can have many triv-
ial solutions, e.g. g that maps every x into 0 which provides
no information to predict s. In order to prevent that, and to
ensure that fairness is rather aligned with the accuracy ob-
jective, a classifier f ′ predicts the labels y from x′. Here we
consider classification accuracy to be the metric of the ini-
tial model. However, our adversarial paradigm can also be
adopted in models with other metrics to achieve fairness.

Figure 1: Architecture of the proposed fair adversarial dis-
criminative model. The parts added, due to FAD, to a po-
tentially unfair deep architecture with input x are (shown in
red): i) the layer g where x′ is learned and; 2) the sensitive
attribute s predictor φ′ at the top of the network. Denote
by w the weight vector of the respective layer. The forward
pass of backpropagation proceeds normally in FAD. During
the backward pass (dotted lines), the gradient from the loss
of the s classifier ∂L((φ

′(x′)),s)
∂wφ′

is multiplied with a negative
sign so that g adversarially aims at increasing the loss of
φ′, resulting in a representation x′ maximally invariant to
the change in values of s. The rest of the FAD training pro-
ceeds normally, i.e. gradient from the labeling classifier f ′,
∂L((f ′(x′)),y)

∂wf′
, is normally (with a positive sign) imported to

g, ultimately making x′ maximally informative about y.

To summarize: g, φ′ and f ′ are all involved in the con-
current optimization for fairness and accuracy. The param-
eters of g and φ′ adversarially optimize for fairness while
f ′ guarantees that accuracy is not fully sacrificed for the
sake of fairness. The labeling accuracy difference between
the proposed fair model and a corresponding potentially un-
fair model may be quantified via the discrepancy between
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Figure 2: The proposed FAD
paradigm. We establish an ad-
versarial objective where g mini-
mizes the ability of the predictor
φ′ to correctly predict values of
the sensitive attributes s, whereas
φ′ on the other hand maximizes
its own accuracy in predicting s.
Another predictor f ′ predicts the
labels y from x′.

f ′(x′) obtained after learning g, and f(x), respectively.

Fairness notions We focus on two common notions (def-
initions) of fairness, disparate impact (Barocas and
Selbst 2016; Feldman et al. 2015; Primus 2010) and
disparate mistreatment (Zafar et al. 2017b). We
first address the former. Disparate impact refers to a deci-
sion making process that, in aggregate, leads to different out-
comes for subpopulations with different sensitive attribute
values. According to this notion, and assuming WLOG a
binary label and sensitive attribute, fairness is achieved (in
other words, there is no disparate impact) when:

p(ŷ = 1|s = 0) = p(ŷ = 1|s = 1). (1)
For our proposed model, define the part of the data D
where s = 0 as Ds=0, then p(ŷ = 1|s = 0) =

1
|Ds=0|

∑|Ds=0|
i=1 p(f ′(x′) = 1). Accordingly, disparate im-

pact is avoided when:
1
|Ds=0|

∑|Ds=0|
i=1 p(f ′(x′) = 1) = 1

|Ds=1|
∑|Ds=1|
i=1 p(f ′(x′) = 1) (2)

The disparity (Disp) between both sides of (2) quantifies
unfairness in terms of disparate impact. Larger disparity val-
ues signify more unfairness:

DispDI = (3)∣∣∣ 1
|Ds=0|

∑|Ds=0|
i=1 p(f ′(x′) = 1)− 1

|Ds=1|
∑|Ds=1|
i=1 p(f ′(x′) = 1)

∣∣∣
The other notion of fairness we inspect is referred to as

disparate mistreatment (Zafar et al. 2017b). One
major difference between the two notions is that disparate
mistreatment depends on the ground truth labels y, and
therefore it can be considered only when such information is
available. Assuming a binary label y with ground truth val-
ues 1 and−1, disparate mistreatment arises when the rate of
erroneous decisions (false positives, false negatives or both)
is different for subpopulations with different values of sensi-
tive attributes. Unfairness in terms of disparate mistreatment
is thus avoided when the false positive rate (FPR) and false
negative rate (FNR) are as in (4) and (5), respectively.
p(ŷ 6= y|y = −1, s = 0) = p(ŷ 6= y|y = −1, s = 1) (4)
p(ŷ 6= y|y = 1, s = 0) = p(ŷ 6= y|y = 1, s = 1) (5)
A larger disparity between both sides in either of these

two equations signifies more disparate mistreatment. For our
model, disparate mistreatment, as a whole, is defined in (6).

1
|Ds=0|

∑|Ds=0|
i=1 Err(f ′(x′i),yi) =

1
|Ds=1|

∑|Ds=1|
i=1 Err(f ′(x′i),yi)

(6)

Decomposing (6) into FPR and FNR is straightforward.
The higher the following disparity values the more unfair
the model is, in terms of disparate mistreatment:

DispFPR = (7)∣∣∣ 1
|Ds=0|

∑|Ds=0|
i=1 Err(f ′(x′i),yi|yi=−1)− 1

|Ds=1|
∑|Ds=1|
i=1 Err(f ′(x′i),yi|yi=−1)

∣∣∣
DispFNR = (8)∣∣∣ 1
|Ds=0|

∑|Ds=0|
i=1 Err(f ′(x′i),yi|yi=1)− 1

|Ds=1|
∑|Ds=1|
i=1 Err(f ′(x′i),yi|yi= 1)

∣∣∣
Modeling objective The overall training objective of the
proposed model, for a dataset of size n, is stated as follows:

ming,f ′ [L(f
′(g(x)),y)− β maxφ′(L(φ′(g(x)), s))] ≡ (9)

ming,f ′
[
1
n

∑n
i=1 Err(f ′(g(xi)),yi)− βmaxφ′

(
1
n

∑n
i=1 Err(φ′(g(xi)), si)

)]
,

where the fairness hyperparameter β > 0 controls the degree
of fairness induced in the model.

The model, as such, is based on optimizing for disparate
impact. Recall that the whole proposed model is ultimately
implemented as one neural network in which the adversarial
layer g is injected as a hidden layer right beneath the top
layer consisting of the classifiers φ′ and f ′.

In order to optimize for disparate mistreatment, a modi-
fication to (9) is needed. The function φ′(x′) = φ′(g(x))
should be multiplied by a term reflecting what is needed to
be equal for subpopulations with different sensitive attribute
values such that disparate mistreatment is achieved. Multi-
plying φ′(g(x)) with the ratio of Err(f ′(x′i),yi) over n,
which signifies the misclassification rate, leads to the objec-
tive becoming an interpretation of disparate mistreatment.
The overall training objective when optimizing for disparate
mistreatment therefore becomes:

ming,f ′
[
1
n

∑n
i=1 Err(f ′(g(xi)),yi)− βmaxφ′

(
1
n

∑n
i=1 Err(φ′(g(xi)), si)I(ŷi 6=yi)

)]
,

(10)

where I(z) is the indicator function: I(z) = 1, when z is
true and 0 otherwise. However, since ŷ is the classification
output, which depends on both g and f ′, the indicator func-
tion might be problematic to optimize by gradient descent.
Hence, we can relax this optimization problem and rewrite
it as follows to express the labeling misclassification proba-
bility:

ming,f ′
[
1
n

∑n
i=1 Err(f ′(g(xi)),yi)− βmaxφ′

(
1
n

∑n
i=1 Err(φ′(g(xi)), si)p(ŷi 6=yi)

)]
≡

ming,f ′
[
1
n

∑n
i=1 Err(f ′(g(xi)),yi)− βmaxφ′

(∑n
i=1

Err(f ′(x′
i),yi)

n Err(φ′(g(xi)), si)
)]

(11)

For the decomposition of disparate mistreatment into FPR
and FNR, the term Err(f ′(x′i),yi) = Err(f ′(g(xi)),yi)
in (11) shall be divided into Err(f ′(x′i),yi)yi=0 and
Err(f ′(x′i),yi)yi=1, respectively.

2.2 Fair adversarial discriminative model with
increased minibatch diversity (FAD-MD)

Although our approach avoids two ‘dueling’ networks, still
it is prone to some of the common problems of adversar-
ial learning, including ‘mode collapse’ (Goodfellow 2016;
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Goodfellow et al. 2014). Imagine if the input to the discrim-
inator is MNIST images, and, instead of covering the whole
space of the ten digits, the comparisons are restricted to two
or three digits that are ultimately being represented quite
similarly by data of both classes introduced as input to the
discriminator. The latter therefore becomes maximally con-
fused and a convergence of the whole adversarial learning
framework is reached although in reality only a small subset
of the data is well represented by the inferred representa-
tion. Since we want to avoid imposing too many variations
on the original settings of the system, we need to develop a
computationally efficient solution to mode collapse. Most of
the previously proposed solutions are either tailored to the
generative versions of adversarial learning (Arjovsky, Chin-
tala, and Bottou 2017; Kim et al. 2017; Metz et al. 2017;
Rosca et al. 2017) or computationally inefficient for our
purpose (Srivastava et al. 2017). We experimented with the
heuristics proposed in (Salimans et al. 2016) but they did not
improve results in our one-network adversarial framework.

Therefore we propose a method based on making ele-
ments of a minibatch as diverse as possible from one an-
other. Each minibatch is formed as follows: i) Beginning
with very few data points randomly chosen to belong to the
minibatch, there is a pool of points from which some are to
be selected for the addition to the minibatch based on the
criterion of ending up with minibatch elements as diverse as
possible without losing too much in terms of computational
runtime; ii) A point is selected from the pool via the score
resulting from a one-class support vector machine (SVM)
classifier where the class consists of the current elements of
the minibatch. The next added data point from the pool to the
minibatch is the point with the lowest score, i.e. the point be-
lieved to be the least likely to belong to the class formed by
the current minibatch elements, or the most dissimilar point
to the minibatch elements; iii) This process continues until
greedily reaching the prespecified size of the minibatch. The
size of each pool of points to begin with is a hyperparameter
to be specified by e.g. cross-validation. We claim that using
the efficient one-class SVM to form minibatches is a step in
the direction of establishing adversarial learners with a bet-
ter coverage of all the regions of the data space.

3 Generalization Bound
We illustrate the theoretical foundation of the relationship
between the label classifier and the adversary’s ability to
predict the sensitive attribute value. We begin by deriving a
generalization upper bound for the framework (Theorem 1).
We shed light on the interpretation of the sensitive attribute
classifier as an adversary in the concurrent adversarial opti-
mization for fairness and accuracy, in terms of the distance
between data distributions given different sensitive attribute
values.

Assume the label y (as well as its estimate ŷ) and the
sensitive attribute s values are binary. Recall that a data
sample D = {(xi,yi, si)}ni=1 is given. Also, recall that,
for the ith instance, the classification loss between ŷ and
y (equivalently defined between any two labelings) is de-
noted by Err(ŷi,yi). Denote the expected loss between

two labelings ŷ and y with respect to a distribution P by
LP(ŷ,y) = EP[Err(ŷ,y)]. When abbreviated as Err(ŷ),
this means that the other side is the ground truth label y.

Next we describe the Rademacher complexity, which
measures the richness of a class of real-valued functions
with respect to a probability distribution (Shalev-Shwartz
and Ben-David 2014).

Rademacher complexity facilitates the derivation of gen-
eral learning guarantees for problems with infinite hy-
pothesis sets, like ours. Thanks to the introduction of a
Rademacher random variable σ, Rademacher complexity
directly maps the measurement of accuracy (or inversely
error rate) of the hypothesis into the richness or expres-
siveness of the hypothesis w.r.t. the probability distribu-
tion resulting from the introduction of σ. More formally,
let H be a hypothesis set, where h ∈ H is an arbitrary
hypothesis of the set. Define the expected loss of a hy-
pothesis class as Err(H)1. When each h is a real-valued
function, the empirical Rademacher complexity (Mansour,
Mohri, and Rostamizadeh 2009; Mohri and Afshin 2008a;
Shalev-Shwartz and Ben-David 2014) of H given D can be
defined as:

RadD(H) =
1

n
Eσ[ sup

h∈H

n∑
i=1

σih(xi)], (12)

where σ1, σ2, · · · , σn are independent random variables
drawn from the Rademacher distribution, which notes that
Pr(σ = 1) = Pr(σ = −1) = 0.5. The Rademacher com-
plexity of a hypothesis set H is thence denoted by the expec-
tation of RadD(H) over all samples of size n:

Radn(H) = ED[RadD(H)] (13)

For deriving our bound, we use a notion of distance be-
tween distributions, proposed by Mansour, Mohri, and Ros-
tamizadeh (2009), and referred to as the discrepancy dis-
tance. It is symmetric and it satisfies the triangle inequal-
ity. Denote by H a hypothesis set, where each h ∈ H is a
classifier X → Y. The discrepancy distance between two
arbitrary distributions P and Q is defined as:

disc(P,Q) = max
h,h′∈H

|LP(h,h
′)− LQ(h,h′)| (14)

We also state the following bound (Bartlett and Mendelson
2002; Koltchinskii and Panchenko 2000), whose proof is in
(Bartlett and Mendelson 2002). For a probability distribu-
tion P (estimated by P̂) defined on X × {±1}, let H be a
hypothesis set where each h ∈ H is a {±1}-valued func-
tion mapping X to a binary Y. Then for a data sample D
with size n, With probability at least 1 − δ, and for a 0-1
classification loss, every hypothesis h ∈ H satisfies:

EP(Err(Y,h(X))) ≤EP̂(Err(Y,h(X))) +
RadD(H)

2

+

√
log(1/δ)

2n
(15)

1Note that this is the expectation of a class of functions with
respect to a specific data sample D. This differs from LP(h(x),y)
since the latter is the expectation of a specific function h with re-
spect to a probability distribution P from which D is drawn.
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Theorem 1. Denote by P0 and P1 the distributions
P(x|s = 0) and P(x|s = 1), respectively. Assuming train-
ing data D with size n, which, without loss of generality
(WLOG), is equally divided into data points with s = 0,D0,
and those with s = 1, D1. For a class H of binary classi-
fiers, and for δ > 0 with probability greater than or equal to
1− δ, the following holds:

disc(P0,P1) ≤disc(P̂0, P̂1) + 2

√
log(1/δ)

n

+
1

2
(RadD0(Err(H))+RadD1(Err(H)))

(16)

Proof. Using the triangle inequality, the L.H.S. of (16) can
turn into:

disc(P0,P1) ≤ disc(P0, P̂0) + disc(P1, P̂1) + disc(P̂0, P̂1)
(17)

For a 0-1 classification error, we can use (15) with the
class of real-valued functions being a class where each ele-
ment is the loss of h, Err(h), on a specific training sample
D, instead of h itself. We can as well replace y in (15) with
an arbitrary h, and since we are upper bounding we can as-
sume we replace it with the worst case h, i.e. h resulting in
the highest upper bound. This leads to:

EP(Err(h(x),h′(x))) ≤EP̂(Err(h(x),h′(x)))

+
RadD(Err(H))

2
+

√
log(1/δ)

2n
(18)

Since EP(Err(h(x),h′(x))) = LP(h(x),h
′(x)), and

from (14), then (18) turns into:

disc(P, P̂) ≤ RadD(Err(H))

2
+

√
log(1/δ)

2n
(19)

Using (19) to describe the terms disc(P0, P̂0) and
disc(P1, P̂1) in (17), we get:

disc(P0,P1) ≤disc(P̂0, P̂1)

+
RadD0(Err(H))

2
+

√
log(1/δ)

n

+
RadD1(Err(H))

2
+

√
log(1/δ)

n
(20)

disc(P0,P1) ≤disc(P̂0, P̂1) + 2

√
log(1/δ)

n

+
1

2
(RadD0(Err(H)) +RadD1(Err(H)))

(21)

which concludes the proof.

This provides an interpretation of our modeling objective
in (9) in the main document, since: The sensitive attribute
classifier φ′(g(x)) aims at minimizing the first term in the

bound on the right of (21), disc(P̂0, P̂1). The label classi-
fier f ′(g(x)) aims at minimizing the second term on the right
of (21). The third term on the right of (21) tends to zero as
the sample size n goes to infinity.

To further clarify that: As noted in (Mansour, Mohri,
and Rostamizadeh 2009), for a 0-1 classification error and
for our hypothesis class consisting of the loss on each hy-
pothesis, Err(h), the discrepancy distance disc(P̂0, P̂1) is
equivalent to the following notion of distance, referred to as
H-divergence (Ben-David et al. 2007; 2010; Devroye, Gy-
orfi, and Lugosi 1996; Kifer, Ben-David, and Gehrke 2004):

dH(P̂0, P̂1) = sup
a∈|h−h′|

|P̂0(a)− P̂1(a)| (22)

As proved in (Ben-David et al. 2007; 2010) (Lemma 2 in
(Ben-David et al. 2010)), theH-divergence in such case can
be approximated by performing a classification task of the
data D into points belonging to D0 or to D1:

dH(P̂0, P̂1) = 2(1−min
h

[ 2
n
I(x ∈ D0) +

2

n
I(x ∈ D1)

]
)

(23)

where the distance (H-divergence, which is equivalent in
this case to the discrepancy distance) between P̂0 and P̂1

is inversely proportional to the performance of the classifier.
From (21) and (23), for an arbitrary h:

disc(P0,P1) ≤ 2−
[ 4
n
I(x ∈ D0) +

4

n
I(x ∈ D1)

]
+

1

2
(RadD0(Err(H)) +RadD1(Err(H)))

+ 2

√
log(1/δ)

n
(24)

The term
[
4
nI(x ∈ D0)+

4
nI(x ∈ D1)

]
is what is estimated

in our proposed formulation in (9) in the main document by
−β maxφ′(L(φ′(g(xi)), si)). Due to the negative sign pre-
ceding the latter term in (9) and the equivalent former term in
(24), it is inversely proportional to the maximization of our
objective, and to the overall distance between estimated dis-
tributions of data with different s values, respectively. Also,
the larger the value of the fairness hyperparameter β, the
higher the impact of this term on the optimization of our ob-
jective.

The label classifier f ′(g(xi)) aims at minimizing the er-
ror of the classifier, i.e. minimizing the error in predict-
ing the label ŷ of the data points D (both D0 and D1). It
is therefore straightforward to see that f ′(g(xi)) naturally
aims at minimizing the second term in the bound in (21),
(RadD0(Err(H)) +RadD1(Err(H))).

From the latter note and (24), the two classifiers of the
adversarial formulation proposed in (9) in the main docu-
ment can be interpreted w.r.t. the first two terms of the upper
bound on the right of (21); minimizing the classifier’s losses
can be interpreted as minimizing the generalization upper
bound.
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4 Experiments
On two datasets, we perform experiments to evaluate the
following: (i) the difference in classification accuracy due
to optimizing for fairness–Table 1 and Figure 3. Compar-
isons among the unfair and fair versions of the proposed
frameworks, FAD and FAD-MD, as well as previous state-
of-the-art algorithms, show that the quest for fairness with
FAD and FAD-MD leads to minimal loss in accuracy; (ii)
(un)fairness, in terms of both disparate impact and disparate
mistreatment–Table 2. Results demonstrate state-of-the-art
effectiveness of FAD and FAD-MD; and (iii) an MMD 2-
sample test to assess the fidelity of the learned fair repre-
sentation x′–Figure 4. This also shows the effectiveness of
increasing the minibatch diversity in FAD-MD. Moreover,
the increase in training time due to optimizing for fairness is
not considerable for DAF compared to its unfair version.

We test our framework on two popular real-world datasets
in the fairness literature, the Propublica COMPAS dataset
(Larson et al. 2016) and the Adult dataset (Dheeru and
Taniskidou 2017). The task in the COMPAS dataset is a bi-
nary classification task with two classes depicting whether
or not a criminal defendant is to recidivate within two years.
We use the black vs. white values of the race feature as our
sensitive attribute. The total number of the COMPAS data
instances we work on is 5,278 instances and 12 features. On
the other hand, the Adult dataset consists of 32,561 com-
plete instances denoting adults from the US Census in 1994.
The task is to predict, from 14 features, whether an adult’s
income is higher or lower than 50K USD. Gender is the sen-
sitive attribute in the Adult data (male or female). Each ex-
periment is repeated ten times where, in each run, data is
randomly split into three partitions, training, validation (to
identify the value of the fairness hyperparameter β) and test.
A portion of 60% of the data is reserved for training, 20%
for validation and 20% for testing. Statistics reported are the
averages of the ten repetitions. For FAD-MD, we use the
one-class SVM introduced in (Scholkopf et al. 2000) with
ν = 0.5 (fractions of support vectors and outliers).

On both datasets, and in addition to the unfair versions
of the proposed algorithms, of (Zafar et al. 2017b) and of
(Zafar et al. 2017a), we compare (where applicable) FAD
and FAD-MD to the following state-of-the-art fairness al-
gorithms: Zafar et al. (2017b), Zafar et al. (2017a), Za-
far et al. (2017c), Hardt, Price, and Srebro (2016), Feld-
man et al. (2015), Kamishima et al. (2012), Fish, Kun, and
Lelkes (2016), Bechavod and Ligett (2017), Komiyama et
al. (2018), Agarwal et al. (2018), Narasimhan (2018). Clas-
sification results are displayed in Table 1. A 2-layer neural
network is utilized to obtain the results of the unfair clas-
sification, whereas the adversarial layer is added under the
top layer to accomplish fairness via FAD and its variation
FAD-MD. Values of the fairness hyperparameter β selected
by cross-validation are 0.3 and 0.8 for the COMPAS and
Adult datasets, respectively. Classification results on both
datasets demonstrate that, among fairness algorithms, FAD
and FAD-MD achieve state-of-the-art classification accuracy.
In addition, the impact on classification accuracy due to the
optimization for fairness by the proposed algorithms, FAD
and FAD-MD, is rather minimal. This is quantified via the

Table 1: Results of the classification accuracy on the COM-
PAS and Adult datasets. In addition to its impact on fairness,
increasing the minibatch diversity with FAD-MD improves
the classification accuracy. Classification accuracy values
achieved by FAD and FAD-MD on both datasets are higher
than previous state-of-the-art results. Loss in accuracy due
to fairness (difference in classification accuracy between the
unfair and fair versions) is not big; with FAD-MD, it is as
minimal as state-of-the-art by Zafar et al. (2017b) for the
COMPAS data, and uniquely minimal for the Adult data.
Bold refers to an accuracy value that is significantly better
than the other fair (all apart from the first three entries) com-
petitors. To test significance, we perform a paired t-test with
significance level at 5%.

COMPAS

Unfair (β = 0) Unfair (Zafar et al. 2017b) Unfair (Zafar et al. 2017a) FAD
89.3% 66.8% 69.0% 88.4%
FAD-MD Zafar et al. (2017b) Zafar et al. (2017a) Hardt et al. (2016)

88.7% 66.2% 67.5% 64.4%
Feldman et al. (2015) Kamishima et al. (2012) Fish et al. (2016) Bechavod (2017)

86.8% 72.4% 81.2% 66.4%
Komiyama et al. (2018) Agarwal et al. (2018) Narasimhan (2018)

86.6% 71.2% 77.7%

Adult

Unfair (β = 0) Unfair (Zafar et al. 2017b) Unfair (Zafar et al. 2017a) FAD
90.1% 85.8% 87.0% 88.6%
FAD-MD Zafar et al. (2017b) Zafar et al. (2017a) Hardt et al. (2016)

89% 83.1% 84.0% 84.6%
Feldman et al. (2015) Kamishima et al. (2012) Fish et al. (2016) Bechavod (2017)

82.1% 84.3% 84.0% 78.3%
Komiyama et al. (2018) Agarwal et al. (2018) Narasimhan (2018)

85.7% 86.2% 81.5%

difference in accuracy between the unfair and fair versions
of the proposed framework compared to such difference in
the cases of (Zafar et al. 2017b) and (Zafar et al. 2017a).

In Figure 3, we vary the classification accuracy as a func-
tion of the fairness hyperparameter β. FAD-MD leads to a
slightly higher classification accuracy than FAD. Classifica-
tion accuracy initially decreases when optimizing for fair-
ness until it rather saturates with larger values of β.

Fairness results, in the form of empirical values of the dis-
parity notions described in (3), (7) and (8), are displayed
in Table 2. Such values are shown for FAD, FAD-MD and
the same competitors as in Table 1, where applicable. The
proposed algorithms, FAD and FAD-MD, minimize the dis-
parity values (unfairness) when optimizing for fairness, and
achieve the (at times joint) best results, in terms of the fair-
ness metrics, in five out of six cases (three disparity values
-DispDI,DispFPR and DispFNR- for each dataset).

We move on now to a more rigorous evaluation of the
minibatch diversity augmentation by FAD-MD. One of the
problems of most current frameworks of adversarial learn-
ing is the fact that the adversary bases its optimization on
comparing data points instead of distributions or, at least,
of sets of points. We aim at evaluating this here by per-
forming a nonparametric two-sample test between represen-
tations of data points belonging to different values of the
sensitive attribute s. The null hypothesis denotes that the
distributions of the learned representation x′ given differ-
ent s values are equal, H0 : p(x′|s = 0) = p(x′|s = 1),
and its alternative is H1 : p(x′|s = 0) 6= p(x′|s = 1).
Failing to reject (i.e. accepting) the null hypothesis H0 is
the favorable outcome since it means that the model has
learned a representation x′ through which different values
of s are indistinguishable. We perform a two-sample maxi-
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Table 2: Unfairness of different algorithms measured by disparate impact -DispDI in Eq. (3)- and disparate mistreatment -
DispFPR, DispFNR in Eqs. (7,8)- on the COMPAS and the Adult datasets. Smaller values are more favorable since they denote
less unfairness. For each competitor, we report their best value achieved throughout their different settings. In five out of six
cases (three disparity values for each dataset), the proposed algorithms, FAD and FAD-MD, (at times jointly) achieve the best
results in terms of the fairness metrics. Bold refers to a value that is significantly less (better) than its non-bold competitors. To
test significance, we perform a paired t-test with significance level at 5%. Empty cells indicate non-applicable experiments.

COMPAS

Unfair (β = 0) Unfair (Zafar et al. 2017b) Unfair (Zafar et al. 2017a) FAD FAD-MD Zafar et al. (2017b) Zafar et al. (2017a) Hardt et al. (2016)
DispDI: 0.6 — 0.62 0.08 0.11 — 0.38 —

DispFPR: 0.21 0.18 — 0.01 0.01 0.03 — 0.01
DispFNR: 0.29 0.3 — 0.01 0.02 0.1 — 0.01

Feldman et al. (2015) Kamishima et al. (2012) Fish et al. (2016) Bechavod (2017) Komiyama et al. (2018) Agarwal et al. (2018) Narasimhan (2018)
0.95 0.9 0.15 — 0.2 0.09 0.1
0.4 0.2 0.03 0.01 — 0.05 0.09

0.45 0.15 0.03 0.03 — 0.05 0.11

Adult

Unfair (β = 0) Unfair (Zafar et al. 2017b) Unfair (Zafar et al. 2017a) FAD FAD-MD Zafar et al. (2017b) Zafar et al. (2017a) Hardt et al. (2016)
DispDI: 0.71 — 0.68 0.14 0.13 — 0.29 —

DispFPR: 0.36 0.35 — 0.02 0.01 0.12 — 0.04
DispFNR: 0.32 0.4 — 0.01 0.02 0.09 — 0.03

Feldman et al. (2015) Kamishima et al. (2012) Fish et al. (2016) Bechavod (2017) Komiyama et al. (2018) Agarwal et al. (2018) Narasimhan (2018)
0.25 0.3 0.16 — 0.28 0.13 0.19
0.3 0.07 0.02 0.0 — 0.04 0.14
0.4 0.08 0.03 0.04 — 0.05 0.08
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Figure 3: Classification accuracy as a function of the fair-
ness hyperparameter β, where β = 0 indicates no adjust-
ment for fairness. The COMPAS data is balanced; 47% of
the instances have recidivated and 53% have not. Hence, a
random guessing classifier’s accuracy would be as low as
around 53%. For the Adult data, a random guessing classi-
fier would result in 75.9% accuracy, since there are many
more records for people whose income is less than or equal
to 50K. Classification accuracy initially decreases with in-
creasing β until it saturates. With both datasets, classifica-
tion accuracy has not considerably changed for β > 1. Ac-
curacy achieved by FAD-MD is slightly higher.

mum mean discrepancy (MMD) test. Let x′0 and x′1 refer to
data points sampled from x′ given s = 0 and s = 1, respec-
tively. We compute the unbiased estimate MMD(x′0,x

′
1) as

a two-sample test between x′0 and x′1 (Gretton et al. 2006;
Lloyd and Ghahramani 2015) by the following expression:

1
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′
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0(j)) +
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j=1 k(x
′
1(i),x

′
1(j))

− 2
n0n1

∑n0
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∑n1

j=1 k(x
′
0(i),x

′
1(j)) (25)

We use a Gaussian kernel k(x′0,x
′
1) = e−γ‖x

′
0−x

′
1‖

2

.
Cross-validation has been used to indicate γ. The thresh-
old used (the given allowable probability of false rejection
(Gretton et al. 2012)) is 0.05. Results of running an MMD
two-sample test for 100 times are displayed in Figure 4.
Smaller values are better since they signify a more similar
representation for instances with different sensitive attribute,

s, values. Hence, FAD-MD achieves better results with lower
rejection rates than FAD for both datasets.
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Figure 4: MMD 2-sample test results as a function of the
fairness hyperparameter β. The lower the value the better.
The threshold used, i.e. given allowable probability of false
rejection, is 0.05. FAD-MD leads to less distinguishable (less
unfair) representations of data with different s, than FAD.

Details of the model architectures are listed in Table 3.
Adam (Kingma and Ba 2015) is the optimizer used to com-
pute the gradients.

Table 3: Architecture of the neural network used in the in-
troduced models. There are two layers, in addition to the
adversarial layer g. FC stands for fully connected.

Dataset Architecture
COMPAS FC 16 ReLU, FC 32 ReLU, g : FC 16 ReLU, FC output.

Adult FC 32 ReLU, FC 32 ReLU, g : FC 16 ReLU, FC output.

5 Related Work
We first focus on fairness frameworks that are based on
adversarial learning. We begin with a comparison with the
framework of (Madras et al. 2018). Differences between the
latter and our proposed framework include:
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• Our proposed platform can be applied to an existing neu-
ral network architecture with rather slender modifications.
We do not have to reconstruct everything from scratch to
obtain a potentially fair model.
• The whole optimization in our framework is implemented
within one neural network, compared to up to four neu-
ral networks in (Madras et al. 2018). This leads to avoid-
ing some of the well documented problems of adversar-
ial learning that appear when two or more neural net-
works are involved in the optimization (Goodfellow 2016;
Goodfellow et al. 2014).
• Performing the training with diverse minibatches, i.e.
minibatches whose elements are maximally diverse from
one another, leads to improved results.
• Our framework is capable of quantitatively evaluating the
achieved degree of fairness as well as the difference (poten-
tial loss) in accuracy due to imposing fairness.

The work in (Edwards and Storkey 2016) learns a repre-
sentation that is concurrently fair and discriminative w.r.t.
the prediction task. Similar to (Madras et al. 2018), it is
based on more than one neural network since each adver-
sary consists of a separate network, leading to difficulties in
reaching stability among adversaries. The work in (Edwards
and Storkey 2016) also sheds light on a mapping between
fairness, distances between distributions and the adversary’s
ability to predict the sensitive attribute value. In addition
to having a different approach, we extend beyond that by
linking all these notions to the original labeling classifica-
tion accuracy as well. Zhang, Lemoine, and Mitchell (2018)
utilize an adversarial learning framework to achieve fair-
ness via directly comparing the labeling classification out-
comes, i.e. without learning an intermediate fair representa-
tion. The work in (Beutel et al. 2017) analyzes the impact
of the data distribution on the fairness notion adopted by the
adversary. Another adversarial framework is the one intro-
duced by Louppe, Kagan, and Cranmer (2017) which per-
mits two-network based adversarial frameworks to act on a
continuous sensitive attribute. Although they note that the
algorithm is applicable for fairness, the experiments per-
formed are on one real-world dataset that is not fairness-
related. As a result, implementing the same idea in (Louppe,
Kagan, and Cranmer 2017) using continuous sensitive at-
tributes on fairness datasets in a monolithic network within
our framework is an interesting direction for future work.
Other fairness-aware adversarial works include (Wadsworth,
Vera, and Piech 2018; Xu et al. 2018).

Looking more broadly (beyond adversarial frameworks),
and in addition to those mentioned elsewhere in the pa-
per, other fairness algorithms include Goel, Rao, and
Shroff (2015) that defines disparities as a function of false
positive rates for people from different races, i.e. similar
to disparate mistreatment. In (Celis et al. 2018), more than
one notion of fairness can be jointly enforced on a meta-
algorithm via fairness constraints. A comparative study of
some fairness algorithms has been provided in (Friedler et al.
2018). An interpolation between statistical notions of fair-
ness, with the aim of obtaining the good properties of each
definition, has been presented in (Kearns et al. 2018). The

work in (Hajian et al. 2015) imposes fairness via a post-
processing approach of the frequent patterns in the data.

6 Conclusion
We introduced a fair adversarial framework applicable to
differentiable discriminative models. Instead of having to
establish the architecture from scratch, we make slight ad-
justments to an existing differentiable classifier by adding
a new hidden layer and a new classifier above it, to con-
currently optimize for fairness and accuracy. We analyzed
and evaluated the resulting tradeoff between fairness and ac-
curacy. We proposed a minibatch diversity variation of the
learning procedure which may be of independent interest for
other adversarial frameworks. We provided a theoretical in-
terpretation of the two classifiers (adversaries) constituting
the model. We demonstrated strong empirical performance
of our methods compared to previous leading approaches.
Our approach applies to existing architectures; hence, it will
be interesting to study how a pre-trained network adapts to
the new dual objective.
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