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Abstract

Feature selection is a crucial step in the conception of Ma-
chine Learning models, which is often performed via data-
driven approaches that overlook the possibility of tapping
into the human decision-making of the model’s designers and
users. We present a human-in-the-loop framework that inter-
acts with domain experts by collecting their feedback regard-
ing the variables (of few samples) they evaluate as the most
relevant for the task at hand. Such information can be mod-
eled via Reinforcement Learning to derive a per-example fea-
ture selection method that tries to minimize the model’s loss
function by focusing on the most pertinent variables from a
human perspective. We report results on a proof-of-concept
image classification dataset and on a real-world risk classi-
fication task in which the model successfully incorporated
feedback from experts to improve its accuracy.

Introduction
Selecting a subset of the available features for a given Ma-
chine Learning task, also known as feature selection, is a
critical step that helps in the design of relevant, accurate and
robust models (Guyon and Elisseeff 2003; Chandrashekar
and Sahin 2014). Although ideally models should be capa-
ble of identifying the most predictive features during train-
ing, a large input space can reduce performance due to the
“curse of dimensionality”: the amount of data required to fit
a reliable estimator increases exponentially with the number
of variables. Therefore, a model based on a smaller number
of features might produce better results while being faster
and more cost-effective.

A way of tackling this problem is to select features ac-
cording to experts’ prior knowledge, but that is costly, time
demanding and manual. Furthermore, often the users with
the relevant understanding of the domain and task are not
the ones designing the model. An alternative is to resort to
methods that automatically rank and select features under
some measure of relevance or importance. Even so, a limi-
tation common to manual and automatic approaches alike is
that they define a single feature subset to represent the entire
dataset. When the amount of training data is small compared
to the number of features, a single subset is unlikely to be
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able to describe all observations (Avdiyenko, Bertschinger,
and Jost 2012).

Towards this challenge, we present a per-example feature
selection method by including the human-in-the-loop. We
propose a framework where experts are asked to identify the
most relevant features for a few examples. Reinforcement
Learning (RL) allows us to use that feedback to explicitly
model the probability of selecting each feature and derive a
policy that produces a new feature subset for each observa-
tion in the dataset. Each example is thus represented by a
different set of features, which is the only input to a subse-
quent learning algorithm (e.g., a classifier or regressor). The
feature selection policy is learned through policy gradient
methods to minimize both (i) the loss function of the asso-
ciated learning algorithm and (ii) the dissimilarity between
the feature subsets chosen by the model and the users.

Such an approach can not only improve the performance
of the model but also render its decision-making more inter-
pretable to human users. As the final prediction relies only
on the selected feature subset, which is individual to each
example, one can interpret those variables as an explanation
for the model’s output. Moreover, by mimicking human an-
notation in selecting the most relevant features, the model
can better reflect causal relationships in the experts’ minds.

We frame our model as a stochastic computation graph
(Schulman et al. 2015) and compare two different solvers:
Score Function (SF) and Pathwise Derivative (PD) estima-
tors. We validate our method in two scenarios: (i) a proof-
of-concept image classification task and (ii) a real-world
project risk classification task. In the latter, which is highly
human-curated, our architecture improves the baseline ac-
curacy by more than 50%. We also study the influence of
different hyperparameters and factors of practical relevance,
such as the required number of pieces of feedback and the
presence of conflicting information from different experts.

The next section reviews related work. Then, we present
(i) the feature selection problem, (ii) our human-in-the-loop
approach, (iii) the stochastic computation graph framework
with the SF and PD solvers, and finally (iv) the experiments
in the two tasks described above.

Related Work
The literature is rich in feature selection methods, and we re-
fer to (Guyon and Elisseeff 2003) and (Chandrashekar and
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Sahin 2014) for excellent surveys. More precisely, we are
concerned with variable elimination techniques, where only
a subset of the available features is selected. These are tradi-
tionally divided in filters (Tyagi and Mishra 2013), wrappers
(Kohavi and John 1997) and embedded methods (Guyon and
Elisseeff 2003). Filter methods consist of a preprocessing
step where the top-k features are selected by ranking them
against some score function, such as the mutual informa-
tion between input and target variables. Conversely, wrapper
methods rank feature subsets following some performance
measure such as the accuracy in the training data. That re-
quires retraining the model for each candidate subset, which
can be computationally costly and time-consuming. Finally,
embedded methods try to solve that problem by performing
feature selection while training the learning algorithm.

Our approach can be classified as an embedded method
because we jointly train the feature selection and the learn-
ing algorithm via gradient descent. However, it distinguishes
itself from conventional ones because it selects a differ-
ent subset of the features for each observation. Such a per-
example approach can better describe the data (Avdiyenko,
Bertschinger, and Jost 2012) and render the output more in-
terpretable, as the selected variables can be understood as
the “causes” that drive the model’s decision-making.

Per-example feature selection has also been studied in
(Avdiyenko, Bertschinger, and Jost 2012). They proposed a
filter method based on the mutual information between fea-
tures and target variables, conditioned on the specific val-
ues of each example. The mutual information is then used
as a score to rank the k most relevant features for each in-
put. Their work contrasts with ours in two significant ways:
(i) their method is deterministic and completely data-driven,
whereas ours include human feedback to provide insights
that cannot be automatically inferred from small or com-
plex datasets; (ii) they build a subset sequentially, while our
method produces a candidate subset in a single step, with no
need for an arbitrary stop criterion.

Our model is also inspired by recent developments in
attention mechanisms in deep learning (Mnih et al. 2014;
Xu et al. 2015; Bengio, Léonard, and Courville 2013;
Bahdanau, Cho, and Bengio 2015). By attributing weights
to the different hidden states in a neural network, attention
mechanisms are also selecting the most relevant features to
minimize the model’s cost function. Our contribution lies in
the application of such attention mechanisms to human-in-
the-loop architectures as a way to provide prior knowledge
to the model on-the-fly.

Finally, our model also relates to probabilistic approaches
to knowledge elicitation (Cano, Masegosa, and Moral 2011;
House, Leman, and Han 2015; Daee et al. 2017). The work
by Daee et al. is particularly relevant because they also query
users about feature importance. However, they only model
global feature relevance, whereas we propose a per-example
feature selection method capable of eliciting the variables
that drive the prediction for each observation.

Feature Selection
We assume a supervised learning scenario, where a para-
metric model is trained to minimize some cost function

C(x, y, θ), where x is the input, y is the target, and θ is the
set of parameters defining the model. For clarity, we refer to
the model’s prediction as ŷ to contrast with the true value y.

Framework
We propose a framework where the annotators or the users
not only provide the ground truth y but also select the most
relevant features for some of the examples in the dataset.
That is common practice when experts emphasize some
characteristics of the data to drive the machine learning
modeling (Raghavan, Madani, and Jones 2006). To model
that annotation and perform feature selection (variable elim-
ination) on a per-example basis, we introduce a mask a that
is applied over the input vector x to filter out irrelevant fea-
tures in each observation. Therefore, if an example is given
by x ∈ Rd, where each dimension corresponds to a feature
xj , then a is an indicator variable in {0, 1}d, such that:{

aj = 1, if xj is used for example x
aj = 0, otherwise.

(1)

We denote the input to the learning algorithm by x′, which
is now given by x′ = x � a, where � is the element-wise
or Hadamard product. As the feature selection is performed
on a per-example basis, a must be a function of the input
x. However, if a is an indicator variable, we cannot apply
gradient descent to minimize the loss C(x′, y, θ) because it
is no longer differentiable with respect to the function that
defines a. For that reason, we make variable a stochastic and
model the probability of a conditioned on x. Given that a ∈
{0, 1}d, we can associate each component aj to a Bernoulli
distribution parametrized by q̂j and obtain:

π(a|x) =
d∏
j=1

q̂
aj
j (1− q̂j)(1−aj). (2)

Our objective is to concentrate the mass of the distribu-
tion π(a|x) on values of a that minimize the loss function
C(x′, y, θ). To achieve that, we will resort to RL and, in par-
ticular, policy gradient methods (Sutton and Barto 2011).
Hence, we will refer to π(a|x) as a policy, which should
tell us the best a given the current input x. Keeping the RL
jargon, the function that defines such a policy will be called
an agent. The probability q̂j of each feature being selected
by this agent will be a function of x and approximated by
a neural network with parameters ψ, where the last layer
consists of a sigmoid function to squash the results into a
probability space. The vector composed of all d parameters
q̂j is estimated in a single step by this neural network.

q̂ψ = (q̂1, q̂2, ..., q̂d) = h(x;ψ). (3)

Note that we defined a as an indicator variable to produce
a variable elimination method: the features are either in the
selected subset of variables or not. However, our framework
can be easily extended to any number of states to represent
the relative importance of each feature, which could also be
seen as mid-ground between the soft and hard attention mod-
els proposed in (Bengio et al. 2016). In that case, assuming
K possible states, the policy π(a|x) can be rewritten in the
following more general form:
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π(a|x) =
d∏
j=1

K∏
k=1

q̂
[aj=k]
jk , (4)

where q̂jk is the probability of assigning state k to feature j
and [aj = k] evaluates to 1 if aj = k, 0 otherwise.

Human-Like Feature Selection
The framework described above can also be used to model
the feature selection performed by humans. We will assume
without loss of generality that the annotators’ feedback can
be translated into a vector q ∈ [0, 1]d, where each element
qj reflects the importance attributed to feature j. In that case,
q is directly comparable to the model’s output q̂, which can
also be interpreted as the relevance of each feature. The intu-
ition is that if qj or q̂j is close to one, feature j is determinant
to predict ŷ and is negligible otherwise.

Therefore, to train the agent to mimic the feature selection
done by the users, first we need to define a similarity mea-
sure between q and q̂. The distance between q and q̂ is also
a cost function, which we will refer to as Cf (x, q, ψ) in (5)
to distinguish it from C(x′, y, θ). The Euclidean distance is a
straightforward option of a distance measure, which results

Cf (x, q, ψ) = Ex ||qi − q̂i||2 = Ex ||qi − h(x;ψ)||2. (5)

The Mean Squared Error (MSE) between q and q̂, as de-
fined above, is not the only possibility, and other dissimilar-
ity functions might be pertinent depending on the applica-
tion and type of feedback. For instance, an alternative is the
cosine distance

Cf (x, q, ψ) = 1− q q̂

||q||2 ||q̂||2
= 1− q h(x;ψ)

||q||2 ||h(x;ψ)||2
. (6)

With the cosine distance, we penalize the agent if the two
vectors do not have the same orientation in space but ignore
differences in magnitude.

Once the similarity measure is defined, we just have to
add Cf (x, q, ψ) to the final cost function to which we will
refer as C in (7) to simplify the notation.

C = C(x, y, q, θ, ψ) = C(x′, y, θ) + λ Cf (x, q, ψ). (7)

That can be interpreted as the sum of two reward signals that
encourage the agent to achieve a good performance at the
machine learning task while mimicking human feature se-
lection. In (7) λ is a hyperparameter that balances the trade-
off between these two signals. Such sum of errors for differ-
ent tasks is common practice in multi-task learning (Caruana
1997) Note that the framework does not require human fea-
ture selection data to be provided for all data. For examples
with no available feedback, Cf (x, q, ψ) is set to zero.

Stochastic Computation Graphs
The mask a is stochastic and before making a prediction, we
first need to sample a from the policy defined in (2). Hence,
we can frame the whole model, including the feature selec-
tion and the learning algorithm, as a stochastic computation
graph (Schulman et al. 2015). That allows for a straightfor-
ward comparison of possible solvers and clear representa-
tions of the model as depicted in Figures 1 and 2.

aψ

x

x′ C

θ

y

Figure 1: Stochastic graph for the score function estimator.
As in (Schulman et al. 2015), square nodes are deterministic,
whereas round ones are stochastic. Inputs and parameters are
represented by their corresponding vector names.

The challenge in a stochastic computation graph is that
the standard backpropagation algorithm is no longer suffi-
cient because the cost C(x′, y, θ) is non-deterministic and
non-differentiable with respect to the parameters ψ. In that
case, we need some way of estimating ∇ψ Ea[C ], the gra-
dient of the expected loss function with respect to the policy
parameters. To that end, we can resort to one of the follow-
ing estimators to find the optimal policy π(a|x): (i) the Score
Function (SF) and (ii) the Pathwise Derivative (PD) estima-
tors (Schulman et al. 2015).

Score Function Estimator
The Score Function estimator (SF), also known as the RE-
INFORCE algorithm (Williams 1992), consists in rewriting
∇ψ Ea[ C ] as Ea

[
C ∇ψlog

(
π(a|x, ψ)

)]
. Practically, it al-

lows the complete model to be trained by gradient descent
to minimize a surrogate cost function C′ defined as follows:

C′ = C log
(
π(a|x, ψ)

)
+ C. (8)

In many cases, it is desirable to favor a subset with a
smaller number of features, even if that does not decrease C′.
To encourage the desired sparsity in the mask a, we follow
the approach used in (Bengio et al. 2016) and introduce a
regularizer Ls, which penalizes the model if q̂j is not sparse.

Ls = E
[
(||1
d

d∑
j

q̂j)− φ||2
]
, (9)

where φ ∈ [0, 1] is an hyperparameter that specifies the de-
sired sparsity of activation. We also want q̂ to have high vari-
ance across different examples to avoid always selecting the
same subset of features. Hence, we add another regularizer
to penalize low variance across examples in the same batch.

Lv = −
d∑
j

1

m

m∑
i

(
q̂ij −

( 1

m

m∑
i

q̂ij

))2
, (10)

where the index i refers to each example x andm is the batch
size. The model is then trained to minimize C′ + λsLs +
λvLv , where λs and λv are hyperparameters that balance
the trade-off between the cost C′ and the desired sparsity
and variance in the feature subset.
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Pathwise Derivative Estimator
The second alternative is to use the Pathwise Derivative es-
timator (PD), which is also known as the reparametrization
trick and was made popular by variational autoencoders in-
troduced in (Kingma and Welling 2014). We can sample
from π(a|x) by first sampling a latent variable z from a
known fixed probability distribution p(z) and transforming
it using some function to recover a. In that case, the mask
a is no longer sampled from a random variable because we
introduce another stochastic node z to account for the ran-
domness in the process. The corresponding graph for the
pathwise derivative estimator is shown in Figure 2.

a

z

ψ

x

x′ C

θ

y

Figure 2: Stochastic graph for the pathwise derivative esti-
mator. Here the mask a is no longer a stochastic node.

In variational autoencoders, z is usually distributed ac-
cording to a Gaussian distribution (Kingma and Welling
2014; Kingma et al. 2016), but the reparametrization trick
can be extended to categorical variables by sampling z from
a Gumbel-softmax distribution (Jang, Gu, and Poole 2017;
Maddison, Mnih, and Teh 2015). To use that distribution, we
first need to rewrite a as a one-hot vector to match the out-
put of a softmax. Assuming K different possible states, ajk
is the probability of assigning state k to feature j, which can
be calculated as

ajk =
exp((log(q̂jk) + gk)/τ)∑K
l=1 exp((log(q̂jl) + gl)/τ)

for k in 1, ...,K,

(11)
where g0, g1, ..., gk, are samples from Gumbel(0,1) (Gum-
bel 1954) and τ is a hyperparemeter that defines how close
the distribution is from the argmax function. For τ > 0,
equation (11) is smooth and differentiable, but for τ = 0
it is simply an argmax function. Hence, during training τ is
maintained positive, but we gradually decrease its value as
the model approaches convergence. During test time, we do
not need the cost function to be fully differentiable and τ is
set to zero to recover an argmax function.

Now the mask is a matrix a ∈ Rd×K and we need to
reduce it to a vector of size d before multiplying it by the in-
put x. One way to do so is to multiply a by a set of weights
w ∈ RK, so that aw ∈ [0, 1]d. For instance, if we want to
parametrize a Bernoulli distribution as in (2), aj would have
two states and w would be [0, 1]T . Note that for τ > 0, a is
no longer an indicator variable, but is continuous in the inter-
val [0, 1]. That is a relaxation that renders the graph wholly
differentiable during training, but we regain the original def-
inition of a in (1) during test time when τ = 0.

The advantage of the pathwise derivative estimator is that

it does not require a surrogate cost function and we can up-
date the whole model via gradient descent by minimizing
(7). We also observed that the PD estimator does not require
the same type of regularization as the SF estimator, which re-
duces the number of hyperparameters that need fine-tuning.
However, it does introduce another hyperparameter for the
temperature τ , so that the entropy in the Gumbel-softmax
can be regulated during training.

Experimental Results
We validate our feature selection method on: (i) a proof-
of-concept image classification task for reproducibility and
(ii) a real-world project risk classification task. All exper-
iments were developed on top of the Tensorflow python
API (GoogleResearch 2015) and run on a single GPU
Nvidia GEFORCE GTX 1080 Ti. The code for the image
classification task can be found at github.com/AlCorreia/
Human-in-the-loop-Feature-Selection.

Set-up: The architecture of our feature selection model is
similar for both use cases, which shows the generality of our
approach. The classifier was a neural network with a feedfor-
ward architecture and a hidden layer of 256 neurons. The last
activation was a softmax to yield the negative log-likelihood
used as loss function for the classification task. The RL agent
was also neural network-based with a single hidden layer of
128 neurons. In both cases, the activation function between
the layers was a rectified linear unit (ReLU). For the project
risk classification dataset, categorical features were embed-
ded in a vector of size log2 n where n is the total number of
categories. These embeddings were learned via backpropa-
gation with the rest of the model.

Runs: The model based on the PD estimator was trained
for 100 epochs with batches of 876 projects (1000 im-
ages), but the feedback was only provided during the last
50 epochs. The SF estimator was trained the same way, but
as it proved noisier, we also pretrained the network without
any feature selection for 40 epochs. In each training phase,
the whole model was updated via Adagrad (Duchi, Hazan,
and Singer 2011) with initial learning rate of .5. The hyper-
parameter λ in (7) was set to 1, so that minimizing the cost
function and reproducing the feedback were equally impor-
tant objectives. For the SF estimator, the regularization pa-
rameters φ, λs and λv in (9) and (10) were set to .2, 1 and
1, respectively. For the PD estimator, different values for the
temperature parameter were tested, but for the results in Ta-
ble 4 and 5, it was set to 10 and decayed by 4% every 100
steps to slowly render the model more deterministic.

Image Classification Task
Context: We tested our model on an augmented MNIST
dataset (LeCun et al. 1998) composed of cluttered images as
in (Mnih et al. 2014). We randomly positioned each digit in-
side a larger frame and added four 8x8 sub patches of other
digits to random locations of the image. For that task, the
features x are not the raw pixels, but the output of a single
convolutional layer (1x4x4x8), which discards the trivial so-
lution of simply selecting non-zero pixels.
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To prove that the agent can select relevant features, the
attention vector was equally applied over all the filters of the
convolution to make the mask directly related to locations
in the image. Thus, one can interpret whether the agent’s
selection was pertinent by visually comparing it against the
actual position of the digit.

Feedback Computation: We simulated user feedback by
fitting a 2D Gaussian with the position of the center of the
digit for the mean. All training data was generated on-the-
fly by repeating the above process. The test data was com-
posed of a fixed set of 5000 images produced in the same
way. Figure 3 shows an example of a cluttered image and its
corresponding feedback.

(a) (b)

Figure 3: Cluttered MNIST image and simulated feedback.

Baseline: The baseline for the experiments is given by the
neural network with the same architecture, but without any
feature selection, i.e. all the features extracted by the convo-
lutional layer are fed to the classifier. That model was able
to classify correctly 92.23% of the examples in the test set
after 100 epochs with batches of 1000 examples.

Selected Features: Figure 4 shows the evolution of the
probabilities q̂ corresponding to Figure 3, during the train-
ing of the model with the PD estimator. The model gradually
learned to focus on a single region of the image, but q̂ only
became sharp after the feedback was introduced.

(a) Beginning (b) 25 epochs (c) 50 epochs (d) feedback

Figure 4: Evolution of the probabilities vector q̂ during train-
ing of the model with PD estimator and MSE feedback.

Comparing Estimators
Table 1 shows the results obtained with both estimators
when applying the proposed feature selection method on a
cluttered MNIST dataset with a frame of 60x60.

Table 1: Estimators Impact on Accuracy (%).
Feedback / Estimator SF PD
Before Feedback 85.35 85.70
Cosine Feedback 92.30 88.40
MSE Feedback 91.16 89.61

Both estimators produced similar results during the first
phase when the feature selection was based on the classifi-
cation cost only. Despite similar performances, the PD esti-
mator has the advantage of not requiring pretraining nor any
regularization or variance reduction parameters.

In both cases the inclusion of the simulated feedback pro-
duced a considerable improvement in the accuracy of the
model. However, the SF estimator proved more efficient in
incorporating the human feature selection, outperforming
the PD estimator by almost 5%. The difference can be at-
tributed to the difficulty in fine-tuning the hyperparameter
τ for the PD estimator based on the Gumbel-softmax. Even
though the temperature was decayed during training, τ was
probably still too high to allow for an efficient integration of
the feedback. As indicated by the experiments presented in
the next section, for τ around 1.0 the PD estimator produces
similar results to those obtained with the SF here.

Impact of Temperature on Accuracy
The temperature τ is the only hyperparameter that needs to
be fine-tuned when solving the graph with the PD estima-
tor. We ran the model with the same architecture described
above, but with five different values for the temperature. Dif-
ferently from the previous experiments, in this case the value
of τ was kept constant during the whole training.

Table 2: Temperature Impact on Accuracy (%).
Temperature Value Before feedback After feedback
0.25 84.77 88.70
0.50 85.48 89.76
1.0 86.5 91.20
3.0 84.10 88.90
10.0 84.77 88.82

When τ is close to zero, the Gumbel-softmax approaches
an argmax over the probabilities q̂j , which means the agent
only exploits and always picks the value for a that maxi-
mizes the reward under its current policy. For τ > 0, aj
becomes stochastic, which allows the agent to explore and
observe the loss for intermediate values of a. However, if τ
is high, equation (11) is close to an uniform distribution over
its K categories and ajk is 1

K for every k. Hence, assuming
a fixed set of weights w, the final value for aj would remain
constant and independent of the policy parameters ψ, pre-
venting the agent from updating its policy effectively. That
is reflected in the results presented in Table 2. A temperature
value of 1.0 produced the most accurate model, presumably
striking a balance between exploration and exploitation.

From Bernoulli to Categorical Distribution
We studied the influence of the number of statesK on the PD
estimator. The results in Table 3 show that the accuracy of
the model decreases with the number of states. One can in-
fer two different reasons for that: (i) as the number of states
increases, the search problem grows in complexity and (ii)
given that the MNIST data is itself binary, the benefit of hav-
ing multiple states does not compensate for the increase in
complexity. However, in all cases the model benefited from
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the feedback and achieved similar accuracy values to those
presented Table 1. One can also conclude that the feedback
is all the more valuable when the search space is large.

Table 3: Number of States on Accuracy (%).
States Before Feedback Cosine MSE
2 85.15 88.40 89.50
3 83.82 88.70 89.61
10 80.83 88.69 88.98
20 74.24 86.62 85.40

Project Risk Classification Task
Business Context: We experimented our feature selection
method on a Project Risk Classification (PRC) dataset. 4
years of project risk profiles of a leading service company,
capturing 349, 324 projects across 97 features (19 categor-
ical and 78 numerical) and classified among 5 categories
(from high to no financial risk) are captured.

During the feedback collection phase, 114 business ex-
perts contributed by informing on: (i) (recommended) class,
(ii) important features, (iii) textual comments (manually
used to filter out some cases) cf. Figure 5. A total of 613, 916
pieces of feedback on 87, 657 active contracts (their classi-
fication and important features) have been collected over a
6-month pilot with an average of 7 pieces of feedback per
project, and 45 per person/day. On average, the business ex-
perts provided feedback on 11 (standard deviation of 3.9)
variables per example. Naturally, some feedback is conflict-
ing among users: 21.6% (resp. 12.8%) of the feedback con-
flict at class (resp. feature importance) level.

Motivation: The PRC problem fits our framework as (i)
baseline approaches reach a (low) maximum accuracy of
31.45% (random forest), (ii) project risk assessment is a
highly human-curated task where experts can expose their
knowledge by identifying relevant features, and (iii) com-
pletely data-driven approaches would require large amounts
of data given the sparsity inherent of this context.

Feedback Computation: From now on, we will use the
term feedback to refer to the feature-level annotation only,
as we are mostly interested in feature selection. We limited
the feedback to the binary impact of each feature because
it facilitates the labeling task and better correlates with our
variable elimination framework. Therefore, for each obser-
vation i, a piece of feedback translates to a binary vector
qi ∈ {0, 1}d, where qi,j = 1 iff feature j is relevant for ex-
ample i. Each example i received feedback from an average
of 7 users. Consequently, for all experiments except those on
Table 7, each i appeared multiple times in the dataset with
different qi’s. All those observations were treated indepen-
dently and randomly selected during training.

Validation: Accuracy is measured by comparing the pre-
dicted risk class with the real-world observations of risk for
completed projects. Training, testing and validation sets cor-
respond to 60/20/20% of the projects, respectively, with
each class equally distributed in the validation and test sets.

Baseline: There are two baselines for the experiments: (i)
a random forest trained with the same features, which at-
tained accuracy of 31.45% and (ii) a neural network with
the same architecture described above (cf. Technical Context
set-up), but without any feature selection. The latter classi-
fies correctly 29.01% of the examples in the test set after 100
epochs with batches of 876 examples.

Selected Features: After training with the feedback, the
model selected a relatively low number of features: 2 to 12
(mean: 4.6, std: 1.5). Such a low number of selected features
is desirable as it favors the interpretability of the model.

Impact of Estimators on Accuracy
Table 4 reports the accuracy obtained with SF and PD esti-
mators when applying our method on the PRC dataset.

Table 4: Accuracy (%) on PRC Test Set with Each Estimator.
Feedback / Estimator SF PD
Before Feedback 29.53 29.99
Cosine Feedback 82.49 77.51
MSE Feedback 80.11 78.44

The results show a very similar pattern to the one ob-
served in the image classification dataset. Once more the SF
was superior by 5%, but the PD was slightly more accurate
before the introduction of feedback.

Impact of Temperature on Accuracy
We also varied the temperature τ for the PD estimator on
the PRC dataset. The results presented in Table 5 support
the same conclusions we reached on the image classification
task. A τ of 1.0 lead to a higher accuracy both before and af-
ter the introduction of feedback, which suggests that would
be a good default τ value for the PD estimator.

Table 5: Temperatures on Accuracy on PRC (PD & MSE).
Temperature Value Before feedback After feedback
0.25 28.78 77.82
0.50 30.02 78.77
1.0 31.15 81.87
3.0 27.98 78.33
10.0 28.36 78.07

Feedback Impact on Accuracy
Qualitative Feedback Impact (1): Table 6 presents an
analysis of the optimal moment to start injecting the feed-
back into the model solved with the SF estimator. Even
though pre-training the network without any feature selec-
tion is beneficial, feedback should be provided no later than
40 epochs into the training phase to reach optimal results.

Table 6: Feedback epoch on Accuracy on PRC (SF & MSE).
Epoch(#) Accuracy(%) Epoch(#) Accuracy(%)
10 63.54 50 78.54
20 71.66 60 71.45
30 77.88 70 60.87
40 80.11 80 52.10
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Figure 5: User interface for Project Risk Classification problem (human feedback collection inside dashed zone).

Qualitative Feedback Impact (2): We run the same tests
with 4, 8, 16 and 32 states cf. Table 7 to evaluate the in-
fluence of the number of states K on the performance of the
PD estimator. To match these different numbers of states, we
combined the input from multiple users into a single score
per example, qi ∈ {0, 1

16 , ...
15
16 , 1} ( 16 is the max. number of

reviews per example). That score was adjusted proportion-
ally to match the other versions with 2, 4, 8 and 32 states.

Table 7: Accuracy (%) on PRC Test Set with PD Estimator
on Different Number of States.

States Before Feedback Cosine MSE
2 24.01 72.99 73.11
4 29.53 77.00 77.51
8 28.71 79.21 79.44
16 26.39 78.01 78.33
32 26.14 76.17 76.24

The accuracy of the model increases with the number of
states up to K = 8 (outperforming results in Table 4) and
then decreases. Although the search problem grows in com-
plexity with the number of states, that seems to be com-
pensated by the more fine-grained feedback. However, for
K > 8 the model starts to underperform, which indicates
that at that point the number of pieces of feedback available
is no longer enough to offset the larger search space. These
results contrast with the ones shown in Table 3, as the more
complex PRC dataset benefits more from granular feedback.

Quantitative Feedback Impact (1): As 12.8% of the
feedback is conflicting among users, we evaluated the im-
pact of such conflicts in Table 8. We varied this ratio by
removing any conflicting feedback up to the point of not
having any conflicts cf. case 0. We only removed pieces of
feedback which had no common basis, qi,j 6= q′i,j∀j. In-
terestingly, the best result was obtained when including 6%
of the conflicting feedback. Although counterintuitive, such
feedback might relax the constraint on some features, free-
ing the model to focus on minimizing the classification error.

Table 8: Conf. Feedback on Accuracy on PRC (SF & MSE).
Number (#) Conf. Feedback (%) Accuracy (%)
864,393 12.8 80.11
607,776 9 84.56
405,184 6 86.67
202,592 3 78.89
0 0 69.87

Quantitative Feedback Impact (2): Table 9 reports the
impact of the quantity of feedback, considering similar ratio
of conflicting feedback as for Tables 4 and 5. The accuracy
plateaus with 80% of feedback. Thus, an average of 5.6 com-
ments per project is required to obtain 77.54% of accuracy,
which above the goal set up by the project stakeholders.

Table 9: Feedback Size on Accuracy on PRC (SF & MSE).
Feedback Size(#) Feedback Ratio(%) Accuracy(%)
0 0 29.53
3,376,538 50 61.65
5,402,460 80 77.54
6,077,768 90 78.11
6,753,076 100 80.11

Lessons Learnt
We learned a few important characteristics of the proposed
human-in-the-loop architecture:
1. We observed the SF estimator does not respond well to

dropout (Srivastava et al. 2014). Conversely, the PD es-
timator seems to benefit from this type of regularization
(we used a dropout rate of 0.8 for all PD experiments);

2. The architecture used to model the agent is independent
of the estimator. One can change between them during
training to take advantage of both methods;

3. The influence of the dissimilarity distance (MSE/cosine)
was marginal here but might vary with the application.

2444



Conclusion and Future Work
We address the problem of human-in-the-loop per-example
feature selection as a stochastic computation graph. It is a
general approach that can be applied to a variety of machine
learning tasks with little modifications, as demonstrated by
the very distinct datasets we tackled in this paper. Direct ap-
plications could be in the context of transfer learning (Chen
et al. 2018). With the image classification dataset, we visu-
ally proved the model can identify the most relevant features
of each example, even though in that simple task, that did
not reflect in a gain in accuracy. With the PRC dataset, we
showed that our model successfully employed real human
feedback to produce a significant improvement in accuracy,
while also providing business-driven insights to the users.
Most importantly, this new architecture enables a symbi-
otic interaction with stakeholders as the feature selection not
only can enhance the model performance but also inform the
most relevant properties of each example to the users. Thus,
this type of interaction might prove useful in further devel-
opments of explainable artificial intelligence.

We identify two main lines of research for future work.
The first is to extend the architecture to the full active learn-
ing scenario, where the model asks the users about specific
examples. The second is to model the dependence between
the features explicitly via a prior distribution over the proba-
bilities q̂ or a more complex RL policy. We framed the model
as an RL problem precisely to support extensions of this sort.
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