
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Verifying Robustness of Gradient Boosted Models

Gil Einziger, Maayan Goldstein, Yaniv Sa’ar, Itai Segall
Nokia, Bell Labs

gilein@bgu.ac.il, {maayan.goldstein, yaniv.saar, itai.segall}@nokia-bell-labs.com

Abstract

Gradient boosted models are a fundamental machine learning
technique. Robustness to small perturbations of the input is
an important quality measure for machine learning models,
but the literature lacks a method to prove the robustness of
gradient boosted models.
This work introduces VERIGB, a tool for quantifying the ro-
bustness of gradient boosted models. VERIGB encodes the
model and the robustness property as an SMT formula, which
enables state of the art verification tools to prove the model’s
robustness. We extensively evaluate VERIGB on publicly
available datasets and demonstrate a capability for verifying
large models. Finally, we show that some model configura-
tions tend to be inherently more robust than others.

1 Introduction
Gradient boosted models are fundamental in machine learn-
ing and are among the most popular techniques in practice.
They are known to achieve good accuracy with relatively
small models, and are attractive in numerous domains rang-
ing from computer vision to transportation (Viola and Jones
2001; Yang et al. 2015; Caruana and Niculescu-Mizil 2006;
Freund and Schapire 1997; Chapelle and Chang 2010;
Zhang and Haghani 2015). They are easy to use as they do
not require normalization of input features, and they sup-
port custom loss functions as well as classification and re-
gression. Finally, the method has a solid theoretical ground-
ing (Mason et al. 1999).

Machine learning models are often vulnerable to adver-
sarial perturbations, which may cause catastrophic failures
(e.g., by misclassification of a traffic sign). Specifically, Fig-
ure 1 exemplifies that gradient boosted models are indeed
vulnerable to such perturbations. Thus, identifying which
models are robust to such manipulations and which are not
is critical. Indeed, numerous works suggested training tech-
niques that increase the robustness (Leistner et al. 2009;
Sun, Todorovic, and Li 2007). However, there is currently
no method to formally verify gradient boosted models. Fur-
thermore, it is not clear how the configuration parameters of
such models affect their robustness. These knowledge gaps
make it challenging to guarantee the reliability of gradient
boosted solutions.
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Example of the lack of robustness in a gradient
boosted model trained over a traffic signs dataset. In the first
row, an “80 km/h speed limit” sign is misclassified as a “30
km/h speed limit”. In the second row, a “turn left” sign is
misclassified as “ahead only”. Observe in the third column
(delta, computed as the difference in pixel values of the two
images) that the applied changes are barely visible to the
naked eye (delta of +/-3 in the range of 256 values per pixel
per color). The fourth column highlights the modified pixels.

In the last couple of decades, formal methods successfully
increased the reliability of numerous software and hard-
ware systems. Such success gave rise to diverse verification
methods such as model checking, termination analysis, and
abstract interpretation. Formal methods are especially ap-
pealing in situations where the cost of mistakes is excep-
tionally high. Examples include mission-critical solutions
as well as mass-produced hardware. Unfortunately, machine
learning models are fundamentally different from traditional
software artifacts, and we cannot directly use existing ver-
ification techniques for machine learning models. The re-
search community already started addressing the problem
for neural network models (Pulina and Tacchella 2010;
Katz et al. 2017; Huang et al. 2017; Gehr et al. 2018;
Narodytska et al. 2018). Here we focus on an area that has
not been covered so far – verification of robustness of gradi-
ent boosted models.

The main contribution of this work is the VERIGB tool
for verifying the robustness of gradient boosted models.

2446

VERIGB encapsulates novel and formally proven methods
that translate such models, and robustness properties into
SMT formulas. Then, we feed these formulas to a stan-
dard SMT solver, which proves the robustness or provides a
counter-example. VERIGB includes runtime optimizations
that make the verification process practical. We extensively
evaluate it with public datasets and demonstrate scalabil-
ity for large and accurate models. Finally, we highlight that
some model configurations are fundamentally more robust
than others.

The rest of this paper is organized as follows: In Section 2
we provide background on logic, decision trees, and gradient
boosted models. Next, in Section 3, we formally define the
robustness properties. The SMT formula representation of
gradient boosted models is given in Section 4, and that of the
robustness property in Section 5. Next, Section 6 suggests
optimizations of these encodings improving their runtime.
Section 7 evaluates VERIGB on several publicly-available
datasets, while Section 8 surveys related work. We conclude
in Section 9, which discusses the implications of our work
and suggests directions for future research.

2 Preliminaries
2.1 Logic and Linear Arithmetic
A propositional formula is defined inductively as one of the
following: (i) ‘True’ and ‘False’ constants (T and F). (ii) a
variable xi ∈ {x1, . . . , xm}; (iii) if ϕ and ψ are proposi-
tional formulas then so are ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ, ϕ → ψ,
ϕ ↔ ψ (with their usual interpretation). Given a proposi-
tional formula ϕ, the Boolean satisfiability problem (SAT)
determines whether there exists an assignment under which
ϕ evaluates to True.

Satisfiability Modulo Theories (SMT) extends the
Boolean SAT problem by combining a variety of under-
lying theories (Barrett et al. 2009). We use the linear real
arithmetic theory, which extends the propositional fragment
with all rational number constants, and with the symbols:
{+,−, ·,≤,≥}. A formula ϕ (be that an SMT or SAT in-
stance) is said to be satisfiable, if ϕ evaluates to True for
some assignment ~x ∈ Rm. If there is no such assignment,
we say that ϕ is unsatisfiable.

2.2 Decision Trees
Decision trees are functions that receive an assignment ~x ∈
Rm and return a value. Formally, a decision tree structure
(DTS) D = 〈N, I, L〉 is defined as follows:

• N = {n1, . . . , nk}: is the set of nodes in the tree, and n1

is defined to be the root node of the tree.

• I ⊆ N : is the subset of internal nodes in the tree. An
internal node is a triplet n = 〈Sn,Tn,Fn〉, where Sn is
a condition expressing the decision of node n (an SMT
formula), and Tn ∈ N (resp., Fn ∈ N) is the target suc-
cessor node when the condition evaluates to True (resp.,
False).

• L = N \I: is the subset of leaf nodes in the tree, i.e. nodes
for which there is no successor. A leaf node n = 〈Wn〉
also has a weight Wn ∈ R.

Intuitively, S (resp., T and F) is a dictionary that associates
to every n ∈ I a condition Sn (resp., a positive child Tn ∈
N and a negative child Fn ∈ N). W is a dictionary that
associates to every n ∈ L a weight Wn ∈ R.

A DTS D is said to be well-formed if, and only if, every
node n ∈ N has exactly one predecessor node, except for
the root node that has no predecessor. In a well-formed tree,
we denote by Pn the predecessor of node n ∈ N . Given an
input vector ~x ∈ Rm, the valuation of a DTS D on ~x is a
function D̂ : Rm → R. Tree D is traversed according to
~x, ending in a leaf node n ∈ L, and function D̂(~x) is the
weight of that node, i.e. Wn ∈ R.

2.3 Gradient Boosted Trees
Gradient boosted regression is an ensemble technique that
constructs a strong learner by iteratively adding weak learn-
ers (typically decision trees) (Mason et al. 1999). Formally,
a Gradient Boosted Regressor (GBR) is a sequence of r
decision trees R = 〈D1, . . . , Dr〉. Given an input vector
~x ∈ Rm, the valuation of a GBR R is the sum of valuations
of its r decision trees. That is, R̂(~x) =

∑r
i=1 D̂i(~x).

Gradient boosted classification is a tree ensemble tech-
nique that constructs a strong learner per each class (again,
by iteratively adding weak learners), to assign a class for
a given input. Let c be the number of classes. Formally, a
Gradient Boosted Classifier (GBC) C = 〈R1, . . . , Rc〉 is
a sequence of c gradient boosted regressors, where regres-
sor Rj = 〈Dj

1, . . . , D
j
r〉. Given an input vector ~x ∈ Rm,

the valuation of C, valuates all c regressors over ~x and re-
turns the class associated with the maximal value, namely:
Ĉ(~x) = arg maxj(R̂j(~x)). We assume that there is an asso-
ciation between each input vector and a single class1.

3 Robustness of Machine Learning Models
Robustness means that small perturbations in the input have
little effect on the outcome. That is, for classifiers the clas-
sification remains the same, and for regressors, the change
in valuation is bounded. This section formally defines ro-
bustness properties, in a similar manner to (Pulina and
Tacchella 2012; Narodytska et al. 2018; Katz et al. 2017;
Moosavi-Dezfooli et al. 2017).

Consider a regression model R, and let R̂(~x) be the val-
uation function of R for an input ~x ∈ Rm. We define local
adversarial (ε, δ)-robustness for an input ~x, as follows:

Definition 3.1 (local adversarial robustness of regressors).
A regression model R is said to be (ε, δ)-robust for an input
~x, if for every input ~x′ such that ||~x − ~x′||p < ε, the output
is bound by δ, i.e., |R̂(~x)− R̂(~x′)| ≤ δ.

Here, ||~x− ~x′||p is used to specify the distance between two
vectors ~x and ~x′ according to some norm p. For example,
one may compute the distance between two images as the
maximal difference between pairs of corresponding pixels
(i.e., p = ∞), or the sum of these differences (i.e., p = 1).

1In cases where multiple regressors return the same maximal
value we can break the symmetry using their indices.

2447

Throughout this paper we use norm p = ∞, but our tech-
niques are applicable to any norm that is linear to the input.

Next, consider a classification model C and let Ĉ(~x) be
the valuation function of C for an input ~x ∈ Rm. We define
local adversarial ε-robustness for an input ~x as follows:
Definition 3.2 (local adversarial robustness of classifiers). A
classification model C is said to be ε-robust for an input ~x,
if for every input ~x′ such that ||~x−~x′||p < ε, the output does
not change its classification, i.e., Ĉ(~x) = Ĉ(~x′).

The above definitions aim to certify a given input but do
not guarantee much regarding the model itself. Therefore,
we extend these definitions to capture the behavior over a
set of inputs A. We define ρ-universal adversarial (ε, δ)-
robustness on a set of inputs A, as follows:
Definition 3.3 (universal adversarial robustness of regres-
sors). A regression model R is said to be ρ-universally
(ε, δ)-robust over the set of inputs A, if it is (ε, δ)-robust for
at least ρ · |A| inputs in A.

Finally, we extend the classifier definition of local ε-
robustness, and define ρ-universal adversarial ε-robustness
on a set of inputs A, as follows:
Definition 3.4 (universal adversarial robustness of classi-
fiers). A classification model C is said to be ρ-universally
ε-robust over the set of inputs A, if it is ε-robust for at least
ρ · |A| inputs in A.

Definition 3.3 and Definition 3.4 capture the universal
adversarial robustness properties for regressors and classi-
fiers. The parameter ε determines the allowed perturbation
change, that is, how much an attacker can change the input.
For regressors, we also require the parameter δ that defines
the acceptable change in the output, while for classifiers we
require that the classification stays the same. Finally, the pa-
rameter ρmeasures the portion of robust inputs. In Section 7,
we evaluate the ρ values of varying models instead of select-
ing a ρ value in advance.

4 Encodings of Gradient Boosted Models
This section explains the encoding of gradient boosted mod-
els into SMT formulas. We start by translating a single path
in a decision tree and then work our way up until we end up
with a formula for the entire model.

4.1 Encoding of Decision Trees
Given a well-formed DTS D = 〈N, I, L〉 and a leaf l ∈ L,
we define path(l) to be the set of nodes on the path in the
tree between the leaf node l and the root node n1 (including
both nodes). We define the encoding of leaf l in tree D to be
the formula π(l) as follows:

π(l) :
∧

n∈path(l)\{n1}

(
TPn

= n→ SPn

FPn = n→ ¬SPn

∧

)
∧ (wl = Wl)

The encoding π(l) restricts the decision tree valuation vari-
able wl to be the weight of the leaf (wl = Wl), and for each
node n in the path except for the root, if node n is the posi-
tive child of its parent (TPn

= n) then the parent condition

should hold (SPn), and if node n is the negative child of its
parent (FPn = n) then the negation of the parent condition
should hold (¬SPn

).

Lemma 4.1 (leaf encoding). Let D̂ be the valuation function
of the well-formed tree D. If π(l) evaluates to True, then
there exists a truth assignment ~x ∈ Rm, wl ∈ R such that
D̂(~x) reaches leaf l , and D̂(~x) = Wl = wl.

Proof. Assume that the leaf encoding π(l) evaluates to True,
then there exists a truth assignment ~x ∈ Rm, wl ∈ R.
Since the tree is well-formed and following the definition of
path(l), we know that every internal node n′ ∈ path(l) ∩ I
is a predecessor of some node n ∈ path(l), i.e., n′ = Pn.
If n is the positive successor of n′, then (TPn

= n) holds,
implying that Sn′ holds for ~x as well. Thus, when the val-
uation of D̂(~x) traverses tree D and reaches node n′, we
know that it indeed turns to the positive child. The same
reasoning applies to the negative successor of n′. By apply-
ing this reasoning recursively from the root node, we show
that the traversal of the valuation reaches leaf l, and outputs
D̂(~x) = Wl = wl.

Given DTS D = 〈N, I, L〉, we now define the encoding
of tree D to be the formula Π(D) as follows:

Π(D) :
∨
l∈L

π(l)

Namely, Π(D) is a disjunction of formulas, where each dis-
junct represents a concrete path to one of the leaves inD and
its respective valuation.

Lemma 4.2 (tree encoding). Let D̂ be the valuation func-
tion of the well-formed tree D. If Π(D) evaluates to True,
then there exists a truth assignment ~x ∈ Rm, wl ∈ R, and
a single leaf l ∈ L for which D̂(~x) reaches l and outputs
D̂(~x) = Wl = wl.

Proof. Assume that the tree encoding Π(D) evaluates to
True, then there exists a truth assignment ~x ∈ Rm, wl ∈ R.
Clearly, at least one clause in Π(D) evaluates to True. Since
tree D is well formed, at most one clause in Π(D) evaluates
to True, otherwise there exists an internal node in the path
n ∈ path(l) ∩ I for which Sn is inconsistent over ~x. There-
fore, there exists exactly one clause in Π(D) that evaluates
to True, and exactly one leaf l ∈ L for which π(l) evaluates
to True. If π(l) evaluates to True, then following the same
reasoning of Lemma 4.1, the truth assignment ~x ∈ Rm,
wl ∈ R reaches leaf l and outputs D̂(~x) = Wl = wl.

4.2 Encoding of Gradient Boosted Trees
Given GBR R = 〈D1, . . . , Dr〉 and following Lemma 4.1,
and Lemma 4.2, we define the encoding of regressorR to be
the formula Υ(R) as follows:

Υ(R) :
(r∧

i=1

Π(Di)
)
∧ out =

r∑
i=1

wli

Intuitively, Υ(R) consists of two parts: (i) the conjunction
of all tree encodings, ensuring that the decision tree valua-
tion variables of each treewl1, . . . , wlr are restricted to their

2448

respective tree valuations; and (ii) a restriction of the regres-
sor valuation variable out to be the sum of all decision tree
valuation variableswl1, . . . , wlr. Therefore, encoding Υ(R)
characterizes regressor R.

Theorem 4.3 (regressor encoding). Let R̂ be the valuation
function of regressor R. If Υ(R) evaluates to True, then
there exist a truth assignment ~x ∈ Rm, out ∈ R, such that
R̂(~x) = out.

Proof. The proof follows from the definitions and
Lemma 4.2.

Given GBC C = 〈R1, . . . , Rc〉 and following Theo-
rem 4.3, we define the encoding of classifier C to be the
formula Γ(C) as follows:

Γ(C) :

c∧
j=1

Υ(Rj) ∧
c∨

j=1

(
arg = j ↔

c∧
k=1

outj > outk

)
Intuitively, Γ(C) consists of two parts: (i) the conjunction of
all regressor encodings, ensuring that the regressor valuation
variables out1, . . . , outr are restricted to their respective re-
gressor valuations; and (ii) a restriction of the classifier val-
uation variable arg to be the maximal regressor valuation
(i.e., operator arg max). Therefore, Γ(C) charactarizes clas-
sifier C.
Theorem 4.4 (classifier encoding). Let Ĉ be the valuation
function of classifierC. If Γ(C) evaluates to True, then there
exist a truth assignment ~x ∈ Rm, arg ∈ {1, . . . , c}, such
that Ĉ(~x) = arg.

Proof. The proof follows from the definitions, theorem, and
lemmas above.

5 Encodings of Local Robustness Properties
In this section, we encode the local robustness properties
defined in Section 3. Recall that a regression model (resp.,
classification model) satisifies local adversarial robustness
for an input ~x (Definitions 3.1, and 3.2), if for all ~x′, if
||~x − ~x′||p < ε, then the difference between the valuation
of ~x, and that of ~x′ is bound (resp., we get the same classifi-
cation for ~x, and for ~x′).

Our goal is to find whether there exists an assignment to
~x′ that satisfies both the model encoding, and the negation
of the local adversarial robustness property. An assignment
~x′ that satisfies both conjuncts constitutes a counter-example
that disproves local adversarial robustness of the given input
~x. Alternatively, local adversarial robustness holds if there is
no such assignment.

Given an input ~x, and ε, δ ≥ 0, we define the encoding of
local adversarial robustness to be a formula Φ as follows:

Φ : φ ∧
m∧
i=1

{
|xi − x′i| ≤ ε, xi ∈ R
x′i ∈ {v ∈ N : |xi − v| ≤ ε}, xi ∈ N

Where φ is |R̂(~x) − R̂(~x′)| ≥ δ for regression model, and
φ is Ĉ(~x) 6= Ĉ(~x′) for classification model. Note that the
second range of conjuncts in the expression, characterizes
the allowed pertubations (||~x− ~x′||p < ε) for norm p =∞,
which is handled differently for real, and integer features.

6 Optimizations
While the construction in Sections 4 and 5 is sound and com-
plete, it is not always the most efficient one. Thus, we now
provide two optimizations based on eliminating redundant
clauses that cannot be satisfied, and on parallelizing the ver-
ification process.

6.1 Pruning
“Pruning” is a somewhat overloaded term. In the context of
machine learning, pruning typically refers to the process of
removing sections of decision trees that have little impact
on the outcome, thus reducing over-fitting. In the model-
checking community, pruning is the process of trimming un-
reachable parts of the search space, thus helping the model
checker focus its search.

Our approach combines these two notions. Namely, we
remove all unsatisfiable leaf clauses with respect to the ro-
bustness parameter (ε), which allows for faster calculation.
Formally, given DTS D = 〈N, I, L〉 and property Φ, we
define the Φ-pruned encoding of leaf l in tree D to be:

πΦ(l) =

{
π(l), π(l) ∧ Φ is satisfiable
False, π(l) ∧ Φ is unsatisfiable

Note that pruning can be applied to diverse properties, but
this work is focused on the robustness property.

Next, we define the corresponding ΥΦ (resp., ΓΦ) to be
the Φ-pruned encoding of regressor R (resp., Φ-pruned en-
coding of classifier C), which replaces each occurrence of
leaf encoding π(l) with its pruned version πΦ(l). The fol-
lowing theorem establishes the correctness of Φ-pruning:

Theorem 6.1 (safe pruning).

1. Regressor: the conjunction Υ(R)∧Φ is satisfiable, if and
only if, the conjunction ΥΦ(R) ∧ Φ is satisfiable.

2. Classifier: the conjunction Γ(C)∧Φ is satisfiable, if and
only if, the conjunction ΓΦ(C) ∧ Φ is satisfiable.

Proof. The proofs follow immediately from the associativ-
ity property of propositional logic.

In principle, we may use an SMT solver to check the sat-
isfiability of π(l) ∧ Φ for each leaf, in each tree. In prac-
tice, we reduce the dependence on SMT solvers and increase
scalability by evaluating the robustness property during the
encoding of the tree, where each internal node condition
constraints a single feature xi. For norm p = ∞, the leaf
valuation π(l) is satisfiable, if and only if for every node
n ∈ path(l) that refers to feature xi, |xi − x′i| ≤ ε. For
norm p = 1, a necessary condition for the satisfiability of
π(l), is that all features of ~x′,

∑m
i=1 di ≤ ε, where:

di =

{
|xi − x′i|, xi appears in path(l)

0, xi does not appear in path(l)

The pruning process removes paths where the given vec-
tor ~x′ is “far” from the required thresholds by more than
ε, where the notion of distance is determined by the norm.

2449

6.2 Parallelization
It is difficult to parallelize general SMT formulas efficiently.
To increase scalability, we design our encoding in a man-
ner that allows for parallel evaluation of gradient boosted
classifiers. We do so by checking the robustness property
separately for each class index. If all parallel evaluations are
found robust, then the robustness property holds. Otherwise,
there exists an assignment ~x, and an index q, such that the ro-
bustness property does not hold, and ~x is a counter-example.
The thread of class q would discover this case and abort all
other threads.

Formally, we do the following:

∀~x′ : ||~x− ~x′||p < ε→ Ĉ(~x) = Ĉ(~x′)

⇔¬∃~x′ : ||~x− ~x′||p < ε ∧ Ĉ(~x) 6= Ĉ(~x′)

⇔¬∃~x′ : ||~x− ~x′||p < ε ∧ Ĉ(~x) 6= arg maxj

(
R̂j(~x

′)
)

⇔¬∃~x′ : ||~x− ~x′||p < ε ∧ ∃q : R̂q(~x′) > R̂Ĉ(~x)(~x
′)

⇔¬∃~x′, q : ||~x− ~x′||p < ε ∧ R̂q(~x′) > R̂Ĉ(~x)(~x
′)

Where the parameter q is within [1, c], and each thread
verifies a different value of q. For example, if an input is
classified as class a, we invoke c − 1 threads for classes
{1, . . . , c} \ {a}, where each thread tries to verify robust-
ness with respect to a specific class.

7 Evaluation
We now introduce VERIGB (Verifier of Gradient Boosted
models), which implements our approach in Python.
VERIGB utilizes Z3 (De Moura and Bjørner 2008) as the
underlying SMT solver. We used the sklearn (Buitinck et
al. 2013) and numpy (Jones et al. 2001) packages to train
models. We conducted the experiments on a VM with 36
cores, a CPU speed of 2.4 GHz, a total of 150 GB memory,
and the Ubuntu 16.04 operating system. The VM is hosted
by a designated server with two Intel Xeon E5-2680v2 pro-
cessors (each processor is made of 28 cores at 2.4 Ghz), 260
GB memory, and Red Hat Enterprise Linux Server 7.3 op-
erating system. For tractability, we capped the runtime of
verifying the local robustness property by 10 minutes. We
evaluated VERIGB using the following three datasets:

1. The House Sales in King County (HSKC) dataset con-
taining 22K observations of houses sold in between May
2014 and May 2015 in King County, USA (housing
2018). Each observation has 19 house features, as well
as the sale price.

2. The Modified National Institute of Standards and Tech-
nology (MNIST) dataset containing 70K images of hand-
written digits (LeCun 1998). The images are of size 28
x 28 pixels, each with a grayscale value ranging from 0
to 255. The images are classified into 10 classes, one for
each digit.

3. The German Traffic Sign Recognition Benchmark (GT-
SRB) dataset containing 50K colored images of traffic
signs (Houben et al. 2013). The images are of size 32 x
32 pixels, each with three values (RGB) ranging from 0

Figure 2: Universal robustness eveluation for ε = 160 sq/ft,
and δ = 100K$, and regressors with a similar score. Illus-
trating the attainable portion of robust observations ρ, vary-
ing the number of trees and the tree depth.

to 255. The images are classified into 43 classes, one for
each traffic sign.

7.1 Regressor Evaluation
We start by demonstrating VERIGB’s scalability to large
gradient boosted regression models using the HSKC
dataset. We trained regressors varying the learning rates in
{0.1, 0.2, 0.3}, the number of trees between 50 and 500,
and the tree depth in {3, 5, 8, 10}. All models have a similar
score2 that varies between 0.84 and 0.88. Then we randomly
selected 200 observations and evaluated the ρ-universal
(ε, δ)-robustness property with an ε value of 160 sq/ft, for
the 6 numerical features that refer to square footage, and a
δ value of 100K$ in the price. Note that there were no time-
outs (where it took the SMT solver more than 10 minutes
to reach a decision) for models with less than 500 trees, and
even with 500 trees we had only 16% timeouts.

Figure 2 illustrates the results for a learning rate of 0.1,
while the results for other learning rates are similar. Notice
that (i) robustness degrades as the number of trees increases.
(ii) robustness seems to be negatively correlated with the tree
depth. That is, a model trained with a tree depth of 3 is more
robust than a depth of 5, which is more robust than 8 and 10.

7.2 Classifier Evaluation
Next, we demonstrate VERIGB’s capability to verify the ro-
bustness of accurate classification models. We trained gra-
dient boosted models for the MNIST and GTSRB datasets
with a learning rate of 0.1. We varied the number of trees
between 20 and 100, and the maximal tree depth between 3
and 20. The accuracy of said models varied between 87.9%
and 97.3% for MNIST, and between 90% and 96.86% for
GTSRB. We evaluated the ρ-universal ε-robustness property
with ε values of 1, 3, and 5. We randomly selected 20 images
from each class in the training set (200 images for MNIST,
and 860 images for GTSRB).

The illustration in Figure 1 is an artifact of this evaluation.
Recall, that it shows two examples where the local adversar-

2The term score refers to the coefficient of determination R2 of
the prediction.

2450

Figure 3: Examples of GTSRB images that satisfy the local
adversarial robustness property for ε = 3.

Figure 4: Examples of MNIST images that satisfy the local
adversarial robustness property for ε = 3.

ial robustness property does not hold for ε = 3 for a model
trained for the GTSRB dataset. In the first example, an “80”
km/h speed limit sign is misclassified as a “30” km/h limit.
In the second example, a “turn left” sign is misclassified as
an “ahead only” sign. Alternatively, Figure 3 shows exam-
ples of signs that do satisfy the local adversarial robustness
property for ε = 3. That is, their classification would not
change under any adversarial perturbation that changes each
pixel’s RGB values by at most 3.

Figure 4 shows examples of handwritten digits that satisfy
the local adversarial robustness property for ε = 3, for mod-
els trained for the MNIST dataset. Alternatively, Figure 5
shows two examples where the local adversarial robustness
property does not hold. In the first example, an image of “1”
is misclassified as “7”. The second image is misclassified
as “0” instead of “5” under very slight perturbation. These
modifications are almost invisible to a human eye. Note that
the model’s confidence does not indicate robustness. E.g., in
the first example the image has 95% confidence to be clas-
sified as 1, while after applying the perturbation, it has 90%
confidence while being misclassified as 7.

Scalability and limitations Table 1 summarizes the re-
sults for selected models trained for the MNIST dataset.
In the table, the abbreviations “T/O” and “C/E” stand for
the portion of timeouts and counter-examples, respectively.
Note that for a fixed tree depth, the portion of counter-
examples found is negatively correlated with the model’s ac-
curacy. This is also true for a fixed number of trees. In this
example, large models with 100 trees and high tree depth al-
ready exhibit a non-negligible portion of timeouts, indicat-
ing the limitations of VERIGB. Despite that fact, it success-
fully verifies highly accurate models for the MNIST dataset.
We run similar experiments on models trained for the GT-
SRB dataset, with roughly similar results. Unlike MNIST,
the portion of timeouts was only 1%, even for large mod-
els. As with MNIST, the portion of counter-examples varies

Figure 5: Examples of MNIST images that do not satisfy
local adversarial robustness for ε = 3. In the first row, an
image of “1” is misclassified as “7”. In the second row, an
image of “5” is misclassified as “0”. Observe in the third
column (delta) that the applied changes are barely visible to
the naked eye (delta of +/-3 in the range of 256 values per
pixel per color). The fourth column highlights the modified
pixels.

between 10% and 22%. Finally, the ratio of robust images
varies between 78% and 88%.

The effect of model structure on robustness As a side-
effect of this research, we noticed that certain configuration
parameters tend to result in more robust models. Hereafter,
we briefly discuss our observations. Table 2 summarizes se-
lected results for models with a similar accuracy which is
achieved by varying the number of trees, and the tree depth.
As can be observed, models with smaller tree depth have a
higher ρ value. The results show that the tree depth has a po-
tentially large impact on robustness. That is, increasing the
tree depth leads to less robust results. Notice that tree depth
similarly affects the robustness of regression models, as is
clearly indicated in Figure 2.

It is interesting to mention, that tree depth also plays a
role in the over-fitting problem of gradient boosted models.
Models with large tree depth are more likely to suffer from
over-fitting (Hastie, Tibshirani, and Friedman 2001). In our
context, a small tree depth yields better robustness and is
also easier to verify, making VERIGB attractive for practical
use cases.

8 Related Work
Reliability and security are of increasing interest by the re-
search community. Numerous works demonstrate the (lack
of) security of popular machine learning models (Biggio,
Fumera, and Roli 2014a; 2014b; Biggio et al. 2014). Others
show methods to generate adversarial inputs to such mod-
els (Zhou et al. 2012). Thus, certifying that specific mod-
els are robust to adversarial inputs is an important research
challenge. Indeed (Narodytska et al. 2018; Katz et al. 2017;
Gehr et al. 2018), introduced methods for verifying robust-
ness for various types of neural network models. The ro-
bustness of gradient boosted models is also of interest, but

2451

Depth Trees Accuracy ε = 1 ε = 3 ε = 5
Verified (ρ) T/O C/E Verified (ρ) T/O C/E Verified (ρ) T/O C/E

3 20 87.9 16.5% 0% 83.5% 10% 0% 90% 10% 0% 90%
3 50 92.4 24% 0% 76% 24% 0% 79% 21% 0% 79%
3 100 94.4 39.5% 0.5% 60% 31.5% 0.5% 68% 31.5% 0.5% 68%
8 20 94.8 39.5% 0% 60.5% 21% 0% 79% 21% 0% 79%
8 50 96.4 53.5% 6% 40.5% 40% 9.5% 50.5% 42.5% 7% 50.5%
8 100 97 29% 41.5% 29.5% 20% 45% 35% 22% 43.5% 34.5%

10 20 95.6 39.5% 0% 60.5% 25% 0% 75% 25% 0% 75%
10 50 96.7 53% 8.5% 38.5% 39.6% 10.6% 49.8% 46% 8.5% 45.5%
10 100 97.3 15% 60% 25% 10.5% 62.5% 27% 11.5% 62.5% 26%

Table 1: MNIST dataset: Evaluating the attainable portion of robust observations ρ, for models with varying number of trees,
tree depth, and ε. The abbreviations “T/O” and “C/E” stand for the portion of timeouts and counter-examples, respectively.

Depth Trees Accuracy Verified (ρ) T/O C/E
4 100 95.6 53% 3% 44%
5 65 95.7 52% 1% 47%
7 40 95.8 52% 0.5% 47.5%
10 20 95.6 39.5% 0% 60.5%
20 18 95.8 27.5% 0.0% 72.5%

Table 2: MNIST dataset: Impact of boosted model’s archi-
tecture on the attainable ρ for the universal adversarial ro-
bustness property with ε = 1.

existing works are focused on empirical evaluation (Leist-
ner et al. 2009), or on training methods that increase robust-
ness (Sun, Todorovic, and Li 2007), while our work is the
first to certify gradient boosted models with formal and rig-
orous analysis.

Since our work is the first and only work that verifies
gradient boosted model, we survey existing works that ver-
ify other machine learning models. In (Huang et al. 2017),
the authors suggest an SMT based approach for verifying
feed-forward multi-layer neural networks. They use a white
box approach to analyze the neural network layer by layer
and also apply a set of methods to discover adversarial in-
puts. Note that gradient boosted models are fundamentally
different from neural networks and thus their method does
not extend to such models. In (Katz et al. 2017), the au-
thors describe a Simplex based verification technique, that
is extended to handle the non-convex Rectified Linear Unit
(ReLU) activation functions. Such activation is fundamental
in modern neural networks and is not expressible with lin-
ear programming. The main disadvantage of that approach
is its inability to scale up to large networks with thousands
of ReLU nodes.

Alternatively, AI2 (Gehr et al. 2018) uses “abstract trans-
formers” to overcome the difficulty of formally describing
non-linear activation functions. Safety properties such as ro-
bustness are then proved based on the abstract interpreta-
tion. The over-approximation that is inherent in the tech-
nique allows for scalable analysis. However, since they use
abstractions, the counter-examples provided are not always
real counter-examples, and thus a refinement process is re-
quired to end up with a concrete counter-example.

Finally, the authors of (Narodytska et al. 2018) adapt
Boolean satisfiability to verify the robustness of Binarized
Neural Networks (BNN). Specifically, they apply a counter-
example-guided search procedure to check for robustness to
adversarial perturbations. They verified BNN models for the
MNIST dataset. In comparison, VERIGB verifies slightly
more accurate gradient boosted models for the same dataset.
Similarly, in (Ehlers 2017) the authors propose a method
for verification of feed-forward neural networks. Their ap-
proach leverages piece-wise linear activation functions. The
main idea is to use a linear approximation of the overall net-
work behavior that can then be solved by SMT or ILP.

9 Conclusions and Future Work

Our work is the first to verify robustness to adversarial
perturbations for gradient boosted models. Such models
are among the most popular machine learning techniques
in practice. Our work introduces a model verification tool
called VERIGB that transforms the challenge of certifying
gradient boosted regression and classification models into
the task of checking the satisfiability of an SMT formula
that describes the model and the required robustness prop-
erty. This novel encoding is an important contribution of our
work and includes formal correctness proofs as well as per-
formance optimizations. Once we have such an (optimized)
SMT formula, we check its satisfiability with a standard
solver. The solver either proves the robustness property or
provides a counter-example.

We extensively evaluated VERIGB, with 3 public
datasets, and demonstrated its scalability to large and accu-
rate models with hundreds of trees. Our evaluation shows
that the classification’s confidence does not provide a good
indication of robustness. Further, it indicates that models
with a small tree depth tend to be more robust even if the
overall accuracy is similar. Such models are also known to
suffer less from over-fitting. We believe that there may be an
implicit correlation between robustness and good general-
ization, and leave further investigation to future work. Addi-
tionally, the counter-examples generated by VERIGB may
be leveraged in the training phase of the gradient boosted
models to optimize their robustness. However, we leave such
usage for future work.

2452

References
Barrett, C. W.; Sebastiani, R.; Seshia, S. A.; and Tinelli, C.
2009. Satisfiability modulo theories. In Handbook of Satisfi-
ability. IOS Press. 825–885.
Biggio, B.; Corona, I.; Nelson, B.; Rubinstein, B. I. P.; Maiorca,
D.; Fumera, G.; Giacinto, G.; and Roli, F. 2014. Security Evalu-
ation of Support Vector Machines in Adversarial Environments.
Cham: Springer International Publishing. 105–153.
Biggio, B.; Fumera, G.; and Roli, F. 2014a. Security evalua-
tion of pattern classifiers under attack. IEEE Transactions on
Knowledge and Data Engineering 26(4):984–996.
Biggio, B.; Fumera, G.; and Roli, F. 2014b. Pattern recognition
systems under attack: Design issues and research challenges.
IJPRAI 28(7).
Buitinck, L.; Louppe, G.; Blondel, M.; Pedregosa, F.; Mueller,
A.; Grisel, O.; Niculae, V.; Prettenhofer, P.; Gramfort, A.; Grob-
ler, J.; Layton, R.; VanderPlas, J.; Joly, A.; Holt, B.; and Varo-
quaux, G. 2013. API design for machine learning software: ex-
periences from the scikit-learn project. In ECML PKDD Work-
shop: Languages for Data Mining and Machine Learning, 108–
122.
Caruana, R., and Niculescu-Mizil, A. 2006. An empirical com-
parison of supervised learning algorithms. In Proceedings of
the 23rd International Conference on Machine Learning, ICML
’06, 161–168. New York, NY, USA: ACM.
Chapelle, O., and Chang, Y. 2010. Yahoo! learning to rank
challenge overview. In Proceedings of the 2010 International
Conference on Yahoo! Learning to Rank Challenge - Volume
14, YLRC’10, 1–24. JMLR.org.
De Moura, L., and Bjørner, N. 2008. Z3: An efficient smt
solver. In Proceedings of the Theory and Practice of Software,
14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS’08/ETAPS’08,
337–340. Berlin, Heidelberg: Springer-Verlag.
Ehlers, R. 2017. Formal verification of piece-wise linear feed-
forward neural networks. CoRR abs/1705.01320.
Freund, Y., and Schapire, R. E. 1997. A decision-theoretic gen-
eralization of on-line learning and an application to boosting.
Journal of Computer and System Sciences 55(1):119 – 139.
Gehr, T.; Mirman, M.; Drachsler-Cohen, D.; Tsankov, P.;
Chaudhuri, S.; and Vechev, M. T. 2018. Ai: Safety and ro-
bustness certification of neural networks with abstract interpre-
tation. In 2018 IEEE Symposium on Security and Privacy (SP).
Hastie, T.; Tibshirani, R.; and Friedman, J. 2001. The Elements
of Statistical Learning. Springer Series in Statistics. New York,
NY, USA: Springer New York Inc.
Houben, S.; Stallkamp, J.; Salmen, J.; Schlipsing, M.; and Igel,
C. 2013. Detection of traffic signs in real-world images: The
German Traffic Sign Detection Benchmark. In The 2013 Inter-
national Joint Conference on Neural Networks (IJCNN), 1–8.
2018. House Sales in King County, USA. https://www.
kaggle.com/harlfoxem/housesalesprediction/home.
Huang, X.; Kwiatkowska, M.; Wang, S.; and Wu, M. 2017.
Safety verification of deep neural networks. In Majumdar,
R., and Kunčak, V., eds., Computer Aided Verification, 3–29.
Cham: Springer International Publishing.
Jones, E.; Oliphant, T.; Peterson, P.; et al. 2001. SciPy: Open
source scientific tools for Python.

Katz, G.; Barrett, C. W.; Dill, D. L.; Julian, K.; and Kochender-
fer, M. J. 2017. Reluplex: An efficient SMT solver for verifying
deep neural networks. In Majumdar, R., and Kuncak, V., eds.,
Computer Aided Verification - 29th International Conference,
CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceed-
ings, Part I, volume 10426 of Lecture Notes in Computer Sci-
ence, 97–117. Springer.
LeCun, Y. 1998. The mnist database of handwritten digits.
http://yann.lecun.com/exdb/mnist/.
Leistner, C.; Saffari, A.; Roth, P. M.; and Bischof, H. 2009.
On robustness of on-line boosting - a competitive study. In
2009 IEEE 12th International Conference on Computer Vision
Workshops, ICCV Workshops, 1362–1369.
Mason, L.; Baxter, J.; Bartlett, P.; and Frean, M. 1999. Boosting
algorithms as gradient descent. In Proceedings of the 12th In-
ternational Conference on Neural Information Processing Sys-
tems, NIPS’99, 512–518. Cambridge, MA, USA: MIT Press.
Moosavi-Dezfooli, S.; Fawzi, A.; Fawzi, O.; and Frossard, P.
2017. Universal adversarial perturbations. In 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR),
86–94.
Narodytska, N.; Kasiviswanathan, S. P.; Ryzhyk, L.; Sagiv, M.;
and Walsh, T. 2018. Verifying properties of binarized deep neu-
ral networks. In McIlraith, S. A., and Weinberger, K. Q., eds.,
Proceedings of the Thirty-Second AAAI Conference on Artifi-
cial Intelligence, New Orleans, Louisiana, USA, February 2-7,
2018. AAAI Press.
Pulina, L., and Tacchella, A. 2010. An abstraction-refinement
approach to verification of artificial neural networks. In Pro-
ceedings of the 22Nd International Conference on Computer
Aided Verification, CAV’10, 243–257. Berlin, Heidelberg:
Springer-Verlag.
Pulina, L., and Tacchella, A. 2012. Challenging smt solvers to
verify neural networks. AI Communications 25(2):117–135.
Sun, Y.; Todorovic, S.; and Li, J. 2007. Increasing the ro-
bustness of boosting algorithms within the linear-programming
framework. The Journal of VLSI Signal Processing Systems for
Signal, Image, and Video Technology 48(1):5–20.
Viola, P., and Jones, M. 2001. Rapid object detection using
a boosted cascade of simple features. In Proceedings of the
2001 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition. CVPR 2001, volume 1, I–511–I–518
vol.1.
Yang, B.; Yan, J.; Lei, Z.; and Li, S. Z. 2015. Convolutional
channel features for pedestrian, face and edge detection. CoRR
abs/1504.07339.
Zhang, Y., and Haghani, A. 2015. A gradient boosting method
to improve travel time prediction. In Transportation Research
Part C Emerging Technologies, volume 58.
Zhou, Y.; Kantarcioglu, M.; Thuraisingham, B.; and Xi, B.
2012. Adversarial support vector machine learning. In Pro-
ceedings of the 18th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’12, 1059–
1067. New York, NY, USA: ACM.

2453

