
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

A Unified Framework for Planning in
Adversarial and Cooperative Environments

Anagha Kulkarni, Siddharth Srivastava, Subbarao Kambhampati
School of Computing, Informatics, and Decision Systems Engineering

Arizona State University, Tempe, AZ 85281 USA
{anaghak, siddharths, rao}@ asu.edu

Abstract

Users of AI systems may rely upon them to produce plans for
achieving desired objectives. Such AI systems should be able
to compute obfuscated plans whose execution in adversarial
situations protects privacy, as well as legible plans which are
easy for team members to understand in cooperative situa-
tions. We develop a unified framework that addresses these
dual problems by computing plans with a desired level of
comprehensibility from the point of view of a partially in-
formed observer. For adversarial settings, our approach pro-
duces obfuscated plans with observations that are consistent
with at least k goals from a set of decoy goals. By slightly
varying our framework, we present an approach for produc-
ing legible plans in cooperative settings such that the obser-
vation sequence projected by the plan is consistent with at
most j goals from a set of confounding goals. In addition, we
show how the observability of the observer can be controlled
to either obfuscate or convey the actions in a plan when the
goal is known to the observer. We present theoretical results
on the complexity analysis of our approach. We also present
an empirical evaluation to show the feasibility and usefulness
of our approaches using IPC domains.

1 Introduction
AI systems have become quite ubiquitous. As users, we
heavily rely on these systems to plan our day-to-day activi-
ties. Since all these systems have logging and tracking abil-
ities, an observer can get access to our data and our actions.
Such observers can be of two types: adversarial or coop-
erative. In adversarial settings, like mission planning, mili-
tary intelligence, reconnaissance, etc., protection of sensitive
data can be of utmost importance to the agent. In such situ-
ations, it is necessary for an AI system to produce plans that
reveal neither the intentions nor the activities of the agent.
On the other hand, in case of a cooperative observer, the AI
system should be able to produce plans that help convey its
intent to the observer. Therefore, it is desirable for an AI
system to be capable of computing both obfuscated plans in
adversarial settings and legible plans in cooperative settings.

In this work, we propose a new unifying formalization,
and algorithms for computing obfuscated plans as well as
legible plans. In our framework, we consider two agents:

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a)

(b)

Figure 1: The differences in belief sequences induced by dif-
ferent plans for an observer with noisy sensors.

an acting agent and an observer. The acting agent has full
observability of its activities. The observer is aware of the
agent’s planning model but has partial observability of the
agent’s activities. The observations are emitted as a side ef-
fect of the agent’s activities and are received by the observer.
An adversarial observer may be able to use the information
gleaned from observations to interfere with or hamper the
agent’s activities. On the other hand, in cooperative scenar-
ios, an agent is required to communicate its intentions to the
observer as quickly and clearly as possible.

Example Consider a situation where the agent is a port
management system and the observer has sensors or infor-
mants at the port who provide partial information about the
nature of activity being carried out at the port (refer Fig-
ure 1). For instance, when a specific crate is loaded onto
the ship, the observer finds out that something was loaded,

2479

but not the identity of the loaded crate. The observer knows
the initial inventory at the port, but when new cargo is ac-
quired by the port, the observer’s sensors reveal only that
more cargo was received; they do not specify the numbers
or identities of the received crates. A legible plan for load-
ing sensitive cargo (the red crate) and acquiring more cargo
may first load the crate and then acquire more crates. This
plan reveals the identity of the crate that was loaded based
on the observers’ information about the remaining cargo in
the port: the final belief state has a unique crate loaded on
the ship even though it retains uncertainty about the new
cargo in the port. However, if the plan were to first acquire
more cargo, the observer’s sensors are insufficient to deter-
mine which crate was loaded: the plan maintains ambiguity
in the observer’s belief. This is reflected in the observer’s be-
lief state sequence, where the last belief state includes states
with all different types of crates in the ship. Although both
plans have the same cost and effects for the dock, one obfus-
cates while the other conveys the activity being carried out.
Our framework allows the agent to select plans that may be
obfuscating or legible in this manner.

In this work, we introduce the problems of goal obfus-
cation and goal legibility. Our solutions to these problems
use a common underlying algorithm with minimal varia-
tions. We also introduce two other problem variants where
the observer knows the true goal of the agent and the agent
wants to either obfuscate or reveal the actions in its plan.
We call these problems plan obfuscation and plan legibility
respectively. In the following sections, we present a com-
mon framework that encapsulates the planning problems
discussed above. And thereafter, we discuss each of the
problems in detail. We also provide a theoretical and em-
pirical analysis of the value and scope of our approaches.

2 Controlled Observability Planning
Problem

We assume an offline setting, such that the observer only
receives the observations after the agent has finished execut-
ing a plan. In our setting, the agent has a set of candidate
goals, inclusive of its true goal. The observer has access to
the candidate goal set but is unaware of the agent’s true goal.
In the case of goal obfuscation, the objective is to generate
a plan solution without revealing the true goal. Our solution
ensures that at least k goals are possible at the end of the
observation sequence. On the other hand, in the goal legibil-
ity problem the objective is to convey at most j goals to the
observer. Our solution ensures that at most j goals are pos-
sible at the end of the observation sequence. In the case of
the other two variants: plan obfuscation and plan legibility,
the set of candidate goals consists of only one goal, which
is the agent’s true goal. For plan obfuscation, the objective
is to generate a plan solution with an observation sequence
that is consistent with at least ` diverse plans, such that, the
diverse plans are at least d distance away. On the other hand,
for plan legibility, the objective is to generate a plan solution
that is consistent with at least m similar plans, such that, the
similar plans are at most d distance away.

2.1 Classical Planning
A classical planning problem can be defined as a tuple
P = 〈F ,A, I, G〉, where F , is a set of fluents, A, is a
set of actions. A state s of the world is an instantiation
of all fluents in F . Let S be the set of states. I ⊂ S is
the initial state. G is the goal where a subset of fluents in
F are instantiated. Each action a ∈ A is a tuple of the
form 〈pre(a), add(a), delete(a), c(a)〉 where c(a) denotes
the cost of an action, pre(a) ⊆ F is a set of preconditions
for the action a, add(a) ⊆ F is a set of positive effects and
delete(a) ⊆ F is a set of negative effects, i.e., Γ(s, a) |= ⊥
if s 6|= pre(a); else Γ(s, a) |= s∪ add(a) \ delete(a) where
Γ(·) is the transition function. The solution to P is a plan
or a sequence of actions π = 〈a1, a2, . . . , an〉, such that,
Γ(I, π) |= G, i.e., starting from the initial state sequentially
executing the actions lands the agent in a goal state. The cost
of the plan, c(π), is summation of the cost of all the actions
in the plan π, c(π) =

∑
ai∈π c(ai).

2.2 Problem Setting
We now introduce a general planning problem framework
that will be used to define the adversarial and the coopera-
tive cases. The controlled observability problem involves an
acting agent and an observer.

Definition 1. A controlled observability planning problem
is a tuple, PCO = 〈D,G,Ω,O〉, where,
• D = 〈F ,A, I〉 is the planning domain of the agent.
• G = {G1 ∪ G2 . . . ∪ Gn−1 ∪ GA} is a set of candidate

goal conditions, each defined by subsets of fluent instan-
tiations, where GA is the true goal of the agent.

• Ω = {oi|i = 1, . . . ,m} is a set of m observations that
can be emitted as a result of the action taken and the state
transition.

• O : (A× S)→ Ω is a many-to-one observation function
which maps the action taken and the next state reached to
an observation in Ω. That is to say, the observations are
deterministic, each 〈a, s′〉 pair is associated with a single
observation but multiple pairs can be mapped to the same
observation.

The observer has access toPCO, but is unaware of the true
goal of the agent. Also, the observer does not have access to
the actions performed by the agent, instead receives the ob-
servations corresponding to the plan executed by the agent.
The observation function can be seen as a sensor model, as
modeled in several prior works (Geffner and Bonet 2013;
Bonet and Geffner 2014; Keren, Gal, and Karpas 2016b).
For every action taken by the agent and an associated state
transition, the observer receives an observation. This obser-
vation might be consistent with multiple action-state pairs
because of the many-to-one formulation of O. Therefore,
the observer operates in the belief space. The agent takes
the belief space of the observer into account in its planning
process, so as to control the observability of the observer.

2.3 Observer’s Belief Space
The observer may use its observations of the agent’s activity
to maintain a belief state, or the set of possible states con-

2480

sistent with the observations. We use ŝ as a notational aid to
denote a state that is a member of the belief state.

Definition 2. The initial belief, b0, induced by observation,
o0 is defined as, b0 = {ŝ0 | O(∅, s0) = o0∧O(∅, ŝ0) = o0}.

Whenever a new action is taken by the agent, and the state
transition occurs, the observer’s belief updates as follows:

Definition 3. A belief update, bi+1 for belief bi is defined as,
bi+1 = update(bi, oi+1) = {ŝi+1 | ∃â, Γ(ŝi, â) |= ŝi+1 ∧
ŝi ∈ bi ∧ O(â, ŝi+1) = oi+1}.

A sequence of belief updates gives us the observer’s belief
sequence that is consistent with the observation sequence
emitted by the agent.

Definition 4. A belief sequence induced by a plan p start-
ing at state s0, BS(p, s0), is defined as a sequence of beliefs
〈bo, b1, . . . , bn〉 such that there exist o0, o1, o2, . . . , on ∈ Ω
where,
• oi = O(ai, si)
• bi+1 = update(bi, oi+1)

The set of plans that are consistent with the belief se-
quence of a given plan are called as belief plan set.

Definition 5. A belief plan set, BPS(p, s0) = {p1, . . . , pn},
induced by a plan p starting at s0, is a set of
plans that are formed by causally consistent chaining
of state sequences in BS(p, s0), i.e., BPS(p, s0) =
{〈ŝ0, â1, ŝ1, . . . , ŝn〉 | ∀ âj , ŝj−1 |= pre(âj) ∧ ŝj−1 ∈
bj−1 ∧ ŝj |= ŝj−1 ∪ add(âj) \ delete(âj) ∧ ŝj ∈ bj}.

The agent’s objective is to generate a belief sequence in
observer’s belief space, such that, the last belief in the se-
quence satisfies certain desired conditions.

2.4 Variants of PCO
We now discuss the two major variants of PCO namely, goal
obfuscation and goal legibility planning problems.

Goal Obfuscation In this setting, the adversary is unaware
of agent’s true goal. The aim of goal obfuscation is to hide
the true goal from the observer. This is done by taking ac-
tions towards agent’s true goal, such that, the corresponding
observation sequence exploits the observer’s belief space in
order to be consistent with multiple goals.

Definition 6. A goal obfuscation planning problem, is a
PCO, where, G = {GA ∪ G1 ∪ . . . ∪ Gn−1}, is the set
of n goals where GA is the true goal of the agent, and
G1, . . . , Gn−1 are decoy goals.

A solution to a goal obfuscation planning problem is a
k-ambiguous plan. The objective of a k-ambiguous plan is
to make the observation sequence consistent with at least k
goals, out of which k − 1 are decoy goals, such that, k ≤ n.
These k − 1 goals can be chosen to maximize the obfusca-
tion. A k-ambiguous plan achieves at least k goals in the last
belief of the observation sequence.

Definition 7. A plan, πk, is a k-ambiguous plan, if
Γ(I, πk) |= GA and the last belief, bn ∈ BS(πk, I), sat-
isfies the following, |G ∈ G : ∃s ∈ bn, s |= G| > k, where
1 6 k 6 n.

Definition 8. An observation sequence Ok = 〈o1, . . . , on〉
is k-ambiguous observation sequence if it is an observation
sequence emitted by a k-ambiguous plan.

Goal Legibility The aim of goal legibility is to take ac-
tions exclusive to the goal so as to help the observer in goal
deduction. This can be useful in cooperative scenarios where
the agent wants to notify the observer about its goal without
explicit communication. Here we generalize the notion of
goal legibility with respect to j number of goals.

Definition 9. A goal legibility planning problem is a PCO,
where, G = {GA ∪ G1 ∪ . . . ∪ Gn−1} is the set of n goals
where GA is the true goal of the agent, and G1, . . . , Gn−1

are confounding goals.

The objective here is to generate a legible plan so as to
convey at most j goals. To that end, we ensure that the obser-
vation sequence of a legible plan is consistent with at most
j goals so as to limit the number of goals in the observer’s
belief space.

Definition 10. A plan, πj , is a j-legible plan, if Γ(I, πj) |=
GA and the last belief, bn ∈ BS(πj , I), satisfies the follow-
ing, |G ∈ G : ∃s ∈ bn, s |= G| 6 j, where 1 6 j 6 n.

The definition of j-legible observation sequence follows
that of k-ambiguous case.

Goal Diversity Note that, the solutions to the goal ob-
fuscation and goal legibility planning problems can be ex-
pressed in terms of a goal diversity measure. A goal diver-
sity measure can be used to establish the extent of diversity
among the set of goals present in the observer’s belief. For
instance, a simple goal diversity measure could be the car-
dinality of the goals satisfied in the last belief state, which
is the measure admitted by Definitions 7 and 10. However,
other goal diversity measures can also be used to solve the
problems of goal obfuscation and goal legibility, and then
the k-ambiguous and j-legible solutions can be written as at
least k goal-diverse and at most j goal-diverse.

2.5 Complexity Analysis
In this section, we discuss the complexity results for PCO.
Given the Definitions 7 and 10 of goal obfuscation and goal
legibility plan solutions, we prove that the plan existence
problem for PCO is EXPSPACE-complete.

Theorem 1. The plan existence problem for a controlled
observability planning problem is EXPSPACE-hard.

Proof. To show that the plan existence problem for PCO
is EXPSPACE-hard, we will show that the NOD (No-
Observability Deterministic) planning problem is reducible
to PCO. The plan existence problem for NOD has been
shown to be EXPSPACE-complete (Haslum and Jonsson
1999; Rintanen 2004).

Let PN = 〈FN ,AN , IN , GN ,V〉 be a NOD planning
problem, where, FN is the set of fluents (or Boolean state
variables), such that, state s is an instantiation of FN .AN is
a set of actions, such that, when an action a ∈ AN is applied
to a state, si, a deterministic transition to the next state oc-
curs, Γ(si, a) |= si+1. IN and GN = {φGN

} are Boolean

2481

formulae that represent set of initial and goal states. V = ∅
is the set of observable fluents. We are considering a NOD
problem, therefore there are no observations. Since the un-
derlying system state is unknown, the deterministic transi-
tion function does not reveal the hidden state. PN can be ex-
pressed as a PCO problem, PC = 〈DN , GC ,Ω,O〉, where,
DN = {FN ,AN , IN}, such that IN is a set of possible ini-
tial states, GC = {φGN

,¬φGN
} is the set of goal states,

Ω = ∅ andO = ∅. The goal setGC consists of all states: the
first goal formula is common with the NOD problem and the
second one is the negation of it, which, in essence, encapsu-
lates the rest of the states.

Suppose πPC
= 〈a1, . . . , ar〉 is a 1-ambiguous/1-legible

plan solution to PC , such that, Γ(IC , πPC
) |= φGN

and the
last belief br ∈ BS(πPC

, IC) satisfies |G ∈ GC : ∃ŝ ∈
br, ŝ |= G| = 1. Then according to the definition of PN , the
plan πPC

satisfies the following, ∃ŝr ∈ br, ŝr |= φGN
and

therefore solves PN .
Conversely, suppose πPN

= 〈a1, . . . , aq〉 is a plan solu-
tion to PN , such that, Γ(IN , πPN

) |= GN . Let bq be the be-
lief associated with the last action in πPN

. Since it achieves
the goal, we can say that ∃ŝq ∈ bq, ŝq |= φGN

. According to
Definitions 7, 10, for k = j = 1, bq satisfies the condition.
Therefore πPN

is a solution to PC .

Theorem 2. The plan existence problem for a controlled
observability planning problem is EXPSPACE-complete.

Proof. In PCO, the planner operates in belief space and the
search space is bounded by 22|F| , where |F| is the cardinal-
ity of the fluents (or Boolean state variables). If there ex-
ists a plan solution for PCO, it must be bounded by 22|F|

in length. Any solution longer in length must have loops,
which can be removed. Therefore, by selecting actions non-
deterministically, the solution can be found in at most 22|F|

steps. Hence, the plan existence problem for PCO is in
NEXPSPACE. By Savitch’s theorem (Savitch 1970), NEX-
PSPACE = EXPSPACE. Therefore, the plan existence prob-
lem for PCO is EXPSPACE-complete.

3 Computing Obfuscating and Legible Plans
Now we present a common algorithm template that will be
used to compute plans for the problem variants.

3.1 Algorithm for Plan Computation
In our algorithm, each search node is represented by an ap-
proximate belief estimate, which is an arbitrary ∆-sized sub-
set of the belief state. A search node, b∆, consists of state s
and a partial belief update, b̃ (cardinality of b̃ is given by
∆ − 1, where ∆ is a counter). We borrow the concept of
“width” from Lipovetzky and Geffner (2012), but we con-
sider the width in terms of cardinality of b∆. For example,
when ∆ = 1, b∆ only consists of the state s, when ∆ = 2,
b∆ consists of s, followed by a state from its belief such that
the augmented b∆ has cardinality of 2. The successor node
uses the s in b∆ to generate the successor state, and b∆ to up-
date its partial belief. There are two loops in the algorithm:
the outer and the inner loop. The outer loop maintains the

cardinality of b∆ by incrementing the value of ∆ in each it-
eration, such that value of ∆ ranges from 1, 2, . . . , |S|. In the
inner loop, a heuristic-guided forward search (for instance,
GBFS) can be used to search over space of belief states of
cardinality ∆. These loops ensure the complete exploration
of the belief space.

Proposition 1. The algorithm necessarily terminates in fi-
nite number of |S| iterations, such that, the following condi-
tions hold:
(Completeness) The algorithm explores the complete solu-
tion space of PCO, that is, if there exists a πPCO that cor-
rectly solves PCO, it will be found.
(Soundness) The plan, πPCO , found by the algorithm cor-
rectly solvesPCO as ensured by the corresponding goal-test.

The algorithm terminates either when a plan is found or
after running the outer loop for |S| iterations. The outer loop
ensures that all the paths in the search space are explored.
The goal tests of both of the problem variants ensure that
the solutions are correct as per Definitions 7 and 10.

Optimization In order to speed up the search process, we
perform an optimization on the aforementioned algorithm.
For each search node, b∆, apart from the approximate be-
lief estimate, we maintain the full belief update b consistent
with a path to s. The approximate belief update b∆ can be
generated by choosing ∆-sized combinations of states from
the complete belief. For example, when ∆ = 1, b∆ only
consists of the state s but still maintains full belief update
b, when ∆ = 2, b∆ consists of a new combination of ap-
proximate belief of size 2 derived from the maintained full
belief. When ∆ = 1, because of the check for duplicate
states in the closed list, only one path to the search node is
explored. Therefore, the use of ∆ allows the search process
to explore multiple paths leading to a particular search node.
The complete b helps in finding k-ambiguous and j-legible
solutions faster at lower ∆ values. We present the details of
the optimization in Algorithm 1. In the following subsec-
tions, we show how we customize the goal-test (line 14) and
the heuristic function (line 21) to suit the needs of each of
our problem variants.

3.2 Computing Goal Obfuscated Plans

We randomly choose Gk, a set of k goals (inclusive of true
goal) from n goals in G. In order to ensure goal obfuscation,
we randomly pick a goal from this set and run Algorithm 1
with this goal as the true goal. Let’s call it the decoy true
goal. Apart from maintaining the belief, we also maintain
the BPS (refer Definition 5) associated with the observa-
tion sequence. We then obtain the k-ambiguous observation
sequence as output. Note that the plan output is discarded
(because that plan only reaches the decoy true goal). Then
we perform a post processing step, where we filter the BPS
to retrieve a plan that reaches the agent’s true goal. This pro-
cess ensures that even if the adversary runs the algorithm
again with either the same or different input (different goal
as true goal, or different combination of k goals), the identity
of the true goal remains k-ambiguous.

2482

Algorithm 1: Plan Computation
Input: PCO = 〈D,G,Ω,O〉
Output: plan solution πPCO , observation sequence,

OPCO
1 Initialize open, closed and unopened lists
2 ∆← 1 . Counter
3 b∆ ← {I} . Initial search node
4 b0 ← {O(∅, I)} . Initial belief
5 open.push(〈b∆, b0〉, priority = 0)
6 while ∆ 6 |S| do
7 while open 6= ∅ do
8 b∆, b, h(b∆)← open.pop()
9 if |b∆| 6= ∆ then

10 unopened.push(〈b∆, b〉, h(b∆))
11 continue
12 end
13 closed← closed ∪ b∆
14 if 〈b∆, b〉 |= GOAL-TEST(G) then
15 return πPCO , OPCO
16 end
17 for s′ ∈ successors(s) do
18 o← O(a, s′)
19 b′ ← Belief-Generation(b, o)
20 b′∆ = 〈s′, b̃′〉 . b̃′ of size ∆-1
21 h(b′∆)←

HEURISTIC-FUNCTION(b′∆, b
′)

22 add b′∆ to open if not in closed
23 end
24 end
25 ∆← ∆ + 1
26 copy items of unopened to open, empty unopened
27 end
28 procedure Belief-Generation(b, o)
29 b′ ← {}
30 for ŝ ∈ b do
31 for â ∈ A do
32 if O(â,Γ(ŝ, â)) = o then
33 b′ ← b′ ∪ Γ(ŝ, â)
34 end
35 end
36 end
37 return b′

Goal test We ensure that the solution plan does not end
unless all k goals occur in the belief state. The goal condi-
tion checks whether the decoy true goal has been achieved
in the agent’s true state and also whether the k−1 goals have
been achieved in the belief state. If there doesn’t exist a plan
that can achieve the chosen decoy true goal with the given k
goals, we restart the search with next combination of k goals
(inclusive of true goal) among the total n candidate goals. In
the worst case, the value of k can be reduced until a solution
is found.

Heuristic function We now propose a heuristic strategy
for generating a plan where the last belief state satisfies k

goals, making it a k-ambiguous plan. We use two heuristic
functions to estimate a node’s cost: h(s) = hGdecoy

A
(s) +

hGk−1
(b), where the first part computes the heuristic cost to

the decoy true goal from the agent’s actual state, and the sec-
ond part computes the heuristic cost to k − 1 goals from the
belief induced by the emitted observation. This is computed
by finding the max of heuristic cost to each of the k − 1
goals. The heuristic value of a state is computed as the to-
tal of these two values. Thus the heuristic helps to guide the
search towards at least k goals in the observer’s belief.

In this setting, a perfectly rational adversary would be one
that has unbounded computational resources, and can use
them to make perfect inferences. In other words, that is the
worst case scenario for our algorithm. The following propo-
sition shows that our algorithm provides k-ambiguous guar-
antee even in the worst case, such that a perfectly rational
adversary remains uncertain about the true goal.

Proposition 2. Let H be a perfectly rational adversary.
Given a PCO whose O function models the observation
model of agent R. Plans computed using Algorithm 1 with
k-ambiguous goal test and heuristic function are such that,
H will be able to infer the true goal with probability 6 1/k.

Let’s say goal Gi from the set Gk is chosen randomly to
be the decoy true goal. The observation sequence Oi is ob-
tained by running the algorithm with GA = Gi. The adver-
sary can run the algorithm with each goal from Gk to search
for Gi. But Gi can be the agent’s true goal with probability
1/k. Therefore the adversary can detect the true goal with
probability 6 1/k.

Note that the goals can be specified using sub-formulae.
This makes the input specification much smaller depending
on how many states are in the domain that are consistent
with the sub-formulae. In the least constrained domain, that
may be exponential in the number of propositions not used.

3.3 Computing Goal Legible Plans
In the case of goal legibility, we run the algorithm with the
agent’s true goal.

Goal test In order to ensure that the computed plan is con-
sistent with at most j true goals, we change our goal condi-
tion to additionally check whether at most j−1 confounding
goals have been achieved in the last belief in BS, or it can
be interpreted as at least n− j goals are absent in the belief.

Heuristic function In this case, our objective is to avoid
at least n − j goals, that is be consistent with at most j
goals. We achieve this by minimizing the heuristic cost to
the true goal from the agent’s actual state and to the j − 1
confounding goals from the agent’s belief state. However,
we maximize the heuristic cost to other n − j goals in or-
der to achieve at most j goals in the last belief state. This is
written as, h(s) = hGA

(s) + hGj−1(b)− hGn−j (b).

4 Plan Obfuscation and Plan Legibility
We now discuss two other problem variants called plan ob-
fuscation and plan legibility. These problems come into pic-
ture when the observer is aware of the agent’s goal, and the

2483

objective is to either obfuscate or convey the steps in the
plan.

4.1 Obfuscation
We achieve plan obfuscation by computing a plan whose ob-
servation sequence conforms to a set of diverse plans, mak-
ing it hard to predict the actions in the plan even when the
goal is known to the observer.

Definition 11. A plan obfuscation planning problem is a
tuple, PPO = 〈D,GPO,Ω,O〉, where, GPO = {GA}, and
GA is the true goal of the agent.

The solution to a plan obfuscation planning problem is
an `-diverse plan. An `-diverse plan has an observation se-
quence that is consistent with at least ` plans that are at
least d distance away. In order to compute an `-diverse plan,
we need to keep track of the plans that are consistent with
the belief sequence, we use the belief plan set to obtain
these plans. The diversity between plans can be enforced
by using plan distance measures (Srivastava et al. 2007;
Nguyen et al. 2012). A plan distance measure can be used
to compute the diversity between all the pairs of plans in a
belief plan set. Our approach can use any valid plan distance.
We now define an `-diverse plan.

Definition 12. Two plans, p1, p2, are a d-distant pair with
respect to distance function δ if, δ(p1, p2) = d, where δ is a
diversity measure.

Definition 13. A BPS induced by plan p starting at
s0 is minimally d-distant, dmin(BPS(p, s0)), if d =

min
p1,p2∈BPS(p,s0)

δ(p1, p2).

Definition 14. A plan, πl, is an `-diverse plan, if for a given
value of d and distance function δ, dmin(BPS(πl, I)) ≥
d, |BPS(πl, I)| ≥ `, where ` ≥ 2 and every plan in
BPS(πl, I) achieves the goal in GPO.

The definition of an `-diverse observation sequence fol-
lows that of k-ambiguous observation sequence.

Computing Obfuscated Plans Here we return a plan that
is at least `-diverse and that maximizes the plan distance
between BPS induced by a plan.

Goal test To ensure the plans in BPS, induced by an `-
diverse plan, can achieve the goal in GPO, we additionally
check whether at least ` plans are reaching the goal or not
and whether the minimum distance between plans in BPS
is at least d. Also in order to ensure termination of the algo-
rithm, there is a cost-bound given as input to the algorithm.

Heuristic function We now present our heuristic strat-
egy to compute `-diverse observation sequence: h(s) =
hGA

(s) − dmin(BPS(p, s0)). Apart from minimizing the
heuristic cost to the goal, we want to maximize the d of
dmin(BPS(p, s0)) induced by plan p starting at s0. We do
this in order to increase the minimum distance between the
plan pairs. This distance is computed using a plan distance
measure.

4.2 Plan Legibility
The definition of plan legibility planning problem, PPL, is
similar to that of PPO. Here the objective is to convey the
actions in a plan. We achieve this by computing a plan whose
observation sequence is consistent with plans that are similar
to each other. Again, a plan distance measure can be used to
define the similarity of the plans. We call such a plan an m-
similar plan. Essentially, theBPS induced by them-similar
plan consists of at least m plans to the goal, that are at most
d distance apart. For similar plans in BPS, we define the
maximum distance between any two pairs of plans.

Definition 15. A BPS induced by plan p starting at
s0 is maximally d-distant, dmax(BPS(p, s0)), if d =

max
p1,p2∈BPS(p,s0)

δ(p1, p2).

Definition 16. A plan, πm, is an m-similar plan,
if for a given value of d and distance function δ,
dmax(BPS(πm, I)) ≤ d, |BPS(πm, I)| ≥ m, where
m ≥ 2 and every plan in BPS(πm, I) achieves GPL.

The definitions of m-similar observation sequence fol-
lows that of goal obfuscation case.

Computing Legible Plans Here we return a plan that is at
least m-similar by minimizing the maximum plan distance
between plan pairs in the BPS induced by a plan. The goal
test for this case is similar to that of plan obfuscation case.

Heuristic function The heuristic function to compute
m-similar observation sequence is similar to that of `-
diverse: h(s) = hGA

(s) + dmax(BPS(p, s0)). The only
difference being, we want to minimize the d value of
dmax(BPS(p, s0)) induced by plan p starting at s0.

5 Empirical Evaluation
We now present an empirical analysis of all four approaches.
Through evaluation, we intend to investigate the following
objectives (1) comparison between run time and plan costs
across all four problems versus the optimal solution to the
true goal, (2) cost overhead incurred by the decoy true goal
randomization step in goal obfuscation problem, (3) impact
of ∆ in Algorithm 1 for goal obfuscation and legibility.

5.1 Domains and Experimental Setup
We use three IPC domains, namely Blocksworld,
Logistics and Driverlog to evaluate our approach.
For each of the domains, we randomly generated 50 prob-
lem instances. For the Blocksworld domain, we gener-
ated problems with 4 to 8 blocks and towers of maximum
height 5 for both initial and goal states. After grounding,
the smallest problem had 29 variables and 40 operators,
and the largest problem had 89 variables and 144 opera-
tors. For the Logistics domain, we generated problems
with goals consisting of 2 to 6 facts. After grounding, the
smallest problem had 63 variables and 78 operators, and
the largest problem had 63 variables and 198 operators. For
the Driverlog domain, we generated problems with goals
consisting of 2 to 6 facts. After grounding, the smallest prob-
lem had 33 variables and 100 operators, and the largest prob-

2484

Domain Metrics k-amb j-leg `-div m-sim opt

Blocksworld time 196.9 213.68 140.88 100.96 0.99
length 12.33 12.4 10.84 11.28 9.6

Logistics time 206.13 247.9 100.04 45.05 8.31
length 28.63 27.25 25.92 27.94 23.74

Driverlog time 145.03 186.05 111.99 58.52 1.54
length 14.33 13.5 13.59 12.95 11.16

Table 1: Empirical evaluation for all four variants using the
optimization presented in Algorithm 1 versus the optimal
plan solution (opt column) to the true goal. We report the
average time (in seconds) and the average plan length.

Figure 2: Empirical evaluation of ∆ in Algorithm 1 for goal
obfuscation and goal legibility variants. We report the num-
ber of problem instances solved for different values of ∆.

lem had 61 variables and 180 operators. We generated 5 ran-
dom candidate goals (n=5) for each problem.

The partially observable models have many-to-one map-
ping of action-state pairs to observation symbols. For the
sake of simplicity, we used lifted action names as ob-
servation symbols. The grounded actions taken and asso-
ciated states are mapped to the corresponding lifted ac-
tion names. For the Blocksworld domain, the observa-
tion symbols were pickup, putdown, stack, unstack. For the
Logistics domain, the observation symbols were load-
truck, unload-truck, load-airplane, unload-airplane, drive-
truck, fly-airplane. Finally, for the Driverlog domain,
the symbols were load-truck, unload-truck, board-truck,
disembark-truck, drive-truck, walk.

5.2 Results
The evalution results are presented in Tables 1 and 2 and
Figure 2. We modified the STRIPS planner Pyperplan (Alk-
hazraji et al. 2016) to implement our algorithms. We used
the hsa (Keyder and Geffner 2008) heuristic of Pyperplan
because it gave the best results in terms of computation time.
We ran the experiments with k = 3, j = 2, ` = 3, m = 3,
dmin = 0.25 and dmax = 0.50 for all the domains. We
used action distance measure to compute the distance be-
tween plans. We ran our experiments on 12 core Intel Xeon

Domain k-amb w/o k-amb w/ k-amb robust
Blocksworld 122.7 140.62 196.9
Logistics 159.28 181.74 206.13
Driverlog 112.93 123.02 145.03

Table 2: Empirical evaluation to report the average time (in
seconds) for different versions of k-ambiguous algorithms.
k-amb w/ and w/o do not use BPS and report time with
and without the additional post-processing step. k-amb ro-
bust uses BPS to provide robust solutions to replay attack.

CPU with an E5-2643 v3@3.40GHz processor with a 64G
RAM with 20 minutes time-out. The following number of
problems reached time-out before a solution could be found
for goal legibility and obfuscation variants together: 8/50
in the Blocksworld, 11/50 in Logistics and 6/50 in
Driverlog. These problems were excluded from the re-
sults to ensure consistency across problems.

The Table 1 presents a comparison between different vari-
ants of our framework. For k-amb, we randomize the decoy
true goal and use BPS to retrieve the plan to the true goal.
The process of maintaining BPS for every node is expen-
sive and leads to higher run time, as can be seen in the Ta-
ble. Another reason for higher run time is that the planner is
working with multiple goals, as k = 3 in our experiments.
Our approach is robust against replay attacks (attacks where
the adversary tries running algorithm with different inputs).
The j-leg solution also takes slightly longer time. This is be-
cause, we have to ensure that at most j goals are present,
which can be translated as at least n−j goals are absent. For
j-leg, we used 3 goals, where at most 2 goals were allowed,
and at least 1 was disallowed to be present in the solution.
Thus both k-amb and j-leg use 3 goals to solve the problem.
For `-div and m-sim, the run time cost comes from maintain-
ing BPS for each node. We also compare the time taken to
compute an optimal plan to the true goal represented by the
opt column.

The Table 2 shows performance comparison across dif-
ferent techniques of achieving k-ambiguous solutions. For
k-amb w/, we do not maintain BPS for every node, instead
we retrieve the plan to the true goal by filtering the belief
space using the observation sequence. This can sometimes
lead to incorrect solutions (because path consistency is not
checked) but it can be computed faster than the solution that
maintains BPS (k-amb robust). For k-amb w/o, we show
the run times without the extra filtering step to retrieve the
plan to the true goal, i.e., the run time for generation of k-
ambiguous observation sequence. From Figure 2, we see that
for both goal obfuscation and goal legibility, most of the so-
lutions are obtained for ∆ = 1 for all the 3 domains.

6 Related Work
There are prior works which discuss the problem of privacy
preservation in distributed multi-agent systems (Brafman
2015; Borrajo 2013; Bonisoli et al. 2014). A recent work on
privacy for multi-agents by Maliah, Shani, and Stern (2016)
is complementary to our approach, as they consider prob-

2485

lems where the model needs to be protected from the team
members but goals and behavior are coordinated. In contrast,
we consider problems where the models are public but goals
and behavior need to be protected.

The problem of goal obfuscation is also related to plan
recognition literature (Ramırez and Geffner 2009; 2010;
E-Martin, R-Moreno, and Smith 2015; Sohrabi, Riabov, and
Udrea 2016; Keren, Gal, and Karpas 2016a). Traditional
plan recognition systems have focused on scenarios where
actions being executed can be observed directly. In our case,
observational equivalence due to the many-to-one formula-
tion of O introduces, in effect, noisy action-state observa-
tions. This, in turn, complicates plan recognition. More cru-
cially, the agent uses the observational equivalence to ac-
tively help or hinder the ease of plan recognition.

In the recent years, the problem of goal recognition design
(GRD) (Keren, Gal, and Karpas 2014; 2015; Wayllace et al.
2016; Wayllace, Hou, and Yeoh 2017) has received increas-
ing attention. The GRD problem involves using environment
changing actions to simplify the task of legibility. Such envi-
ronment changing actions are a special class of actions that
can change observability. If the set of actions available to the
agent includes environment changing actions, our approach
would automatically solve the problem of goal recognition
design by selecting actions that maximize legibility. Addi-
tionally, our approach can also address the problem of goal
obfuscation design.

A few recent works have explored the idea of obfusca-
tion in adversarial settings from the goal recognition as-
pect (Keren, Gal, and Karpas 2016b; Masters and Sardina
2017). Keren, Gal, and Karpas (2016b) propose a solution
that obfuscates a goal by choosing one of the candidate goals
that have the maximum non-distinct observation sequence
in common with the true goal. In contrast, our approach
chooses k-sized combination of random goals (inclusive of
the true goal), and if goal obfuscation is not possible for this
combination, our approach exhaustively tries other combi-
nations until a solution is found. In the worst case, the value
of k is reduced until a solution can be found. Therefore our
approach generalizes the former approach, and in addition,
also provides guarantees against replay attacks. In addition,
our formulation also supports the case of a cooperative ob-
server by making the agent’s intentions legible to the ob-
server with respect to at most j goals. Finally, we support
the problem of plan obfuscation and legibility which aid in
obfuscating and conveying the actions in a plan.

In motion planning and robotics community, legibility
(Dragan and Srinivasa 2013; Knepper et al. 2017) has been
a well-studied topic. However, this has been mostly looked
at from the motion planning perspective, and the focus has
been on optimizing the motion trajectories to reveal the goal.
We borrow this notion and generalize it in a unified frame-
work to provide legible as well as obfuscated plans from a
task planning perspective.

This work also has connections with human aware plan-
ning. Especially, the work on explicable planning and ex-
planations (Zhang et al. 2017; Chakraborti et al. 2017;
Kulkarni et al. 2018; Chakraborti, Sreedharan, and Kamb-
hampati 2018) proposes modeling the human’s understand-

ing of a planning agent and introduces the notion of human-
aware multi-model planning. Their framework consists of
two planning models representing the planner’s domain
model and the observing or interacting human’s understand-
ing of the planning model. Essentially, their framework cap-
tures the expectations of the observer in the form of a possi-
bly noisy or incomplete planning model of the agent. In con-
trast, our setting captures the observer’s uncertainty over ac-
tor’s activities using the sensor model. In future, we intend to
investigate the connections between these two frameworks.

7 Conclusion
We introduced a unified framework that gives a planner the
capability of addressing both adversarial and cooperative sit-
uations. Our setting assumes that the observer has partial
visibility of the agent’s activities, but is aware of agent’s
planning capabilities. We define four problems: goal obfus-
cation and legibility when the agent’s true goal is unknown
and, plan obfuscation and plan legibility when the agent’s
true goal is known. We propose the following solutions to
these problems: k-ambiguous plan which obfuscates the true
goal with respect to at least k goals, j-legible plan which
enables an observer to quickly understand the j true goals
of the agent, `-diverse plan which obfuscates the actions in
a plan and, m-similar plan which conveys the actions in the
plan. We present different search techniques to achieve these
solutions and evaluate the performance of our approaches.

This work opens the door to multiple interesting research
questions. In our current framework, we look at settings
that are either adversarial or cooperative. However, the real-
world scenarios often consist of mixed agents, where some
are of adversarial nature while some others are of cooper-
ative nature. In such a multi-agent setting, our framework
can be extended to increase the obfuscation for the adversar-
ial agents while reducing the obfuscation for the cooperative
ones. Another interesting avenue for future work involves
modeling the observer as an active agent, such that, the ob-
server is capable of performing actions in the environment
to either thwart the agent from achieving its objectives in an
adversarial setting, or to collaborate with the agent on dyadic
tasks in a cooperative setting. This would involve extending
the framework to support the observer’s planning model.

Acknowledgments
We thank David Smith for helpful comments on the
paper. This research is supported in part by the ONR
grants N00014-16-1-2892, N00014-18-1-2442, N00014-18-
1-2840, the AFOSR grant FA9550-18-1-0067, and the
NASA grant NNX17AD06G.

References
Alkhazraji, Y.; Frorath, M.; Grützner, M.; Liebetraut, T.; Or-
tlieb, M.; Seipp, J.; Springenberg, T.; Stahl, P.; and Wülfing,
J. 2016. Pyperplan. https://bitbucket.org/malte/pyperplan.
Bonet, B., and Geffner, H. 2014. Belief tracking for plan-
ning with sensing: Width, complexity and approximations.
Journal of Artificial Intelligence Research 50:923–970.

2486

Bonisoli, A.; Gerevini, A. E.; Saetti, A.; and Serina, I. 2014.
A privacy-preserving model for the multi-agent proposi-
tional planning problem. In Proceedings of the Twenty-first
European Conference on Artificial Intelligence, 973–974.
Borrajo, D. 2013. Multi-agent planning by plan reuse. In
Proceedings of the 2013 International Conference on Au-
tonomous Agents and Multi-agent Systems, AAMAS ’13,
1141–1142. Richland, SC: International Foundation for Au-
tonomous Agents and Multiagent Systems.
Brafman, R. I. 2015. A privacy preserving algorithm for
multi-agent planning and search. In IJCAI, 1530–1536.
Chakraborti, T.; Sreedharan, S.; Zhang, Y.; and Kambham-
pati, S. 2017. Plan explanations as model reconciliation:
Moving beyond explanation as soliloquy. In IJCAI.
Chakraborti, T.; Sreedharan, S.; and Kambhampati, S. 2018.
Explicability versus explanations in human-aware plan-
ning. In Proceedings of the 17th International Conference
on Autonomous Agents and MultiAgent Systems, AAMAS
’18, 2180–2182. International Foundation for Autonomous
Agents and Multiagent Systems.
Dragan, A., and Srinivasa, S. 2013. Generating legible mo-
tion. In Proceedings of Robotics: Science and Systems.
E-Martin, Y.; R-Moreno, M. D.; and Smith, D. E. 2015.
A fast goal recognition technique based on interaction esti-
mates. In Twenty-Fourth International Joint Conference on
Artificial Intelligence.
Geffner, H., and Bonet, B. 2013. A concise introduction
to models and methods for automated planning. Synthe-
sis Lectures on Artificial Intelligence and Machine Learning
8(1):1–141.
Haslum, P., and Jonsson, P. 1999. Some results on the com-
plexity of planning with incomplete information. In Euro-
pean Conference on Planning, 308–318. Springer.
Keren, S.; Gal, A.; and Karpas, E. 2014. Goal recognition
design. In ICAPS.
Keren, S.; Gal, A.; and Karpas, E. 2015. Goal recognition
design for non-optimal agents. In AAAI, 3298–3304.
Keren, S.; Gal, A.; and Karpas, E. 2016a. Goal recognition
design with non-observable actions. In AAAI, 3152–3158.
Keren, S.; Gal, A.; and Karpas, E. 2016b. Privacy preserving
plans in partially observable environments. In IJCAI, 3170–
3176.
Keyder, E., and Geffner, H. 2008. Heuristics for planning
with action costs revisited. In ECAI, 588–592.
Knepper, R. A.; Mavrogiannis, C. I.; Proft, J.; and Liang,
C. 2017. Implicit communication in a joint action. In Pro-
ceedings of the 2017 ACM/IEEE International Conference
on Human-Robot Interaction, 283–292. ACM.
Kulkarni, A.; Zha, Y.; Chakraborti, T.; Vadlamudi, S. G.;
Zhang, Y.; and Kambhampati, S. 2018. Explicable robot
planning as minimizing distance from expected behavior. In
ICAPS XAIP.
Lipovetzky, N., and Geffner, H. 2012. Width and seri-
alization of classical planning problems. In Proceedings
of the 20th European Conference on Artificial Intelligence,

ECAI’12, 540–545. Amsterdam, The Netherlands, The
Netherlands: IOS Press.
Maliah, S.; Shani, G.; and Stern, R. 2016. Stronger privacy
preserving projections for multi-agent planning. In ICAPS,
221–229.
Masters, P., and Sardina, S. 2017. Deceptive path-planning.
In Proceedings of the Twenty-Sixth International Joint Con-
ference on Artificial Intelligence, IJCAI-17, 4368–4375.
Nguyen, T. A.; Do, M.; Gerevini, A. E.; Serina, I.; Srivas-
tava, B.; and Kambhampati, S. 2012. Generating diverse
plans to handle unknown and partially known user prefer-
ences. Artificial Intelligence 190(0):1 – 31.
Ramırez, M., and Geffner, H. 2009. Plan recognition as
planning. In Proceedings of the 21st international joint con-
ference on Artifical intelligence. Morgan Kaufmann Pub-
lishers Inc, 1778–1783.
Ramırez, M., and Geffner, H. 2010. Probabilistic plan recog-
nition using off-the-shelf classical planners. In Proceedings
of the Conference of the Association for the Advancement of
Artificial Intelligence (AAAI 2010).
Rintanen, J. 2004. Complexity of planning with partial ob-
servability. In ICAPS, 345–354.
Savitch, W. J. 1970. Relationships between nondeterminis-
tic and deterministic tape complexities. Journal of computer
and system sciences 4(2):177–192.
Sohrabi, S.; Riabov, A. V.; and Udrea, O. 2016. Plan recog-
nition as planning revisited. In IJCAI, 3258–3264.
Srivastava, B.; Nguyen, T. A.; Gerevini, A.; Kambhampati,
S.; Do, M. B.; and Serina, I. 2007. Domain independent
approaches for finding diverse plans. In IJCAI, 2016–2022.
Wayllace, C.; Hou, P.; Yeoh, W.; and Son, T. C. 2016. Goal
recognition design with stochastic agent action outcomes. In
IJCAI.
Wayllace, C.; Hou, P.; and Yeoh, W. 2017. New metrics and
algorithms for stochastic goal recognition design problems.
In Proceedings of the 26th International Joint Conference
on Artificial Intelligence, 4455–4462. AAAI Press.
Zhang, Y.; Sreedharan, S.; Kulkarni, A.; Chakraborti, T.;
Zhuo, H. H.; and Kambhampati, S. 2017. Plan explica-
bility and predictability for robot task planning. In 2017
IEEE International Conference on Robotics and Automation
(ICRA), 1313–1320. IEEE.

2487

