
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Generation of Policy-Level Explanations for Reinforcement Learning

Nicholay Topin, Manuela Veloso
Machine Learning Department

Carnegie Mellon University
Pittsburgh, PA 15213

{ntopin, veloso}@cs.cmu.edu

Abstract

Though reinforcement learning has greatly benefited from the
incorporation of neural networks, the inability to verify the
correctness of such systems limits their use. Current work in
explainable deep learning focuses on explaining only a sin-
gle decision in terms of input features, making it unsuitable
for explaining a sequence of decisions. To address this need,
we introduce Abstracted Policy Graphs, which are Markov
chains of abstract states. This representation concisely sum-
marizes a policy so that individual decisions can be explained
in the context of expected future transitions. Additionally, we
propose a method to generate these Abstracted Policy Graphs
for deterministic policies given a learned value function and
a set of observed transitions, potentially off-policy transi-
tions used during training. Since no restrictions are placed
on how the value function is generated, our method is com-
patible with many existing reinforcement learning methods.
We prove that the worst-case time complexity of our method
is quadratic in the number of features and linear in the num-
ber of provided transitions, O(|F |2|tr samples|). By apply-
ing our method to a family of domains, we show that our
method scales well in practice and produces Abstracted Pol-
icy Graphs which reliably capture relationships within these
domains.

1 Introduction
Recent advances in neural networks have led to powerful
function approximators, which have been successfully used
to support Reinforcement Learning (RL) techniques to solve
difficult problems. However, the deployment of RL systems
in real-world use cases is hampered by the difficulty to ver-
ify and predict the behavior of RL agents. In the context of
RL, autonomous agents learn to operate in an environment
through repeated interaction. After training, the agent is able
to make decisions in any given state, but is unable to provide
a plan nor rule-based system for determining which action to
take. Generally, a policy which selects actions (π(s) = a) is
available along with its value function (Vπ(s) ∈ R), which
predicts future reward from a state. However, neither the out-
come of the actions nor the sequence of future actions taken
is available. Without these, a human operator must blindly
trust an RL agent’s evaluation.

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Existing techniques for explaining Deep Reinforcement
Learning agents borrow techniques used for explaining neu-
ral network predictions, so they focus on explaining one
state at a time. These techniques pinpoint the features of the
state that influence the agent’s decision, but do not provide
an explanation incorporating expected future actions. There-
fore, the explanation is insufficient for a human supervisor
to decide whether to trust the system. Likewise, no whole-
policy view is available, so evaluating the agent’s overall
competency (as opposed to single-state evaluation) is im-
possible. For these reasons, we are interested in explaining
policies as a whole: giving the context for action explana-
tions and providing an abstraction of an entire policy.

To address the aforementioned issues, we propose the cre-
ation of a full-policy abstraction, which is then used as the
basis for generating local explanations. We introduce Ab-
stract Policy Graphs (APGs) as such a full-policy abstrac-
tion. Each APG is effectively a graph where each node is an
abstract state and each edge is an action with associated tran-
sition probability between two abstract states. Using a map-
ping from states to abstract states, one can identify which
groups of states the agent treats similarly, as well as predict
the sequence of actions the agent will take. This explanation
provides local explanations along with a global context.

Additionally, we propose an algorithm, APG Gen, for
creating an APG given a policy, a learned value function,
and a set of transitions. Starting with a single abstract state
which encompasses the full state-space, APG Gen uses a
feature importance measure to repeatedly divide abstract
states along important features. These abstract states are then
used to create an APG. The splitting procedure additionally
identifies which features are important within each abstract
state. Notably, this general procedure is compatible with ex-
isting methods for learning a policy and value function.

The main contributions of this work are as follows: (1)
we introduce a novel representation, Abstract Policy Graphs,
for summarizing policies to enable explanations of individ-
ual decisions in the context of future transitions, (2) we pro-
pose a process, APG Gen, for creating an APG from a pol-
icy and learned value function, (3) we prove that APG Gen’s
runtime is favorable (O(|F |2|tr samples|), where F is the
set of features and tr samples is the set of provided transi-
tions), and (4) we empirically evaluate APG Gen’s capability
to create the desired explanations.

2514

2 Related Work

Prior work in explaining Deep Learning systems focuses
on explaining individual predictions. Explaining individual
predictions in terms of input pixels has been done using
saliency maps based on model gradients, as in (Simonyan,
Vedaldi, and Zisserman 2013) and (Samek, Wiegand, and
Müller 2017). Alternatively, local explanations are learned
for regions around an input point to identify relevant pixels
(Ribeiro, Singh, and Guestrin 2016).

(Iyer et al. 2018) leverage these pixel-level explanations
and use an object detector to produce object saliency maps,
which are explanations for the behavior of deep RL agents in
terms of objects. Unlike our method, their method explains
a single decision without the context of potential future de-
cisions. (Ehsan et al. 2018) create natural language explana-
tions for each action the agent performs. These explanations
are learned using a human-provided corpus of explanations.
These explanations are only for individual (s, a, s′) tuples,
so their method does not produce policy-wide explanations.

Existing RL-specific methods with policy-level explana-
tions impose additional constraints. Some works explain
agent behavior, but require the agent to use a specific, in-
terpretable model. For example, Genetic Programming for
Reinforcement Learning (Hein, Udluft, and Runkler 2017)
use a genetic algorithm to learn a policy which is inherently
explainable. Unlike our method, this method is incompati-
ble with arbitrary RL systems due to its reliance on learning
inherently small policies using a genetic algorithm.

Other methods require a ground-truth or learned model
of the environment, which may be more complicated than
the learned policy. (Khan, Poupart, and Black 2009) pro-
duce contrastive explanations which compare the agent’s ac-
tion to a proposed alternative, but require a known factored
MDP. (Hayes and Shah 2017) explain robot behavior us-
ing natural language. These explanations are formed using a
model learned from demonstrations and based on operator-
specified “important program state variables” and “impor-
tant functions.” Other work avoids automatically identifying
patterns in agent behavior and relies on a human to manu-
ally identify similar sets of states. (Zahavy, Ben-Zrihem, and
Mannor 2016) embed states into a space where states within
certain regions of this space behave similarly. They group
these states based on region to produce explanations. How-
ever, a human operator must form these groups and identify
within-group similarities.

An overview of previous methods for creating abstrac-
tions for Markov Decision Processes can be found in (Li,
Walsh, and Littman 2006). These methods focus on creating
an abstraction for use with an RL agent. To that end, they
create an abstract Markov Decision Process, which is usu-
ally done before or during learning. This differs from our
use case where we seek only to explain the transitions that
occur under a specific policy, so our abstraction is instead a
Markov chain created after a policy has been learned.

3 Background
3.1 Solving Markov Decision Processes
In the context of RL, an agent acts in an environment defined
by a Markov decision process (MDP). We use a six-tuple
MDP formulation: 〈S,A, P,R, γ, T 〉, where S is the set of
states, A is the set of actions, P is the transition function, R
is the reward function, γ is the discount factor, and T is the
set of terminal states which may be the empty set (Sutton
and Barto 1998). In this work, we assume all states consist
of an assignment to features. Specifically, each state consists
of a value assignment to each feature f ∈ F . An agent ul-
timately seeks to learn a policy, the function π(st) = at,
which maximizes total discounted reward. Note that the pol-
icy need not be deterministic, but we only consider the de-
terministic case in this paper. In the process of learning a
policy, an RL agent generally approximates the state-value
function or the action-value function. The state-value func-
tion is the expected future discounted reward from the state
s0 when policy π is followed:

Vπ(s0) = E

(∞∑
t=0

γtR(st, π(st), st+1)

)
. (1)

The action-value function is the expected future discounted
reward from the state s0 given the agent takes action
a0 and then follows policy π. Note that the state-value
function can be obtained from the action-value function:
Vπ(s0) = Qπ(s0, π(s0)). These are used in methods based
on Q-Learning, Sarsa(λ), and actor-critic methods (Sutton
and Barto 1998). Therefore, the value-function is generally
available alongside the policy of a trained agent.

3.2 Feature Importance Function
We use an importance measure for grouping states from an
original MDP into abstract states. An importance measure is
a function If (c) which represents the importance of feature
f in determining how a system treats a set of inputs (e.g.,
states), c. If f takes on the same value for all s ∈ c or its
value does not influence the system’s output, then f is not
important. We use the Feature Importance Ranking Measure
(FIRM) (Zien et al. 2009) since it is fast to compute exactly
for binary features and can be meaningfully interpreted.

To calculate importance, FIRM uses qf (v), the condi-
tional expected score of s for a feature f with respect to
an arbitrary function g(s). This score is the average value of
g(s) for all s within the set c where feature f takes value v:

qf (v) = E(g(s)|s[f] = v). (2)

Intuitively, if qf (v) is a flat function, then v, the value of
f , has no impact on the average value of g(s) over s ∈ c, so
provides little information. However, if v significantly im-
pacts g(s), then the value of qf (v) will vary. This motivates
FIRM’s importance measure If (c), the variance of the con-
ditional expected score:

If (c) =
√
V(qf (s[f])). (3)

In specific cases, the exact value of If (c) can be computed
quickly. One such case is when f is a binary feature. For a

2515

binary feature, the importance measure is given by

If (c) = (qf0(c)− qf1(c))
√
pf0(c)pf1(c),

pfv(c) = P(s[f] = v),

qfv(c) = E(g(s)|s[f] = v).

(4)

In the case of binary features, FIRM corresponds to the ex-
pected change if the feature switches from 0 to 1. Conve-
niently, sign is preserved in the binary case, showing magni-
tude of importance as well as direction of effect.

4 Approach
In Section 4.1, we describe Abstract Policy Graphs, our rep-
resentation for explaining a policy. In Section 4.2, we pro-
pose APG Gen, a method for constructing such explana-
tions. In Section 4.3, we describe local explanations we pro-
duce from our policy explanations. Finally, in Section 4.4,
we show that our method has favorable asymptotic runtime:
quadratic in the number of features and linear in the number
of transition tuples considered, where there are usually few
features and runtime sub-linear in the number of transitions
is unattainable.

4.1 Abstract Policy Graphs
To create a policy-level explanation, we express the policy
as a Markov chain over abstract states where edges are tran-
sitions induced by a single action from the original MDP,
which we term an Abstract Policy Graph (APG). We present
an example in Figure 1. Consider a mapping function, l(s),
which maps states in the original MDP (grounded states) to
abstract states. In effect, each abstract state represents a set
of grounded states from the original MDP. We use the phrase
“an agent is in abstract state b” to mean that the current state
of the domain, s, maps to b (i.e., l(s) = b). Let each set
contain all states interchangeable under the agent’s policy
such that the agent behaves similarly when starting in a state
from the set in a similar fashion. As a result, states in which
the agent behaves similarly lead the agent to states in which
the agent also behaves similarly. If the agent’s transitions
between grounded states are approximated using a Markov
chain between these abstract states, then states which are
treated similarly are readily identified and the agent’s transi-
tions between abstract states can be predicted.

For example, let the agent’s distribution of actions be ap-
proximately equal for all future time-steps for all grounded
states in the set:

Es1,tP(π(s1,t) = a) ≈ Es2,tP(π(s2,t) = a)∀a, t (5)

for all s1 and s2 within a set, where si,t is the state reached
from si in t further time-steps using policy π.

If the transition function is deterministic, then the agent
takes the same sequence of actions from each grounded state
in the set because there is only a single si,t for each i and
t. In addition, since no two sets could combine to form an
interchangeable set, then the abstract states for all si,t are
identical, too. Since the probability of transitioning from one
abstract state to another after one action is then either zero
or one (regardless of grounded state), the agent is effectively

Figure 1: An example Abstract Policy Graph with edge la-
bels indicating transition probabilities. The abstract state
identifier is shown within each node, and the action taken
is written adjacent to the node.

traversing a Markov chain of abstract states induced by its
policy.

However, most interesting domains have stochastic tran-
sition functions. Under a stochastic transition function, two
grounded states can satisfy Equation 5 while having dif-
ferent transition probabilities to future abstract states. The
transition probability from one abstract state to another can
be approximated as the average transition probability for
grounded states in the source abstract state. For stochas-
tic policies, the probability of taking any given action can
be similarly approximated as the average over all grounded
states in the source abstract state. The transition probability
is no longer exact for any given grounded state in the set but
is the transition probability for a randomly chosen state in
the set. To make predictions for a series of transitions, we
make a simplifying Markov assumption: the abstract state
reached, bt+1, when performing an action depends only on
the current abstract state, bt. This assumption leads to ap-
proximation error but works well in practice, as shown in
Section 6.2.

The abstract states now form a Markov chain, as desired.
This final product allows human examination of higher-level
behavior (e.g., looking at often-used trajectories and check-
ing for loops), prediction of future trajectory (along with ac-
companying probability), and verification of agent abstrac-
tion (e.g., ensuring agent’s behavior is invariant to certain
features being changed).

4.2 APG Construction
We propose an algorithm for creating APGs, APG Gen. It
first divides states into sets to form abstract states, then com-
putes transition probabilities between them.

Importance Measure APG Gen is compatible with arbi-
trary interchangeability measures. We choose Vπ(s) as it
is readily available, but the method does not rely on this
choice. Using an interchangeability measure based on Equa-
tion 5 is difficult since it would depend on an expectation
over all future states, which is often computationally expen-
sive and requires knowing transitions for all states. We note
that the definition of Vπ(s) in Equation 1 also includes an
expectation over all future future states, as well as a de-
pendency on the policy. Since the full state-value function

2516

is generally available and does not require computing addi-
tional expectations, we use it as our measure of interchange-
ability. The intuition is that two states with similar state-
values lead to similar future outcomes in terms of reward,
so are likely treated similarly by the agent. A different mea-
sure could be used instead

With an importance measure If (c) for Vπ(s), a set of
states which is interchangeable under the agent’s policy
should have low If (c) for all f . Consider the case of c1

⋃
c2,

a set containing the original MDP states which should be
contained in two abstract states. At least one f should have
high If (c1

⋃
c2) because the grounded states from the two

abstract states are treated differently. If there is no such f ,
then the two sets are treated the same and therefore belong
to the same abstract state.

Splitting Binary Features In the case where all features
are binary, if the set is split based on the value of that f (into
one subset if f = 0 and the other if f = 1), then both sub-
sets will have If be 0, since f has a constant value within
the subset. This holds for any set of grounded states which
will ultimately form several abstract states. Therefore, this
splitting procedure can be repeatedly performed to create ab-
stract states from initially larger sets until all features have
low importance.

Since each binary feature can only be important once and
it is straightforward to split along a binary feature, the use
of binary features allows quick computation. Therefore, in
cases where the original MDP does not have solely binary
features, pre-processing can be done to create features for
APG Gen. Note that these features are not used when evalu-
ating Vπ(s) (i.e., an unmodified, arbitrary model can be used
for approximating Vπ(s)). The binary features are instead
used when deciding to which set a specific tuple belongs
while performing APG Gen.

Abstract State Division Since binary features allow effi-
cient splitting, our approach is to initially form sets based
on action taken under the current policy and then repeatedly
split the set which has the greatest If value, as computed
within that set. When the importances of all features for all
abstract states are sufficiently low, then the abstract states
consist of sets of states which are interchangeable under the
agent’s policy.

The pseudocode for our method is given in Algorithm 1.
To perform the procedure, we require a set of sample tran-
sitions. As mentioned in Section 3.1, RL agents generally
learn through interacting with a domain, meaning a set of
(s, a, s′) transitions is generally available. The notation we
use for this set is a vector tr samples consisting of entries t
where action ta is taken in state ts, leading to a transition to
state ts′ , an observed reward tr, and a termination flag tt (0
or 1). The policy is used in line 5 to discard transition tuples
where the provided policy would perform a different action
from the action in the stored tuple. This is done so that the
generated explanation reflects only the current policy and
not transition tuples observed under past policies.

Lines 2-6 separate the tuples based on the action taken.
We pre-compute the feature importance for each set and
save it in lines 7-8. Line 9 forms the core procedure, where

Algorithm 1 Compute abstract states based on transition
samples and learned policy.

1: procedure DIV ABS STATES(tr samples, policy)
2: for i in {1, . . . , |A|} do
3: c[i]← ∅ . initially, all sets empty
4: for t in tr samples do . separate by action
5: if policy(ts) = ta then
6: c[ta]← c[ta] ∪ t
7: for i in {1, . . . , c} do . pre-compute feat. imp.
8: m[i]← [|If (c[i])| for f ∈ {1, . . . , |F |}]
9: while maximaxj (m[i][j]) > ε do

10: imax ← argmaximaxj (m[i][j])
11: jmax ← argmaxj (m[imax][j])
12: cn0 , cn1 ← ∅
13: for t in c[imax] do . split on most imp. feat.
14: if ts[jmax] = 0 then
15: cn0

← cn0
∪ t

16: else
17: cn1

← cn1
∪ t

18: m[imax]← [|If (cn0
)| for f ∈ {1, . . . , |F |}]

19: c[imax]← cn0

20: m[|c|]← [|If (cn1)| for f ∈ {1, . . . , |F |}]
21: c[|c|+ 1]← cn1

22: return c

abstract states are divided until no feature has importance
greater than ε. The abstract state with the most important
feature is found, then divided based on the most important
feature. The importance of each feature is then re-computed
in lines 18 and 20.

APG Edge Creation Once the abstract state sets have
been created, we create the mapping function l and Markov
chain transition matrix using Algorithm 2 (a sparse matrix
can be created in an almost identical fashion). In lines 2-
4, the contents of each set are used to create the necessary
entries in a lookup table for the mapping function. Simulta-
neously, the transition matrix is initialized to be zero-valued
by lines 5-6. Then, in lines 7-13, the mapping function is
used in conjunction with the transition tuples within each
abstract state set to compute transition probabilities. That
is, if a transition tuple t is in set c[i], then the origin state,
ts, is in the abstract state represented by c[i]. The destina-
tion state, ts′ , then indicates a connection between c[i] and
l(ts′). The transition probability from c[i] to c[n] is the por-
tion of tuples in c[i] which lead to a state in c[n], so each tu-
ple in c[i] should increment transition(i, l(ts′)) by 1/|c[i]|,
as done in line 13. Terminal transitions are identified in
line 9 and instead lead to the special bT abstract state. This
abstract state represents termination and is represented by
the highest-numbered row and column in transition. There
will be no incoming edges to bT if the set of terminal states,
T , is empty. Line 14 sets bT to have an edge to itself to create
a valid Markov chain.

2517

Algorithm 2 Create mapping function and transition matrix
based on policy graph.

1: procedure COMPUTE GRAPH INFO(c)
2: for i in {1, . . . , |c|+ 1} do
3: for t in c[i] do
4: lookup[ts]← i . create lookup table
5: for n in {1, . . . , |c|+ 1} do . zero matrix
6: transition(i, n)← 0

7: for i in {1, . . . , |c|} do
8: for t in c[i] do
9: if tt = 1 then . terminal tt go to dummy bT

10: n← |c|+ 1
11: else. others go to abstract state of next state
12: n← lookup[ts′]

13: transition(i, n) += 1/|c[i]|
14: transition(|c|+ 1, |c|+ 1)← 1 . add bT self-loop
15: return lookup, transition

4.3 Abstract State Summarization
The policy graph algorithm presented creates a summary of
the overall policy out of abstract states, which are each de-
fined by a set of states from the original MDP. Due to the
process which we use to create the abstract states, we can
also create a characterization of the states which are in their
set. Note that Algorithm 1 splits an abstract state into two
based on a feature f because f is “important” based on cho-
sen function g. These fs can be trivially recorded and stored
for each abstract state. Once the final abstract states have
been created, these fs indicate which features were previ-
ously important. From this, the important features of an ab-
stract state can be determined.

For any state in the transition set, sn, and a specific ab-
stract state, b, if π(sn) = π(s) and sn[f] = s[f] for any s
in b’s set and for all f which were used to create b, then sn
will also be in b’s set. Similarly, if sn[f] 6= s[f] (for sim-
ilarly defined s and f), then sn cannot be in b’s set. These
feature-value assignments are necessary and sufficient to be
part of b, so this creates an “if and only if” relationship. As
a result, for any chosen state s, based on the features used to
create its abstract state, the “relevant” features can be deter-
mined. If the value for any of these features changes, then s
would be in a different abstract state and treated differently.
Similarly, the agent is oblivious to changes in the other fea-
tures given the values assigned to the relevant features. This
relationship allows a human supervisor to determine which
features affect how an agent treats a specific state. In ad-
dition, a summary of an abstract state can be formed using
these same feature-value assignments.

4.4 Computational Complexity
Computing FIRM Since pf1(c) = 1 − pf0(c) and
qf1(c) = (E(g(s)) − pf0(c)qf0(c))/pf1(c), computing
pf0(c) and qf0(c) is enough to calculate the importance.
These can be computed for all f with a single pass through
the set of states, as shown in Algorithm 3.

The bulk of the computation is performed in lines 6 to

Algorithm 3 Compute feature importance for all features for
given set of transitions.

1: procedure FIRM(tuples)
2: qtot ← 0 . expected value over full set
3: for f in {1, . . . , |F |} do
4: p0[f]← 0 . ratio of set with s[f] = 0
5: q0[f]← 0 . E(s|s[f] = 0) for s in set
6: for t in tuples do
7: g val← g(ts)
8: qtot += g val . store sum for qtot
9: for f in {1, . . . , |F |} do

10: if s[f] = 0 then . p0 is tally, q0 is sum
11: p0[f] += 1
12: q0[f] += g val

13: qtot = qtot/|tuples| . convert sum to average
14: for f in {1, . . . , |F |} do . intermediate terms
15: q0[f]← q0[f]/p0[f]
16: p0[f]← p0[f]/|tuples|
17: p1[f]← 1− p0
18: q1[f]← (qtot − p0[f]q0[f])/p1[f]
19: qdiff [f]← q0[f]− q1[f]
20: return [qdiff [f]

√
p0[f]p1[f] for f in {1, . . . , |F |}]

12. Here, every transition in the set is separately consid-
ered. Only a single evaluation of g is required regardless of
the number of features. This evaluation is used to calculate
E(g(s)) and qf0 for each feature where s[f] = 0. The over-
all complexity of Algorithm 3 is therefore O(|F ||tuples|),
where |F | is the number of features and |tuples| is the num-
ber of transitions over which FIRM is computed.

APG Gen Runtime The runtime of Algorithm 1 is
quadratic in the number of features and linear in the num-
ber of provided transitions, O(|F |2|tr samples|).

Creating the initial abstract states (i.e., those based only
on action taken) takes time O(|A| + |tr samples|), where
we assume |A| ≤ |tr samples|. Computing FIRM for all
of these abstract states takes O(|F ||tr samples|) time. The
while loop in lines 9 to 21 forms the bulk of the algorithm,
which we will analyze last. Creating the lookup and transi-
tion tables takes O(|tr samples|), assuming a zero matrix
can be created in constant time for line 6.

For lines 9 to 21, during each iteration of the while loop,
the runtime is O(log2(|c|)) to insert the new imaxs if a max-
heap is used to store the jmaxs, O(|c[imax]|) to partition the
set c[imax], and O(|F ||c[imax]|) to compute FIRM for both
new sets. Note that each time a set is divided, the number of
features within that set with non-fixed values (and therefore
positive importance) is reduced by one. Therefore, any given
tuple may only be part of an evaluated set |F | times. As a re-
sult, over all iterations of the loop, the set division and FIRM
computation takes at most O(|F |2|tr samples|) time. This
can happen over the course of up to 2|F | divisions, so the
max-heap insertion takes time at most O(|F |).

The overall worst-case runtime for APG Gen is then on
the order of O(|F |2|tr samples|). This is favorable since
runtime must be at least linear in |tr samples| and F is gen-

2518

erally small compared to the number of tuples.

5 Experimental Methodology
We evaluate APG Gen on a novel domain with scalable state
space and controllable stochasticity. We describe this do-
main, PrereqWorld, in Section 5.1. Experimental settings are
described in Section 5.2.

5.1 PrereqWorld
We introduce the PrereqWorld domain for evaluating our ap-
proach. This domain is an abstraction of a production task
where the agent is to create a specific, multi-component item
using a number of manufacturing steps. The size of the state-
space for an instance of this domain is controlled by the
number of unique items, m. The agent may only have one
of each item at a time. Production of each item may require
some prerequisites, a subset of the other items, but no cy-
cle of dependencies is permitted. In producing an item, the
prerequisite items are usually lost. A domain parameter, ρ,
controls the probability that an item is lost.

For ease of notation, we assume that the items are num-
bered according to their place in a topological sort (i.e., an
item’s prerequisites must be higher-numbered). Let id refer
to the desired final item. For each item ij , let Cj be the set
of prerequisite items which ij requires. A sample MDP is
shown in Figure 2. Note how the goal is to make i1 and it
requires having i3 and i4. In turn, i3 also requires i4.

A state consists of m binary features, where the binary
feature fj corresponds to whether the agent has an item ij .
Any state where s[fd] = 1 is a terminal state. The distribu-
tion of initial states is uniform over all possible non-terminal
states. The reward is −1 for transitioning to a non-terminal
state and 0 for transitioning to a terminal state. For simplic-
ity, we take γ to be 1, but the optimal policies for any domain
instance remain optimal for any γ in the interval (0, 1].

There arem actions where the action aj corresponds to at-
tempting to produce item ij . Actions for currently possessed
items or for items with unmet prerequisites have no effect.
That is, P (s|s, aj) = 1 when feature s[fj] = 1 or there is an
ik ∈ Cj such that s[fk] = 0. When an action is successful,
fj is set to 1 and each of item ij’s prerequisites is used with
probability 1 − ρ. That is, for all ik ∈ Cj , fk is indepen-
dently set to 0 with probability (1 − ρ) and left as 1 with
probability ρ.

For the MDP in Figure 2, note that transitions are deter-
ministic (ρ = 0) for simplicity and we do not show the tran-
sition function for states where s[f1] = 1 (i1 is present)
since all such states are terminal. Notice how the domain
can be solved optimally from the starting position 0000
(no items present) using the action sequence [a4, a3, a4, a1].
This ensures that an i4 is present before i3 is made, and an-
other i4 is created as a prerequisite to creating i1. This do-
main is suitable for explanation as it has inherent dependen-
cies and sets of states which are treated identically.

An example APG made by APG Gen for an instance of
PrereqWorld is given in Figure 3. APG Gen additionally de-
scribes each abstract state. For example, b16 corresponds to
all states where features 2 and 3 are 1. This corresponds to

always taking action a1 when an i2 and i3 are present, which
corresponds to C1 = {i2, i3} in this domain instance. This
correspondence between the domain constraints and the ex-
planation would allow a human operator to verify that an
agent is behaving as expected.

m = 4, ρ = 0, id = i1
C1 = {i3, i4}
C2 = {i3, i4}
C3 = {i4}
C4 = {}
S = {0000, 0001, . . . , 1111}
A = {a1, . . . , a4}
T = {1000, 1001, . . . , 1111}
R(s, a, s′) = 0 for s′ ∈ T
R(s, a, s′) = −1 for s′ 6∈ T
γ = 1

P (0001|0000, a4) = 1
P (0010|0001, a3) = 1
P (0011|0010, a4) = 1
P (1000|0011, a1) = 1
P (0100|0011, a2) = 1
P (0101|0100, a4) = 1
P (0110|0101, a3) = 1
P (0111|0110, a4) = 1
P (1100|0111, a1) = 1
for other s and a,
P (s′|s, a) = 0 when s 6= s′

and
P (s′|s, a) = 1 when s = s′

Figure 2: MDP for an example PrereqWorld instance.

5.2 Experimental Settings
APG Inputs For consistency, we use value iteration (Sut-
ton and Barto 1998) to create the policies and value func-
tions used for experiments, but other methods could be used
instead. We iterate until the state-value function no longer
changes. To generate the transitions, we generated trajecto-
ries from a random starting state until the maximum number
was reached.

APG Gen Stopping Criterion (ε) In the case of binary
features, FIRM corresponds to the expected change should
the feature be changed from 0 to 1. Conveniently, sign is also
preserved in the binary case, showing magnitude of impor-
tance as well as direction of effect. As a result, if no feature
for any abstract state has FIRM magnitude greater than ε,
then changing any given feature is not expected to change
the value of g(s) by more than ε (e.g., Es∈c(|g(s, sf =
0) − g(s, sf = 1)|) < ε∀c). We use this as a guideline for
setting ε: we set ε to be the minimum difference in action-
value between the best action and second-best action. For
the PrereqWorld domain, this is ε = 1.

Trials For each plotted data-point, we generate 100 differ-
ent PrereqWorld instances. We evaluate each instance 1,000
times (i.e., we compute the feature importance for 1,000 dif-
ferent states or predict the nth action for 1,000 different tra-
jectories), except for the points in Figure 6, since the expla-
nation size is fixed per APG.

Domain Generation Each domain instance is parameter-
ized by ρ and m as specified in Section 6. For simplicity,
d is always i1. For each instance, we randomly add pre-
requisite relationships by selecting an item ij uniformly at
random and then an item ik uniformly at random such that
k > j. When adding prerequisite relationships, we constrain
the expected number of actions to reach a terminal state to

2519

Figure 3: An example APG made by APG Gen for a small
PrereqWorld domain instance with m = 8 and ρ = 0. All
edges have transition probability 1. The abstract state identi-
fier is shown within each node, and the action taken is writ-
ten adjacent to the node.

be within 10% of 2m. This ensures that the domain can be
solved in a reasonable amount of time using value iteration.

6 Experimental Results
6.1 Local Explanation Generalization
Based on the way we construct our abstract states, we can
create “if and only if” conditions for a state in the transition
sample set to be part of an abstract state’s set, as described
in Section 4.3. From this, we can create a local explana-
tion consisting of the set of features which are important in
that state. To evaluate how well APG Gen can generalize
when predicting important features, we generate APGs us-
ing a set of transitions less than the full set of non-terminal
states (i.e., we provide a set of transitions where no (s, a, s′)
tuple shares an s such that only a portion of non-terminal
states appear as s). We then evaluate the local explanations
by comparing to a ground truth computed for individual Pre-
reqWorld instances with a domain parameter of m = 15
(|S| = 215).

The portions of correct feature classifications (important
vs. not important) are shown in Figure 4. APG Gen almost
always correctly identifies the important features. Even with
only 10% of the states, the prediction is correct over 93% of
the time. When given 80% of the states, predictions are cor-
rect 98.7% of the time for both the stochastic and determin-
istic environments, which suggests that the model is able to
identify genuine patterns in the policy. We believe the errors
the system makes are caused by the splitting order induced
by APG Gen’s greedy splitting strategy.

6.2 n-hop Prediction Evaluation
An APG is able to predict the actions an agent will take, but
this ability comes from an assumption made in Section 4.1.
For each pair of abstract states, we produce a transition prob-
ability: the probability that the agent will be in the second

Figure 4: Comparison of feature importance prediction ac-
curacy for increasing portion of non-terminal states.

Figure 5: Action prediction for increasing time horizon.

abstract state, assuming the agent is following a transition
tuple chosen at random from that first abstract state. This
holds for a single action for states in the provided transition
sample set, but not for arbitrary states and not when per-
forming several of these predictions in sequence.

To evaluate the error caused by making this assumption,
we have APG Gen predict the distribution of actions the
agent will take n time-steps in the future. We compare it
to the true computed distribution and report the portion of
actions for which the true and predicted distributions agree.
This is for a domain parameter of m = 15 (|S| = 215|). The
size of the transition sample set is half the size of the set of
non-terminal states.

The action prediction is consistently correct when the do-
main is deterministic, so we report results for two stochastic
domains in Figure 5. Even with a small ρ, the prediction
is less accurate as the number of steps increases, as is ex-
pected. However, there is no dramatic decrease, suggesting

2520

Figure 6: Comparison of explanation versus state-space size.

that the Markovian assumption made in Section 4.2 is rea-
sonable. The steady decline is likely due to computing tran-
sition probabilities as an average of the transition sample set.

6.3 Explanation Size
The purpose of APGs is to be more human-interpretable than
a Markov chain made from the base MDP. Therefore, the
number of nodes in an APG should be much lower than the
number of grounded states in the base MDP. To test this, we
construct domains with a number of states ranging from 32
to 1,073,741,824 and count the number of abstract states in
the corresponding APG. As in Section 6.2, for each gener-
ated APG, the size of the transition sample set is half the size
of the set of non-terminal states. The results are presented in
Figure 6. Note that the x-axis is in log-scale.

The explanation size grows sub-linearly in m while the
state-space size grows exponentially inm. This suggests that
the explanation size is based more on the number of actions
required to reach a terminal state than the number of states,
which indicates that compact policy representations are be-
ing automatically extracted.

7 Conclusion and Future Work
We introduced Abstract Policy Graphs, a whole-policy ex-
planation from which state-specific explanations can be ex-
tracted. In addition, we presented APG Gen, an algorithm
for creating an APG given a policy, learned value function,
and set of transitions, without constraints on how these are
created. We showed that APG Gen runs in time quadratic
in the number of features and linear in the number of tran-
sitions provided, O(|F |2|tr samples|). Additionally, we
demonstrated empirical results showing the small size of the
APGs relative to the original MDPs, as well as the types and
quality of explanations which can be extracted. Together,
these show that APG Gen can produce concise policy-level
explanations in a tractable amount of time. Future work in-
cludes restructuring the explanations extracted from an APG
to be better understood by a non-expert. To address this, we

are in the process of conducting a user study to evaluate the
usefulness of APG explanations in different presentation for-
mats.

8 Acknowledgements
This material is based upon work supported by DARPA
grants FA87501720152 and FA87501620042. Any opinions,
findings and conclusions, or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of DARPA.

References
Ehsan, U.; Harrison, B.; Chan, L.; and Riedl, M. 2018. Ra-
tionalization: A neural machine translation approach to gen-
erating natural language explanations. 1st AAAI/ACM Con-
ference on Artificial Intelligence, Ethics, and Society.
Hayes, B., and Shah, J. A. 2017. Improving robot con-
troller transparency through autonomous policy explanation.
In Proceedings of the 2017 ACM/IEEE international confer-
ence on human-robot interaction.
Hein, D.; Udluft, S.; and Runkler, T. A. 2017. Interpretable
policies for reinforcement learning by genetic programming.
CoRR abs/1712.04170.
Iyer, R.; Li, Y.; Li, H.; Lewis, M.; Sundar, R.; and Sycara,
K. 2018. Transparency and explanation in deep reinforce-
ment learning neural networks. 1st AAAI/ACM Conference
on Artificial Intelligence, Ethics, and Society.
Khan, O. Z.; Poupart, P.; and Black, J. P. 2009. Minimal suf-
ficient explanations for factored markov decision processes.
In Proceedings of the Nineteenth International Conference
on Automated Planning and Scheduling.
Li, L.; Walsh, T. J.; and Littman, M. L. 2006. Towards a uni-
fied theory of state abstraction for mdps. In Proceedings of
the Ninth International Symposium on Artificial Intelligence
and Mathematics.
Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2016. Why
should i trust you?: Explaining the predictions of any classi-
fier. In Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining.
Samek, W.; Wiegand, T.; and Müller, K.-R. 2017. Ex-
plainable artificial intelligence: Understanding, visualizing
and interpreting deep learning models. arXiv preprint
arXiv:1708.08296.
Simonyan, K.; Vedaldi, A.; and Zisserman, A. 2013.
Deep inside convolutional networks: Visualising image
classification models and saliency maps. arXiv preprint
arXiv:1312.6034.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction. The MIT Press.
Zahavy, T.; Ben-Zrihem, N.; and Mannor, S. 2016. Graying
the black box: Understanding dqns. In Proceedings of the
33rd International Conference on Machine Learning.
Zien, A.; Krämer, N.; Sonnenburg, S.; and Rätsch, G. 2009.
The feature importance ranking measure. In Joint European
Conference on Machine Learning and Knowledge Discovery
in Databases.

2521

