
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Learning Models of Sequential
Decision-Making with Partial Specification of Agent Behavior

Vaibhav V. Unhelkar, Julie A. Shah
Massachusetts Institute of Technology

77 Massachusetts Avenue, Cambridge, MA 02139
{unhelkar, julie a shah}@csail.mit.edu

Abstract

Artificial agents that interact with other (human or artifi-
cial) agents require models in order to reason about those
other agents’ behavior. In addition to the predictive utility
of these models, maintaining a model that is aligned with an
agent’s true generative model of behavior is critical for ef-
fective human-agent interaction. In applications wherein ob-
servations and partial specification of the agent’s behavior
are available, achieving model alignment is challenging for
a variety of reasons. For one, the agent’s decision factors
are often not completely known; further, prior approaches
that rely upon observations of agents’ behavior alone can
fail to recover the true model, since multiple models can ex-
plain observed behavior equally well. To achieve better model
alignment, we provide a novel approach capable of learn-
ing aligned models that conform to partial knowledge of the
agent’s behavior. Central to our approach are a factored model
of behavior (AMM), along with Bayesian nonparametric pri-
ors, and an inference approach capable of incorporating par-
tial specifications as constraints for model learning. We eval-
uate our approach in experiments and demonstrate improve-
ments in metrics of model alignment.

Introduction
Artificial agents interact with other agents, including hu-
mans, in a variety of scenarios: for example, autonomous
driving, human-robot collaborative manufacturing, intelli-
gent tutoring, and serving as digital assistants. In order for
such interactions to be successful, these agents require ac-
curate behavioral models of the other agents’ sequential
decision-making process. Not only are these models useful
for predicting agents’ behavior, but maintaining shared men-
tal models (i.e., the alignment of the learned model with the
true behavior) is also critical for effective human-agent in-
teraction (Jonker, Van Riemsdijk, and Vermeulen 2011).

Relying solely upon manual specification to develop mod-
els is expensive and typically leads to incomplete models,
thus motivating the development of algorithmic approaches
for learning models that use behavioral data (observations of
another agent’s behavior) (Albrecht and Stone 2018). While
multiple data-driven approaches utilizing different model
representations are capable of learning predictive models,

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

they may fail to recover the true model of another agent.
This occurs as multiple values of model parameters can ex-
plain the observed behavior equally well - e.g., the reward in
inverse reinforcement learning (IRL) (Abbeel and Ng 2004).

Further, an agent’s behavior is often influenced by fac-
tors that are not directly observable to another agent, or
are difficult to manually specify a priori. For instance,
in human-robot teamwork and assisted driving, the hu-
man’s behavior depends on both observable features of the
task/environment and latent states (e.g., trust, attention, and
workload (Thomaz et al. 2016)); hand-coded categories are
typically used to quantify such latent states (Fridman et
al. 2018). More recently, principled approaches to learning
models in the absence of missing decision factors have been
developed (for example,(Panella and Gmytrasiewicz 2017)).
However, due to their emphasis on prediction of agent’s be-
havior and not model alignment, these approaches may also
fail to recover the true model.

While developing these models, domain knowledge per-
taining to the true model of behavior is often available or
can be acquired by querying human experts (Chernova and
Thomaz 2014). This domain knowledge corresponds to the
partial specification of that agent’s decision factors (states),
state dynamics, change points of states, and policy (mapping
from states to actions). For applications in human-agent in-
teraction, ensuring that the learned model conforms to these
partial specifications is necessary for maintaining model
alignment. Moreover, we posit that these auxiliary inputs
(partial specification of the agent’s behavior) have the poten-
tial to alleviate the ambiguity between the true and learned
models that exists when learning via behavioral data alone.
However, algorithms capable of complying with and utiliz-
ing auxiliary inputs – especially given incomplete knowl-
edge of an agent’s states – are currently lacking.

In this paper, we introduce an algorithm capable of learn-
ing models in the absence of complete state specification by
utilizing both behavioral data and auxiliary inputs. Both the
model representation and learning algorithm have been de-
signed to facilitate utilization of domain information (when
available). Our model incorporates a factored state represen-
tation to encode knowledge of known decision factors, their
dynamics, and their impact on an agent’s policy. Further,
we adopt a Bayesian approach and introduce a novel learn-
ing approach – termed as constrained variational inference –

2522

that allows us to incorporate auxiliary inputs as constraints
during the learning process. We evaluate our inference al-
gorithm and its ability to incorporate auxiliary information
in experiments, and demonstrate improvements in alignment
between the true and the learned model.

Model of Sequential Decision-Making
In order to pose the model-learning problem, we begin with
a definition of the decision-making model and discuss its
relation to relevant models in the literature. Several repre-
sentations that originated in varied modeling and applica-
tion requirements have been proposed and analyzed in prior
research (Albrecht and Stone 2018). Due to our focus on
sequential decision-making, we adopt a representation in-
spired by controlled Markov chains, i.e., Markov chains with
control inputs (Kumar and Varaiya 2016). To minimize am-
biguity, we refer to the agent who seeks to learn the decision-
making model as the observer.

Controlled Markov Chains (CMC) Briefly, a CMC
models the impact of an input (denoted by action a ∈ A)
on the sequential evolution of a random variable (denoted
by state f ∈ F). Due to the Markov property, the distribu-
tion of the next state given the entire history depends only on
the current state and action – i.e., Tf ≡ Pr(ft+1|ft, at) =
Pr(ft+1|f0:t, a0:t). For a stationary CMC, both the state
transition probabilities Tf and the initial state probability
bf ≡ Pr(f0) remain constant over time. The model param-
eters (F,A, bf , Tf) and the state-action pair (ft, at), com-
pletely specify the distribution of the next state ft+1.

Agent Markov Model (AMM) In order to model sequen-
tial decision-making behavior, we build upon the CMC. The
decision factors of an agent are modeled as the state of a
factored CMC, f ≡ [x, s]. The decision-maker can ob-
serve both x and s. However, only some decision factors
are known to the observer (denoted as known states s ∈
S), while others are unspecified (representing latent/mental
states x ∈ X). This implies that neither the variable x nor
the set X is known to the observer. (Note that F = X × S
and Tf = Tx · Ts.) Since the mental states x can impact the
known states s only via the agent’s actions, the transition
probabilities have the following factored structure:

Tf (ft+1|ft, at) = Ts(st+1|st, at)Tx(xt+1|xt, st, at) (1)

In order to model an agent’s decision-making, we addi-
tionally require a mapping from decision factors to actions
(i.e., policy). We model the decision maker to follow a sta-
tionary Markov policy: π ≡ Pr(at|ft) = Pr(at|f0:t). Fur-
ther, the initial probability distribution of the unknown deci-
sion factor is denoted as bx, and the observable component
of the initial state as s0. We term this generative model of se-
quential decision-making behavior, parametrized by the tu-
ple (X,S,A, bx, Tx, Ts, π) and depicted in Fig. 1, as agent
Markov model (AMM) (Unhelkar and Shah 2018).

As an example of a behavior modeled via the AMM, con-
sider an agent navigating a grid world. To an observer, the
agent’s position is observable and thus is the known state, s,
while its goal is the unspecified latent state, x. Consequently,

π

Tx

Ts

bx

x0

s0

x1

s1

a0

x2

s2

a1

· · ·

· · ·

Figure 1: AMM, a model of sequential decision-making be-
havior. Each node represents a random variable, and the ob-
served variables are shown in grey. Decision factors s and x
(included in the oval supernode) impact the decision choices
a, based on the policy π(a|s, x). The parameters Tx and Ts
specify the probability for the next state given the previous
state and the action, and bx models the initial probability.

both the number of goals, |X|, and their dynamics (the way
in which the next goal is chosen), Tx, are unknown. While
both (x, s) impact the agent’s choice of action (the direction
in which the agent moves), the next position depends only
on the current position and the action. Thus, the transition
probabilities exhibit the factored structure of Eq. 1.

Related Models The AMM shares properties with exist-
ing models for sequential decision-making. However, it also
includes specific features for incorporating domain knowl-
edge and facilitating model alignment. Recently, Panella and
Gmytrasiewicz used probabilistic deterministic finite state
controllers (PDFCs) to model the behavior of another agent.
A PDFC models the state transition as deterministic, and
thus can be derived as a special case of the AMM with deter-
ministic Tf . Further, in contrast with the PDFC, the AMM
uses a factored representation for the state variable, which
allows the model to incorporate known dynamics of the state
(via Ts), and prior knowledge regarding the impact of the
known state on the agent’s policy (via priors for π).

Inclusion of a reward function R within the AMM de-
scribes an agent executing policy π in a factored Markov
decision process (MDP) given by the tuple (F,A, Tf , R)
(Puterman 2014). Since agents may not behave rationally
(Kahneman 2003), by directly representing π to describe
decision-making, the AMM does not assume rationality or
even goal-oriented behavior on the part of the other agent.

The AMM and partially observable MDPs (POMDPs) are
also related but serve different purposes. POMDPs are used
by a decision-maker agent to arrive at her policy (π). In con-
trast, AMM is designed for an observer agent seeking to in-
fer and explain the decision-maker’s policy (π) by observing
her behavior. Further, the agent solving a POMDP to arrive
at π may not observe the full state but has complete knowl-
edge of the state space (S,X). In AMM, however, a subset
of state space (X) is both unknown and unobservable.

2523

Problem Definition
Consider an agent whose true behavior model is given by
the AMM tuple (X,S,A, bx, Tx, Ts, π). An observer seeks
to recover this true model, but has partial specification of the
agent’s behavior, described as follows:

• partial knowledge of the decision factors, s ∈ S,

• complete knowledge of the agent’s action space, a ∈ A,

• dynamics of the known decision factors, Ts,

• I execution traces of the agent’s behavior, where the i-th
trace refers to the sequences (si0:Ni

, ai0:Ni
),

• noisy change point information regarding the latent state
– i.e., the indicator variable ct = I(xt+1 = xt) which is
accurate with probability pc, and

• estimates of some elements of the transition function of
latent states (i.e., partial knowledge of Tx).

Thus, formally, the problem of learning the decision-making
model corresponds to learning the full AMM tuple given the
partial tuple (·, S,A, ·, ·, Ts, ·), execution traces, local auxil-
iary input (i.e., the change point of latent states), and global
auxiliary input (i.e., partial knowledge of Tx). In this section,
we elaborate upon various inputs for the learning problem.

Known AMM Parameters and Execution Traces In the
grid-based example introduced above, we have already dis-
cussed the specification of the known states s∈S and actions
a∈A. The specification of Ts corresponds to the known dy-
namics of the agent motion and the map of the grid world.
The factored representation of AMM allows us to directly
incorporate this partial specification (S,A, Ts) of the agent’s
model. Execution traces, then, correspond to the sequences
of the agent’s position and action, both of which are readily
observable within this domain. The problem of learning the
model via execution traces and the partial AMM tuple bears
similarity to the classical IRL setting; however, in the current
problem, the execution trace includes only the partial state.
While approaches exist for IRL in partially observable en-
vironments, these methods assume knowledge about the set
of latent variables and their dynamics (Bogert et al. 2016;
Choi and Kim 2011). However, this knowledge, namely X
and Tx, is absent while learning the AMM.

Auxiliary Input While decision factors may not be com-
pletely known, partial specifications are often available. This
information can be provided by human experts, other algo-
rithms or directly from the decision-maker, e.g., (Chernova
and Thomaz 2014; Johnson and Willsky 2013). For human-
agent interaction, ensuring that the learned model conforms
to this information is critical for maintaining model align-
ment. In the grid-world example, the number of goals, |X|,
and their dynamics, Tx, are unknown to the observer; how-
ever, domain knowledge in the form of regions where no
goal exists may be available. Such information constraints
the dynamics of the latent state and partially specifies the
transition function Tx. Furthermore, the goal is but one ex-
ample of the latent state; in other applications, the latent state
may correspond to other difficult-to-quantify variables, such

as workload and attention. For such variables, constraints re-
garding their dynamics can be obtained based on cognitive
theories and models (Proctor and Van Zandt 2018).

We refer to the partial specification of Tx as the global
auxiliary input, since it applies to all execution traces of the
agent. In addition, local information may be queried from
a domain expert or the decision maker regarding a specific
execution trace. For instance, in the grid-world example, for
a given execution trace, an expert can provide estimates of
when the agent changed its goal. This corresponds to the
change point information regarding the latent state ct, and
is referred to as the local auxiliary input. To account for the
fact that the expert can make errors, we model the input as
accurate with a probability pc. We emphasize that while both
auxiliary inputs are related to the latent state, they focus on
the change in the latent state and do not assume knowledge
of the specific label (value) of the latent state. In our prob-
lem, x corresponds to an unknown variable, thus, obtaining
labels of this variable from human experts is not possible.

Bayesian AMM Learning
We adopt a Bayesian approach to recover the AMM param-
eters given the partial AMM tuple and data (execution traces
and auxiliary input). We view the unknown model parame-
ters and state sequences as latent random variables, and seek
to infer their posterior using the data. In this paper, we limit
our scope to those AMMs in which x is a scalar.

Prior Distributions The AMM tuple provides a genera-
tive model for an agent’s behavior; however, since the tuple
is only partially known, we include priors for the unknown
AMM parameters in order to compute their posterior. As the
set of unknown factors X is unknown a priori, the num-
ber of factors x is also unknown. This motivates the use
of nonparametric priors for the number of unknown states
nx = |X|, initial distribution bx and transition function Tx.
We use hierarchical Dirichlet process (HDP) priors inspired
by the infinite HMM model (Teh et al. 2006). Under this
HDP prior, the popularity of the latent states is generated
via a Dirichlet process (DP). The base distribution over pos-
sible latent states, given by β, can be obtained using a stick-
breaking construction with hyper-parameter γ, i.e.,

β(·) ∼ GEM(γ) (2)
Tx(·|x, s, a) ∼ DP(α·β), ∀(s, a) and x = 1, 2, · · · (3)

The rows of the transition function Tx are also generated
using a Dirichlet process (DP) with base distribution β and
scaling parameter α. This allows us to share parameters (in
this case, the state space of latent states) between the rows
of the transition function. The latent states are indexed as
positive integers. A similar process is used for bx.

In addition to priors for latent states and their dynam-
ics, our model includes a prior for the policy π(a|s, x).
This prior is modeled as a probability distribution over the
decision-maker’s action space and is identical for each of
the potentially countably infinite latent states x. This policy
prior allows us to incorporate prior domain knowledge (if
any) regarding the agent’s policy, as it can vary based on the

2524

known state s. In absence of additional knowledge, a Dirich-
let distribution can serve as the policy prior,

π(a|s, x) ∼ DIR(ρ1:|A|), ∀(s) and x = 1, 2, · · · (4)

The graphical model of Fig. 1, along with the priors spec-
ified in Eq.2-4, provide a generative model for the AMM.
In line with other nonparametric Markov models, we term
this model as the infinite AMM (iAMM). The iAMM incor-
porates a factorization structure common to several statisti-
cal models (cf. Eq. 1 Hoffman et al.), which includes global
variables (Tx, bx, π, β), local hidden variables (x0:N), ob-
servations (s0:N and a0:N) and hyper-parameters (α, γ, ρ).

Variational Inference with Execution Traces
In general, obtaining the exact posterior distribution of the
iAMM is intractable. Hence, we explore approaches that ap-
proximate this distribution. Guided by the recent success of
stochastic variational inference (SVI) for sequential models
with factorization structures similar to the iAMM (Johnson
and Willsky 2014), we provide a mean-field variational in-
ference algorithm in order to approximate the posterior dis-
tribution the iAMM. We first derive the algorithm for the
case of execution traces as data, then augment it to incorpo-
rate auxiliary input.

In this setting, the data consists of (s, a) traces from I se-
quences: x={xi0:Ni

}I , s={si0:Ni
}I , a={ai0:Ni

}I . The pos-
terior distribution of the hidden variables of the iAMM is
then denoted as p(x, Tx, bx, π, β|s,a). Mean-field inference
approximates this posterior by the product of variational fac-
tors q(x)q(Tx)q(bx)q(π)q(β) – i.e., by assuming indepen-
dence between the hidden variables. Each variational factor
is a distribution with separate parameters. The posterior is
obtained as the argmax of the evidence lower bound L;

L(q) ≡ Eq

[
p(x, Tx, bx, π, β|s,a)

q(x)q(Tx)q(bx)q(π)q(β)

]
(5)

Due to the mean-field assumption, this optimization prob-
lem can be solved by iteratively optimizing and up-
dating the parameters of the local q(x) and global
q(Tx), q(bx), q(π), q(β) variational factors. Following Hoff-
man et al., we use natural gradient ascent for the global vari-
ational updates. While the structure of the algorithm is sim-
ilar to that of the SVI algorithm for the iHMM (Johnson
and Willsky 2014), the variational factors and update equa-
tions differ. Here, we include the key terms for inference of
the iAMM; for an excellent introduction to variational infer-
ence, we refer the reader to (Hoffman et al. 2013).

Local Variational Factor In order to efficiently estimate
the latent state sequences in the presence of a nonparametric
prior, we utilize the direct assignment truncation (Johnson
and Willsky 2014). This requires a truncation parameter K
as input and models the assumption that K latent states at
most are present in the execution traces, i.e., q(x)=0 if any
x > K. The mean-field update for the local variational fac-
tors is given as follows:

q(x) ∝ exp(Eq[ln p(x, data|Tx, bx, π, β, Ts)]) =
∏
iq(x

i)

q(xi) ∝ exp
(
Eq[ln p(x

i
0:N , s

i
0:N , a

i
0:N |Tx, bx, π, β, Ts)]

)
∝ exp

(
Eq[ln p(x

i
0:N , s

i
0:N , a

i
0:N |Tx, bx, π, Ts)]

)
= p(xi0:N , s

i
0:N , a

i
0:N |T̃x, b̃x, π̃, Ts)/Zi (6)

∝ exp

(
ln b̃x(x

i
0) +

Ni−1∑
0

(
ln T̃x(x

i
t+1|xit, sit, ait)+

lnTs(s
i
t+1|sit, ait) + ln π̃(ait|xit, sit)

))
The tilde denotes the operator Ã=exp(Eq(A)[lnA]) and is
used to provide expectation with respect to the global vari-
ational factors. The variable Zi denotes the normalization
constant. To compute the normalization constant and given
their utility in updating global factors, we compute the for-
ward F and backward messages B for each sequence.

F(t,j) ≡ Pr(xt=j, s0:t, a0:t) (7)

=
∑
k

(
F(t−1,k)T̃x(j|k, st−1, at−1)

Ts(st|st−1, at−1)π̃(at|j, st)
)

B(t,j) ≡ Pr(st+1:N , at+1:N |xt=j, s0:t, a0:t) (8)

=
∑
k

(
B(t+1,k)T̃x(k|j, st, at)

Ts(st+1|st, at)π̃(at+1|k, st+1)
)

F(0,j) = b̃x(j)π̃(a0|j, s0), B(N,j) = 1, Z =
∑
jF(N,j)

The message computation takes O(NK2) time.

Global Variational Factors The direct assignment trun-
cation allows us to represent the base distribution β =
(β1:K , βrest), where β1:K represents the probability of the
first K states and βrest ≡ 1−∑K

k=1 βk represents the prob-
ability of truncated states. For the posterior inference, this
results in a Dirichlet prior for the rows of Tx and bx given as
DIR

(
α·(β1:K , βrest)

)
. Due to the conjugacy of the Dirichlet

and multinomial distributions, we set the variational factors
(approximate posterior) for each row of Tx as follows:

q
(
Tx(·|x = j, s = s, a = a)

)
= DIR(λjsa) (9)

In order to update the global parameters, expected statis-
tics are necessary with respect to the local factor q(x). For
the transition function this corresponds to the expected tran-
sition counts which can be efficiently computed using the
forward and backward messages as follows:

ûTx

kjsa ≡ Eq(x)
∑
tI[xt+1=k, xt=j, st=s, at=a] (10)

=
∑
tF(t,j)Ts(s

′|s, a)T̃x(k|j, s, a)π̃(a′|k, s′)B(t+1,k)/Z

where a′=at+1 and s′ = st+1. Given the expected transition
counts and conjugacy, the global variational parameters are
updated by maximizing the evidence lower bound,

λjsa = argmax
λ
L
(
λ;Eq[ηg]=(α · β + ûTx

·jsa)
)

(11)

L(λ) ≡ (Eq[ηg]−λ) · ∇λ lnB(λ)+ lnB(λ)+ const.

2525

B(λ) represents the multivariate Beta function, and lnB(λ)
is the log normalizer of the Dirichlet distribution (cf. Eq. 13
Hoffman et al.). This optimization problem is solved by
equating the natural gradient (Amari 1998) of the objective
function to zero, resulting in the update:

λjsa ← (α · β + ûTx
·jsa) (12)

This update in the variational parameter λjsa corresponds to
a natural gradient ascent of step size 1. For large datasets,
stochastic natural gradient ascent can be used by consider-
ing only a subset of a dataset when computing the expected
statistics.

Due to conjugate priors, analysis similar to q(Tx) follows
for updating q(bx) and q(π). However, different expected
statistics are required, which are computed as follows:

ûbxj ≡ Eq(x)I[x0=j] = B0,j/Z (13)

ûπajs ≡ Eq(x)
∑
tI[at=a, xt=j, st=s] (14)

=
∑
tFt,jBt,jI[at=a, st=s]/Z

To obtain a variational estimate for β, following (Johnson
and Willsky 2014), we compute a point estimate β∗ by min-
imizing the evidence lower bound with the constraint that all
elements are non-negative.

Variational Inference with Auxiliary Inputs
Priors and hyper-parameters provide one avenue for incor-
porating domain knowledge in our Bayesian approach. For
instance, knowledge about the policy can be incorporated
via the policy priors, ρ. However, the auxiliary inputs can-
not be incorporated within the priors, motivating the need
for modifications to the model or the inference approach.

Local Input Here, we first discuss how local information
regarding change points of the latent states can be incor-
porated by augmenting the model. We consider the change
point information, when available, as an additional observa-
tion with two levels, 0 and 1, and the likelihood function ψ,

ψ(ct=1|xt+1=xt)= pc and ψ(ct=0|xt+1 6=xt)= pc (15)

pc represents the known accuracy of the domain expert. This
observation depends on both the current and next states, re-
quiring modifications to the local variational factors. The
modified message computations and sufficient statistics u
are derived as follows (due to space constraints, we list the
function arguments only if they are modified):

q(xi) = p(xi0:N , s
i
0:N , a

i
0:N , c

i
0:N |T̃x, b̃x, π̃, Ts, ψ) (16)

F(t,j) ≡ Pr(xt=j, s0:t, a0:t, c0:t−1) (17)

=
∑
kF(t−1,k)T̃x(·)Ts(·)π̃(·)ψ(ct−1|k, j)

B(t,j) ≡ Pr(st+1:N , at+1:N , ct:N−1|xt=j, s0:t, a0:t) (18)

=
∑
kB(t+1,k)T̃x(·)Ts(·)π̃(·)ψ(ct|j, k)

ûTx

kjsa =
∑
tF(t,j)Ts(·)T̃x(·)π̃(·)B(t+1,k)ψ(ct|j, k)/Z

By utilizing the mean-field approximation, given the modi-
fied sufficient statistics, no other changes to the global up-
date equations are necessary.

Global Input Another available auxiliary input is partial
knowledge of the transition function, Tx. For analyzing this
global input, without loss of generality, we focus on one row
of the transition function θ ≡ Tx(·|j, s, a) with a noisy es-
timate of its k-th element. The auxiliary input corresponds
to θk, the estimate for the k-th parameter of the multinomial
distribution θ. While the local change point information can
be included by augmenting the model, incorporating global
auxiliary input as additional observations is not straightfor-
ward. If θk is modeled as a novel observation of Tx, the ben-
efits of conjugacy are lost, necessitating computationally ex-
pensive inference schemes. This occurs since the posterior
of Tx given this novel observation, despite the mean-field
assumption, is no longer a Dirichlet distribution.

In order to utilize the global auxiliary input and still pre-
serve the benefits of conjugacy, we utilize a novel approach
that incorporates this input as constraints for the variational
inference. In this method (briefly), the information about θ is
converted into a set of constraints for the variational param-
eters – corresponding to a constraint for λjsa, the variational
parameters of q(Tx(·|x, s, a)). To derive this constraint, we
use properties (in the current example, the expected value)
of the Dirichlet distribution as follows:

λjsa(k) = θk
∑
i λjsa(i) (19)

To compute the posterior, we solve a constrained op-
timization problem in which the objective is identical to
L and the constraints are derived from the auxiliary input
(e.g., Eq. 19). Due to the mean-field assumption, these con-
straints apply only to a subset of the global update equa-
tions – specifically, to the update of global parameter λjsa
given in Eq. 11 – and do not impact the local variational up-
dates. Thus, the computationally faster (unconstrained) vari-
ational inference can be used for the remaining parameters
for which no auxiliary input is available.

We term this inference approach constrained variational
inference (CVI). By incorporating auxiliary information as
constraints over the variational parameters, the support of
the posterior distribution is limited to those regions of vari-
ational parameters λ that satisfy the constraints. Thus, our
approach functions, in essence, as a weighted prior. We note
that CVI provides an approximate posterior by limiting the
posterior to be in the same family as the prior, and also that
a computationally expensive approach that sacrifices conju-
gacy can lead to better estimates. Instead, by utilizing con-
strained optimization, our approach emphasizes the benefits
of conjugacy – allowing us, in this case, to approximate the
posterior of Tx with the Dirichlet distribution.

Related Approaches for Learning Models of
Other Agent’s Sequential Decision-Making

Recent research into algorithmic human-robot interaction
provides several examples of employing (variants of) in-
verse reinforcement learning (IRL) (Ziebart et al. 2008;
Ramachandran and Amir 2007) to estimate humans’ policies
during sequential tasks (Sadigh et al. 2016; Majumdar et al.
2017) – albeit with the complete specification of state fea-
tures available. In contrast, we consider the learning prob-
lem when complete state specification is unavailable.

2526

Teh et al. provided an inference algorithm for the iHMM,
a Bayesian nonparametric (BNP) hidden Markov model for
scenarios in which the latent states are unknown (2006).
Both sampling and variational inference algorithms for sev-
eral extensions of iHMM have since been developed (Fox
et al. 2011; Johnson and Willsky 2013; Saeedi et al. 2016).
These approaches have been applied to segmentation and
clustering of sequential data; however, they do not model
agent policy or the decision-making process. Our approach
to modeling the unknown state space,X , is inspired by these
models and includes the explicit dependence of actions on
states in order to model agent decision-making.

BNP extensions of decision-making models, both for
planning (Doshi-Velez et al. 2015; Liu, Liao, and Carin
2011) and IRL (Michini and How 2012; Ranchod, Ros-
man, and Konidaris 2015; Krishnan et al. 2016), have also
been developed. Nonparametric IRL approaches incorporate
execution traces as the input data and aim to recover the
decision-maker’s latent state dependent reward/policy. They
result in better performance than parametric IRL approaches
when complete state specification is unavailable, but aim to
maximize accrued reward and do not seek to recover the true
behavioral model. In contrast, our approach explicitly mod-
els the dependence of latent state transitions upon action and
known states, and includes mechanisms to ensure alignment
of the learned model with the auxiliary information. In order
to relax the assumption of rationality, in AMM we directly
model policy and do not explicitly represent reward. How-
ever, our approach for incorporating partial specifications
of agent behavior is general and complementary to prior
IRL approaches. In domains that include goal-directed or
near-rational behavior, future extensions that combine con-
strained variational inference and IRL hold the potential to
improve sample complexity.

In their work, Panella and Gmytrasiewicz provided a
Bayesian nonparametric approach to learning the PDFC
from execution traces. They further used the learned PDFC
to define subintentional interactive POMDPs and generate
autonomous agent behavior during multi-agent tasks. Our
model representation and the associated generative model
(iAMM) generalize the PDFC model representation by con-
sidering stochastic transition of latent states. Further, in or-
der to facilitate model alignment, our approach (a) includes
a factored state representation to incorporate available infor-
mation regarding the known states (S, Ts, ρ

s), and (b) pro-
vides a mechanism to utilize auxiliary inputs regarding la-
tent state sequences and their dynamics.

Recently, approaches that model latent states in sequential
behavior using generative adversarial networks (GANs) and
conditional variational autoencoders (CVAEs) have been
developed (Li, Song, and Ermon 2017; Schmerling et al.
2017). By modeling latent states, these approaches can pre-
dict and generate multimodal behavior. However, they re-
quire specification of the number of latent modes and do not
model their dynamics. In contrast, by utilizing BNP priors,
our approach can jointly learning the number of latent states
and their impact upon an agent’s behavior. Another interest-
ing direction for future work would be to explore the inte-
gration of these techniques with Bayesian nonparametrics.

Experiments
We conducted numerical experiments in order to confirm
that the proposed approach can successfully incorporate
partial specification of an agent’s behavior. Specifically,
through the experiments, we measured the ability of the ap-
proach to learn models that are aligned with an agent’s true
model. Access to the true model is necessary for measuring
model alignment and validating our approach; hence, in the
experiments, we utilized two simulated scenarios for which
the true model was accurately known.

For each scenario, we first specified the true model as a
complete AMM tuple. Using this tuple, we generated the
problem inputs (namely, the partial AMM tuple, execution
traces, and local and global auxiliary inputs). We also gener-
ated a test dataset (a set of execution traces) to compare the
predictive performance of the learned model. The problem
inputs were then used to learn the missing elements of the
AMM tuple and infer the latent state sequences.

Metrics In order to measure the state estimation perfor-
mance, we computed the normalized Hamming distance
between the inferred and true state sequences using the
Munkres algorithm (Saeedi et al. 2016). The Munkres algo-
rithm provides a correspondence between the inferred and
true state labels, such that the normalized Hamming dis-
tance is minimized. We used this correspondence to mea-
sure the predictive performance on the test set and the met-
rics of model alignment. For measuring model alignment,
we utilized a metric inspired by the weighted KL divergence
(Panella and Gmytrasiewicz 2017). Specifically, to quantify
error in learning the transition probabilities Tx, we first used
the Munkres correspondence to match the rows and columns
of the learned T̂x and true Tx, and computed the KL diver-
gence between each matched row. Finally, the metric was
obtained as an average score weighted by the relative counts
of the input data η described as follows:

wKL(Tx, T̂x) =
∑
x,s,aηxsaKL(Tx(·|x, s, a)||T̂x(·|x, s, a))

Similar procedures were used for measuring error for the
parameters π and bx. We also quantified model alignment by
computing weighted L2 norm (wL2) in a similar fashion.

Baselines Due to different model structures and input in-
formation it is difficult to compare model alignment per-
formance of our approach with related algorithms. Prior
approaches cannot utilize the auxiliary inputs. Further, for
methods that do not model unknown states several met-
rics of interest are undefined. Hence, to validate the abil-
ity of our approach to incorporate partial specifications, we
compared the performance of four versions of our algo-
rithm – namely, variational inference with execution traces
(VI), variational inference with execution traces and local
input (VI-L), constrained variational inference with execu-
tion traces and global input (CVI-G), and constrained vari-
ational inference with execution traces and both auxiliary
inputs (CVI-LG). The first version (VI) served as a proxy
for approaches that exclusively rely on execution traces,
while the last version demonstrated our complete approach.

2527

Domain Line World Highway

MaxEnt VI VI-L CVI-G CVI-LG MaxEnt VI VI-L CVI-G CVI-LG

Hamming dist. (train) — 0.51 0.39 0.30 0.13 — 0.56 0.36 0.48 0.35
Hamming dist. (test) — 0.53 0.40 0.30 0.14 — 0.63 0.44 0.55 0.42
wKL(Tx, T̂x) — 2.01 1.38 0.98 0.43 — 2.11 1.12 1.03 0.64
wKL(π, π̂) 1.08 0.77 0.56 0.41 0.19 1.04 0.48 0.38 0.38 0.33
wKL(bx, b̂x) — 0.85 0.87 0.53 0.51 — 1.67 1.75 1.50 1.58

Table 1: State inference and model alignment errors. The results are averaged over twenty-five trials for each domain. For both
MaxEnt and VI, the input was agent’s execution traces. Auxiliary inputs – either local (L), global (G) or both (LG) – were
provided as additional inputs to the other approaches. All algorithms but MaxEnt model unknown states by utilizing AMM as
the underlying model. Metrics for state estimation (Hamming dist.) and alignment of Tx and bx are undefined for MaxEnt.

The remaining versions demonstrated the utility of our ap-
proach for different input settings. Identical priors, hyper-
parameters, initialization and termination conditions were
used for all the algorithms.

The four versions of our algorithm all perform inference
using the AMM model and thus learn the impact of unknown
states. In order to evaluate the effect of modeling unknown
states (x), we further compared the performance of our al-
gorithms with a representative approach that does not model
unknown states, namely, Maximum Entropy IRL (MaxEnt)
(Ziebart et al. 2008). Inference of unknown states is not
possible using MaxEnt and the metrics Hamming distance,
wKL(Tx, T̂x) and wKL(bx, b̂x) are undefined. However, the
policy alignment can be quantified using the weighted KL
divergence between the true and learned policies.

For each domain, we compared the performance of the
algorithms across twenty-five simulation trials. We imple-
mented our algorithms as an extension of pyhsmm, a Python
library for approximate unsupervised inference. For CVI,
a constrained optimizer is required to solve the resulting
constrained optimization problem; towards this end, we uti-
lized SLSQP, a sequential least squares programming opti-
mization algorithm as implemented in scipy (Kraft 1994;
Jones et al. 2001).

Line World
The grid world example described earlier was used as
the first evaluation scenario. An agent navigating a one-
dimensional grid of length five was considered, with its goal
as the latent state x and position as the known state s. The
action space of the agent included three actions: left, right
and wait. The known transition dynamics Ts were modeled
as deterministic. The set of agent goals X included either
ends of the grid. The agent exhibited goal-directed motion,
and switched its goal after reaching the current goal.

The inputs to the learning algorithm included the partial
AMM tuple (S,A, Ts), five execution traces (each of length
20), and the auxiliary inputs. Noisy change point informa-
tion for two execution traces with accuracy pc=0.9 served as
the local input. The region of the grid where the agent did not
switch its goal was randomly selected and specified as the
global input. Additionally, five execution traces were gener-
ated as the test set. The objective of the learning algorithm

was to recover the set of goals X , their switching dynamics
Tx and the agent’s policy π. Despite the small domain size,
the learning problem was challenging since different model
parameters (Tx, π) could generate identical behavior. Fur-
ther, depending on its goal the agent chose different actions
for the same location, and execution traces included cycles.

The results of the experiments, averaged over the twenty-
five trials, are summarized in Table 1. We observed that our
complete approach CVI-LG resulted in models with better
alignment (lower wKL scores) as compared to the remain-
ing baselines. Similar trends were observed for the model
alignment metrics computed using the weighted L2 norm.
Along with improved model alignment, CVI-LG resulted in
lower Hamming distance between the true and inferred se-
quences for both the training and test datasets. Utilization
of only one auxiliary input also improved upon the base-
line VI that relies only on execution traces. This validates
that our approach is capable of utilizing auxiliary informa-
tion when available. Interestingly, while the auxiliary inputs
did not include information regarding the agent’s policy, the
alignment between the true and learned policy improved by
incorporating the auxiliary input. This is possible since our
approach performs joint inference of the agent’s model pa-
rameters (e.g., Tx and π).

All versions of our algorithm resulted in lower policy
alignment error as compared to MaxEnt. Despite identi-
cal input data, VI (variational inference applied to AMM)
demonstrated better model alignment and could perform
state inference. This result indicates the utility of explicitly
modeling the unknowns as part of the AMM and learning
their impact on the agent’s behavior.

Highway Domain
As the second domain, we utilized a modified version of the
highway domain (Ranchod, Rosman, and Konidaris 2015;
Abbeel and Ng 2004). Briefly, for the experiments, this do-
main modeled a highway with two lanes and two shoulders
(one on each side), multiple civilian cars and a police car.
The police car could use the entire road, while the other cars
were limited to the two lanes. The objective of the learn-
ing algorithm was to model the behavior of the police car
(henceforth, referred to as the agent). The agent drove at a
constant speed, which was faster than that of the other cars

2528

on the highway, and could choose to switch lanes at each
step. The agent’s actions depend on known, observable fac-
tors (distance to cars and current lane) as well as latent states
(whether it is driving nominally or pursuing a civilian car).
The agent switched from nominal driving to pursuing a civil-
ian car if two civilian cars seemed to be racing (which the
agent determined based on the relative distances of the cars),
and returned to nominal mode after catching a car. The learn-
ing algorithm had access to the known states of the agent, its
action space and dynamics of the highway domain Ts; how-
ever, the number of latent states x and their dynamics Tx
were unknown.

We conducted experiments for the highway domain in
a similar fashion to that for the line world scenario; how-
ever, longer execution traces (each of length 40) were used
for both training and testing datasets. For this domain, the
learning algorithm had to reason over a much larger prob-
lem with an observable state space of size 200. The results
of the experiments, averaged over the twenty-five trials, are
summarized in Table 1. Similar to the first scenario, the ef-
fect of modeling unknowns was evident, as all versions of
our approach (including VI) resulted in lower policy align-
ment error as compared to MaxEnt. Further, we observed
that our approach could successfully incorporate auxiliary
inputs and improve model alignment when one or both aux-
iliary inputs are available. Lastly, we observed reductions in
the state decoding and prediction errors (normalized Ham-
ming distance on training and test data, respectively) when
the local and global auxiliary inputs were utilized.

Discussions
Through the numerical experiments, we demonstrate that the
proposed approach to model learning is capable of learn-
ing AMM tuples that are aligned with an agent’s true model
and that conform to the partial knowledge of an agent’s be-
havior. Furthermore, as more information of varied types
(e.g., execution traces, change point sequences, constraints
on model parameters) is provided to the inference algorithm,
the model alignment improves. This is possible despite in-
complete specification of the agent’s decision factors.

The ability to incorporate these novel input types enables
the use of high-level information of the agent’s behavior dur-
ing the model learning and specification process. This ap-
proach is made possible through the use of a factored model
representation and a novel inference algorithm. While prior
approaches to learning an agent’s model largely rely on ei-
ther execution traces or label/feature queries, we provide an
approach that can efficiently utilize different input types (in-
cluding input about model parameters) and does not assume
complete knowledge of the agent’s feature set (state space).

In our ongoing work, we are exploring interactive exten-
sions of the proposed approach, wherein the observer can
actively choose to query a human decision-maker (or a do-
main expert) regarding additional and potentially informa-
tive specifications. The algorithms presented in this work
will enable the observer to utilize the queried specifications
efficiently. Another application of our approach includes
learning models from behavioral data that conform to pref-
erences provided, as logical or procedural constraints, by a

human user; the global inputs provide one avenue to incor-
porate preferences in our approach.

As mentioned in the introduction, a key motivation behind
learning agent models is to enable effective human-machine
interaction. The algorithms presented in this work can be
used both by a collaborative robot (for learning models of
human behavior to improve robot decision-making) and by
a human (to learn transparent models of robot behavior to
better calibrate trust) (Javdani et al. 2018; Yang et al. 2017).
Both of these use cases offer novel research avenues, such
as the efficient specification of decision-theoretic models for
interaction (such as, POMDPs and decentralized-POMDPs)
and evaluation of the utility of aligned models as compared
to purely predictive models for human-machine interaction
(Oliehoek, Amato, and others 2016).

We identify three areas of further improvement of our ap-
proach. Firstly, our approach is limited in that it can learn
the latent states and the AMM tuple, but not the semantic
labels or interpretation of these latent states. We posit that
interaction between a human (domain expert) and the algo-
rithm will be necessary for incorporating interpretability in
the latent states learned via Bayesian nonparametrics. Sec-
ondly, our approach is limited to a scalar latent state and thus
utilizes a flat state representation for the latent state. Lastly,
we utilize tabular representations for the unknown AMM pa-
rameters (namely, π, Tx). We aim in future work to address
these limitations through the use of function approximation
to represent model variables and factored latent state repre-
sentations.

Conclusion
We consider the problem of learning an agent’s true
decision-making model with partial specification of its be-
havior. To formalize and address this problem, we utilize
a factored representation of sequential decision-making be-
havior, the agent Markov model (AMM). We pose the learn-
ing problem as one of Bayesian inference, and provide novel
variational inference algorithms for the AMM that can uti-
lize different types of information – including, sequences of
observed behavior, prior knowledge of agent’s policy, and
partial specification of agent’s state and dynamics. Through
numerical experiments, we validate that our approach is
capable of utilizing varied information types and, conse-
quently, learning models that align with the true behavioral
model.

Acknowledgments
We thank Ardavan Saeedi for fruitful discussions on
Bayesian inference and learning.

References
Abbeel, P., and Ng, A. Y. 2004. Apprenticeship Learning via
Inverse Reinforcement Learning. In Intl. Conf. on Machine
Learning (ICML). ACM.
Albrecht, S. V., and Stone, P. 2018. Autonomous Agents
Modelling Other Agents: A Comprehensive Survey and
Open Problems. Artificial Intelligence 258:66 – 95.

2529

Amari, S.-I. 1998. Natural Gradient Works Efficiently in
Learning. Neural Computation 10(2):251–276.
Bogert, K.; Lin, J. F.-S.; Doshi, P.; and Kulic, D.
2016. Expectation-Maximization for Inverse Reinforcement
Learning with Hidden Data. In Intl. Conf. on Autonomous
Agents and Multi-Agent Systems (AAMAS), 1034–1042.
Chernova, S., and Thomaz, A. L. 2014. Robot Learning
from Human Teachers. Synthesis Lectures on Artificial In-
telligence and Machine Learning 8(3):1–121.
Choi, J., and Kim, K.-E. 2011. Inverse Reinforcement
Learning in Partially Observable Environments. Journal of
Machine Learning Research 12(Mar):691–730.
Doshi-Velez, F.; Pfau, D.; Wood, F.; and Roy, N. 2015.
Bayesian Nonparametric Methods for Partially-Observable
Reinforcement Learning. IEEE Trans. on Pattern Analysis
and Machine Intelligence 37(2):394–407.
Fox, E. B.; Sudderth, E. B.; Jordan, M. I.; and Willsky, A. S.
2011. A Sticky HDP-HMM with application to Speaker Di-
arization. The Annals of Applied Statistics 1020–1056.
Fridman, L.; Reimer, B.; Mehler, B.; and Freeman, W. T.
2018. Cognitive Load Estimation in the Wild. In CHI Conf.
on Human Factors in Computing Systems, 652. ACM.
Hoffman, M. D.; Blei, D. M.; Wang, C.; and Paisley, J. 2013.
Stochastic Variational Inference. Journal of Machine Learn-
ing Research 14(1):1303–1347.
Javdani, S.; Admoni, H.; Pellegrinelli, S.; Srinivasa, S. S.;
and Bagnell, J. A. 2018. Shared Autonomy via Hindsight
Optimization for Teleoperation and Teaming. The Interna-
tional Journal of Robotics Research.
Johnson, M. J., and Willsky, A. S. 2013. Bayesian Nonpara-
metric Hidden Semi-Markov Models. Journal of Machine
Learning Research 14(Feb):673–701.
Johnson, M., and Willsky, A. 2014. Stochastic Variational
Inference for Bayesian Time Series Models. In Intl. Conf.
on Machine Learning, 1854–1862.
Jones, E.; Oliphant, T.; Peterson, P.; et al. 2001. SciPy: Open
Source Scientific Tools for Python.
Jonker, C. M.; Van Riemsdijk, M. B.; and Vermeulen, B.
2011. Shared Mental Models: A Conceptual Analysis.
In Coordination, Organizations, Institutions, and Norms in
Agent Systems (COIN). Springer. 132–151.
Kahneman, D. 2003. Maps of Bounded Rationality. The
American Economic Review 93(5):1449–1475.
Kraft, D. 1994. Algorithm 733: TOMP–Fortran modules for
Optimal Control Calculations. ACM Trans. on Mathematical
Software (TOMS) 20(3):262–281.
Krishnan, S.; Garg, A.; Goldberg, K.; et al. 2016. SWIRL: A
Sequential Windowed Inverse Reinforcement Learning Al-
gorithm for Robot Tasks with Delayed Rewards. In Work-
shop on the Algorithmic Foundations of Robotics (WAFR).
Kumar, P., and Varaiya, P. 2016. Stochastic Systems. SIAM.
Li, Y.; Song, J.; and Ermon, S. 2017. InfoGAIL: Inter-
pretable Imitation Learning from Visual Demonstrations. In
Advances in Neural Information Processing Systems (NIPS),
3812–3822.

Liu, M.; Liao, X.; and Carin, L. 2011. The Infinite Re-
gionalized Policy Representation. In Intl. Conf. on Machine
Learning (ICML). ACM.
Majumdar, A.; Singh, S.; Mandlekar, A.; and Pavone, M.
2017. Risk-Sensitive Inverse Reinforcement Learning via
Coherent Risk Models. In Robotics: Science and Systems.
Michini, B., and How, J. 2012. Bayesian Nonparametric In-
verse Reinforcement Learning. In Joint European Conf. on
Machine Learning and Knowledge Discovery in Databases.
Springer.
Oliehoek, F. A.; Amato, C.; et al. 2016. A Concise Introduc-
tion to Decentralized POMDPs, volume 1. Springer.
Panella, A., and Gmytrasiewicz, P. 2017. Interactive
POMDPs with Finite-State Models of Other Agents. Au-
tonomous Agents and Multi-Agent Systems 31(4):861–904.
Proctor, R. W., and Van Zandt, T. 2018. Human Factors in
Simple and Complex Systems. CRC Press.
Puterman, M. L. 2014. Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. Wiley & Sons.
Ramachandran, D., and Amir, E. 2007. Bayesian Inverse
Reinforcement Learning. In Intl. Joint Conf. on Artificial
Intelligence (IJCAI).
Ranchod, P.; Rosman, B.; and Konidaris, G. 2015. Nonpara-
metric Bayesian Reward Segmentation for Skill Discovery
using Inverse Reinforcement Learning. In Intl. Conf. on In-
telligent Robots and Systems (IROS), 471–477. IEEE.
Sadigh, D.; Sastry, S.; Seshia, S. A.; and Dragan, A. D. 2016.
Planning for Autonomous Cars that Leverages Effects on
Human Actions. In Robotics: Science and Systems (R:SS).
Saeedi, A.; Hoffman, M.; Johnson, M.; and Adams, R. 2016.
The Segmented iHMM: a Simple, Efficient Hierarchical In-
finite HMM. In Intl. Conf. on Machine Learning (ICML).
Schmerling, E.; Leung, K.; Vollprecht, W.; and Pavone, M.
2017. Multimodal Probabilistic Model-Based Planning for
Human-Robot Interaction. arXiv preprint.
Teh, Y. W.; Jordan, M. I.; Beal, M. J.; and Blei, D. M. 2006.
Hierarchical Dirichlet Processes. Journal of the American
Statistical Association 101(476):1566–1581.
Thomaz, A.; Hoffman, G.; Cakmak, M.; et al. 2016. Compu-
tational Human-Robot Interaction. Foundations and Trends
in Robotics 4(2-3):105–223.
Unhelkar, V. V., and Shah, J. A. 2018. Learning Models of
Sequential Decision-Making without Complete State Speci-
fication using Bayesian Nonparametric Inference and Active
Querying. Technical report, Massachusetts Institute of Tech-
nology (MIT).
Yang, X. J.; Unhelkar, V. V.; Li, K.; and Shah, J. A. 2017.
Evaluating Effects of User Experience and System Trans-
parency on Trust in Automation. In Intl. Conf. on Human-
Robot Interaction (HRI), 408–416. ACM.
Ziebart, B. D.; Maas, A. L.; Bagnell, J. A.; and Dey, A. K.
2008. Maximum Entropy Inverse Reinforcement Learning.
In AAAI Conf. on Artificial Intelligence, volume 8, 1433–
1438.

2530

