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Abstract

This paper introduces Advice-MDPs, an expansion of
Markov Decision Processes for generating policies that take
into consideration advising on the desirability, undesirabil-
ity, and prohibition of certain states and actions. Advice-
MDPs enable the design of designing semi-autonomous sys-
tems (systems that require operator support for at least han-
dling certain situations) that can efficiently handle unex-
pected complex environments. Operators, through advising,
can augment the planning model for covering unexpected
real-world irregularities. This advising can swiftly augment
the degree of autonomy of the system, so it can work without
subsequent human intervention.
This paper details the Advice-MDP formalism, a fast Advice-
MDP resolution algorithm, and its applicability for real-world
tasks, via the design of a professional-class semi-autonomous
robot system ready to be deployed in a wide range of un-
expected environments and capable of efficiently integrating
operator advising.

Introduction
Markov Decision Processes (MDPs) are one of the most
classic model for planning under uncertainty. However,
MDPs are difficult to deploy for many real-world problems
(e.g. robots in public space, military operations, disaster-
recovery). These problems introduce irregularities that are
difficult to foresee at design time (e.g. path-finding hardened
by wind, water, glass, acid, armed threats). These irregulari-
ties cause discrepancies between the planning model and the
real-world, thus entailing the generation of irrelevant plans
and failures.

Mixed-Initiative Planning Systems (MIPS) aim to over-
come these issues by providing means for human opera-
tors to improve plan generation through the validation of
actions and plans, and by providing information that the
system cannot access or infer otherwise (e.g. presence of
threat) (Zilberstein 2015). However, operator support should
be requested with care, as it burdens the operators, causing
Operator-Workload (OW), which is costly.
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Available MIPS suffer from three major limitations: 1)
OW costs are linear to system use (e.g. a check for each
generated plan), 2) no flexibility on OW management (op-
erator support must be performed last minute, causing time
pressure, frustration, and stress (Hart and Staveland 1988)),
and 3) the system requires an expensive training phase. Plan-
validation based approaches suffer from limitations 1 and 2,
while learning-based approaches suffer from all three lim-
itations. This paper aims to answer the following research
question: how to decrease OW costs and enable flexible OW
management, with limited training phase? The key novelty
brought by this paper lies in covering environmental irregu-
larities by providing means for the user to augment the plan-
ning model using (prescriptive) advising. This way, operator
support is required only once for multiple plan generations
(thus lowering OW costs), can be performed both a priori
and on-demand (before and when plans are to be generated),
and no expensive training is required for the system to be op-
erational.

This paper proposes a new formalism for overcoming
these issues, which we call Advice-MDPs (Advice Markov
Decision Processes). Advice-MDPs are Markov Decision
Processes (MDPs (Puterman 1994)) expanded with advis-
ing, for defining situationally-forbidden actions and aug-
menting state definition with an external information on
whether it is desired, undesired, or forbidden. The various
types of advice are interpreted following an order, from the
hardest (forbidden) to the softest (desired): we aim to gen-
erate advice-compliant policies that first avoid performing
forbidden situational actions, then optimize the compromise
between reaching goals and avoiding forbidden states, and
then optimize the compromise between reaching desirable
states and avoiding undesirable states.

In addition to the formalism, this paper proposes a fast
approximate algorithm for solving Advice-MDPs. This al-
gorithm is based on a lexicographic multi-criteria value-
iteration algorithm using Ordered Weighted Regret (Sigaud
and Buffet 2010)

Finally, this paper demonstrates the relevance of Advice-
MDPs for solving real-world problems, by deploying them
for a professional-class application. Our industry partner
seeks to deploy mobile-robots in unexpected and complex
environments, for contexts such as supporting the evacuation
of civilians in harmful situations, disaster recovery (Ram-
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churn et al. 2015), and security missions (e.g. terrorism, pa-
trol in sensitive sites).

The system, which we call the “Anywhere Deployment”
Robot System (ADRS), should be extremely flexible i.e. ca-
pable of adapting to unexpected irregularities that can af-
fect robot orientation (e.g. wind, water, sand, acidity, glass,
unstable ground, threats), which go beyond the possibilities
of classic fully-autonomous systems. Furthermore, operator
availability is highly limited and unpredictable: while oper-
ators can generally watch and support the system for a few
minutes after deployment, they have little time for actively
training it and, suddenly, they may become overloaded due
to arising threats. Illustrations of the implementation of the
ADRS are presented in Figure 1 and Figure 2.

Related Research
Mixed-Initiative Planning Systems (MIPSs): (Zilberstein
2015) define MIPSs as automated systems that collabora-
tively build plans with their operators. MIPS are acknowl-
edged to be particularly useful when the planning model of
the automated system is partial and when human judgment
is needed to evaluate the plans generated based on the model
(Zilberstein 2015).

Classic approaches for implementing MIPSs consists of
an iterative loop where the system generates a plan and op-
erators validate or refuse it, with a mechanism for justifying
the rejection. If accepted, the plan is executed by the sys-
tem. If refused, the system generates another plan, taking
into consideration the reasons for the rejection of the first
plan (e.g. the MAPGEN system, for planning Mars rover ac-
tivities (Bresina et al. 2005)). The design of these systems is
generally coupled with the design of interfaces for enabling
operators to evaluate plans and argue on their rejection.

Advanced (MDP-based) MIPS approaches aim to reduce
OW costs by reasoning about the operators’ workload and
capabilities and cost for requesting support from them. The
HHP-MDP, HOP-POMDP, and OPOMDP formalisms in-
tegrate operators as a manageable (costly) resource of the
planning domain, which can be used for acquiring obser-
vations and setting subgoals (Armstrong-Crews and Veloso
2007; Côté et al. 2012; Rosenthal and Veloso 2011). How-
ever, these approaches require from the system to be capa-

Figure 1: Two NERVA robots we experimented with, in the
realistic arena set by our industry partners.

Figure 2: Operator interface: map, video stream. Lines on
the map represent operator advising: desired (green), un-
desired (orange), and forbidden (red) advising. The target
shape is the goal of the robot. Numbers are navigation way-
points.

ble of evaluating the relevance of asking operator support,
something which can be difficult to achieve.

MIPSs suffer from the limitations 1) and 2) presented in
the introduction: OW costs are proportional to system use,
as plans must be validated each time they are issued. Sec-
ond, little OW flexibility is possible, as plans must be val-
idated after goals are issued and before plans are executed.
Operator support cannot be done a priori and delayed sup-
port generally entails neglect costs or even system failures
(Crandall et al. 2005).

Advice-Sensitive Reinforcement Learning (ASRL):
Advising has been applied for speeding up the learning
process of Reinforcement Learning (Abel et al. 2017; Ng,
Harada, and Russell 1999; Torrey et al. 2005). In ASRL, op-
erators can advise learning agents by providing feedback on
the desirability of (intended) agent actions, or by relating the
task to similar ones.

ASRL faces the three limitations presented in the in-
troduction (high OW costs, low OW management flexibil-
ity, expensive training phase). The training phase is par-
ticularly expensive in terms of OW costs, as operators are
constantly involved during this period. Furthermore, rein-
forcement learning may be infeasible due to real-world con-
straints (e.g. the delay for being rewarded by a human is
incompatible with a robot affected by world-dynamics such
as sliding on ice). In addition, this form of advising only
tweaks reward and transition functions, disregarding finer-
grained advising that can introduce a richer semantic and be-
havioral indications for the system (e.g. a “bystanders may
be encountered there” advice).

Background on Markov Decision Processes
Classic Markov Decision Processes: Markov Decision
Processes (MDPs) are stochastic processes that are (par-
tially) controlled by an agent (Sigaud and Buffet 2010). For-
mally, a MDP is represented by a tuple (S,A, T,R), where
S is a set of states; A is a set of actions; T : S × A × S →
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[0, 1] is a transition function, where T (s, a, s′) is the proba-
bility of reaching s′ when playing a from s; and R : S → R
is the reward function, where R(s) is the expected reward
for reaching s.

Optimizing MDPs within a bounded horizon h ∈ N con-
sists in finding a policy that maximizes the expected reward
in using h actions. A policy π : S → A defines an action
to be played for each state and Π is the set of all policies.
The value of a policy π within a horizon h is V πh : S → R,
where: V πk (s) = R(s) +

∑
s′∈S T (s, π(s), s′).V πk−1(s′) if

k > 0, else V π0 (s) = R(s). The set of optimal policies for
the horizon h, represented by Π∗h ⊆ Π is the set of policies
π∗ ∈ Π∗h such that for all s ∈ S, V π

∗

h (s) = maxπ∈Π V
π
h (s).

Multi-Objective MDPs: In Multi-Objective MDPs
(MOMDPs) (Roijers, Vamplew, and Whiteson 2013), the
agent controls a process that is related to not one, but a
set of reward criteria (e.g. money, satisfaction, environment
quality). The reward function of MOMDPs is represented
by R : S → Rk. Optimizing MOMDPs is influenced by this
multiplicity of criteria: the set of optimal policies is a Pareto-
front of policies along Rk (e.g. two policies, one generating
less money, but offering higher satisfaction, belong to the
same Pareto-front). Often, MOMDPs are turned into MDPs
using a formula for linearizing the MOMDP rewards (e.g.
R(s) = 0.5×Rmon(s) + 0.7×Rsat(s) + 2.3×Renv(s)).
However, doing so reduces the capability for expressing
more elaborated reward profiles and constraints (e.g. the
value of environment is minimal, as long as ten points are
scored).

Formalizing Advice-MDPs
Advice-MDPs aim to enable operators to augment the plan-
ning model with advice, towards fitting the irregularities
of the environment (like ASRL) with prescriptive a priori
advising (like MIPSs). This way, Advice-MDPs cut down
the OW costs of MIPS, by requiring operators to augment
the planning model for including real-world irregularities
once for all instead of once per use. Advice-MDPs offer
higher OW management flexibility, by enabling advising
a priori (once the environment is known, without needing
goals to be set) instead of last-minute advising for MIPSs;
Advice-MDPs require no training phase and advising can be
achieved without executing plans, unlike ASRL approaches.
Advice-MDPs enable for a large variety of advice types,
which can introduce a helpful semantic context for advanced
decision-making, unlike ASRL approaches that only enable
to tweak mono-dimensional rewards.

Advice-MDPs expand classic MDPs, replacing reward
function with advising. This paper considers the following
five advice types: {G, Sf , Sd, Su, Cπ̂}, where G ⊆ S are
goal states, to be reached by the system, Sf ⊆ S are forbid-
den states, Sd ⊆ S are desired states, Su ⊆ S are undesired
states, and Cπ̂ ∈ f : S → 2A are forbidden actions to be
avoided in certain states. In our ADRS application, Sd are
safe and efficient zones, Su are slow or inconvenient zones
(e.g. sand, rock), and Sf are dangerous zones that should be
avoided, unless inevitable (e.g. very poor floor, very close to
enemy location), Cπ̂ are contextually forbidden actions (e.g.

activating a visible sensor). The relative importance given
to the various advice types follows a lexicographic order:
first, match Cπ̂; then, best satisfy the tradeoff 〈G, Sf 〉; fi-
nally, best satisfy the trade-off 〈Sd, Su〉. Formally, policies
matching Cπ̂ are represented by:

ΠCπ̂ = Π \ {π|∃s ∈ S, π(s) ∈ Cπ̂(s)}

Policies that best satisfy the tradeoff G, Sf belong to
the Pareto-front of policies evaluated by V G,Sf ,π =

(V G,π,−V Sf ,π), where: V S
′,π(s) = Nvis(S

′|s, π), for
which Nvis(S

′|s, π) is the expected number of times S′ is
expected to be visited from s following π. Policies that best
satisfy the tradeoff Sd, Su belong to the Pareto-front of poli-
cies evaluated by V Sd,Su,π = (V Sd,π,−V Su,π). Note that
this representation for advising is selected for its simplicity,
genericity, and ease to connect to user interfaces. However,
more advice types can be integrated in the model.

Efficiently Solving Advice-MDPs

Algorithm 1: Fast Advice-MDP policy computer
Input : S, A, T , G, Sf , Sd, Su, Cπ̂, H
Output : MDP Value Function V ′

T ← T \ {(s, a, s′)|∀s, s′, a ∈ Cπ̂(s)}
V π,0 ← 0

∀s ∈ S,R′(s)←


(1, 0, 0, 0) if s ∈ G
(0,−1, 0, 0) if s ∈ Sf
(0, 0, 1, 0) if s ∈ Sd
(0, 0, 0,−1) if s ∈ Su

for t = 0 . . . H − 1 do
foreach s ∈ S do

foreach criterion c ∈ {G, Sf , Sd, Su} do
V
π∗c ,t+1
c (s)← Rc(s)+

maxa∈A
∑
s′∈S T (s, a, s

′).V
π∗c ,t
c (s′)

idealc ←
maxaRc(s) +

∑
s′∈S T (s, a, s

′).V π,tc (s′)
antiIdealc ←
minaRc(s) +

∑
s′∈S T (s, a, s

′).V π,tc (s′)
foreach a ∈ A do

Rgttc(s, a, π)←

||[Rc(s)+
∑
s′∈S T (s,a,s′).V π,tc (s′)]−V

π∗c ,t+1
c (s)||

||idealt,πc (s)−antiIdeal
t,π
c (s)||

optA← argminalexdiff (Cπ̂,RgtG(s, a, π) +
RgtSf (s, a, π),RgtSd(s, a, π) + RgtSu(s, a, π))

V π,t+1(s)←
R(s) +

∑
s′∈S T (s, optA, s′).V π,t(s′)

return V

We resolve Advice-MDPs by transforming them into
MOMDPs. As a transformation, actions belonging to Cπ̂ are
removed from the base T , and each advice-type is mapped
to a criterion, which is rewarded when the system reaches
an accordingly-advised state (e.g. RSd(s) is 1 (else 0) if
s ∈ Sd). Rewards are positive for desirable or goal states and
negative otherwise. Since rewards are summed, the value
of criterion c when following π is the number of expected
visitations Nπ

vis,c (e.g. “V(s)=(2,0,5,-7)” when following π
for h steps means: “from s, following π is expected to lead
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to the reach of 2 goals, 0 forbidden, 5 desirable, 7 undesir-
able states). Optimal solutions for this MOMDP are Pareto-
optimal tradeoffs that maximize the number of visited goals
and desired states, and minimize the number of forbidden
and undesired states.

This transformation into MOMDPs (vs. a mono-
dimentional MDP) offers multiple benefits, by avoiding
boiling down the whole reward function in a single scale.
First, MOMDPs enable for non-linear combination of fac-
tors (e.g. losing 3 wheels is much worse than losing one;
crossing the first undesirable is very bad, but if inevitable, a
rational balance should be found). Such combination can be
achieved in mono-dimensional MDPs, by adding variables
to the statespace, thus causing a combinatorial explosion.
Else, if mono-dimensional reward functions introduce lin-
earization artifacts, such as “trading three undesirable for
one desirable”, which are often not suitable for applications.
Second, the MOMDP representation is simpler for opera-
tors, which lowers risks of errors. MOMDPs introduce a
semantic context for applying advising and for easing sys-
tem management (e.g. a slider for setting the balance be-
tween “following desirable” and “avoiding undesirable”, a
slider for balancing the importance between achieving goals
and the tradeoff desirable/undesirable). This operation is less
intuitive with linear MDPs, as it implies to reason about
fiddling reward functions. Third, MOMDPs simplifies the
introduction of a wider range of advice-types (e.g. a “can
be pushed”, “can annoy bystanders”), without having to re-
design the reward function as a whole.

Our fast approximate algorithm for solving Advice-MDPs
(Algorithm 1) is inspired by Algorithm 10.1 from (Sigaud
and Buffet 2010, p.325). Exact MOMDP-resolution algo-
rithms (Wakuta 2001) were left out due to their exponen-
tial complexity and our need for responsiveness. At each
iteration, our algorithm backpropagates for each state the
set of most promising expected multidimensional value for
each action (and ideal and anti-ideal values for computing
the relative value of each state, see next paragraph). Then, a
comparator function selects the action leading to the most
promising reward tuple, given the immediate choice (e.g.
“(2,0,5,-7)” is better than “(2,-1,5,0)”).

The MOMDP comparator is based on the Ordered
Weighted Regret (OWR) function (Roijers, Vamplew, and
Whiteson 2013), based on the LexDiff order (Sigaud and
Buffet 2010), which enables maintaining the priority order
of advice types, while introducing properties such as “un-
desirable states are to be avoided, but if crossing them is
inevitable, then they should be best balanced with crossing
desirable states”. The OWR “calculates the regret of each
[criterion] with respect to an estimated ideal reference point,
sorts these into descending order, and calculates a weighted
sum in which the weights are also in descending order” (Roi-
jers, Vamplew, and Whiteson 2013). The regret for criterion
c when playing action a in state s given a policy π for a
horizon h is:

Rgthc (s, a, π) =
||V π,hc (s)− V π

∗
c ,h

c (s)||
||idealh,πc (s)− antiIdealh,πc (s)||

where V π,tc is expected total reward for c from following π

for t steps, π∗c is the “pure” policy that single-mindedly max-
imizes c, while discarding other criteria, ideal t,π(s)

c (respec-
tively antiIdeal t,πc (s)) is the highest (respectively lowest)
expected reward for c that can be acquired from s for all ac-
tions and then following π. ||ideal t,πc (s)− antiIdeal t,πc (s)||
is the Chebyshev norm, which makes the regret relative to
the relative grasp that the system has on c. If ideal t,πc (s) =
antiIdeal t,πc (s), then Rgtc(s, a, π) = 0 (no regret when no
grasp). The LexDiff strictly orders sets of criteria (in our
case, {Cπ̂} > {G, Sf} > {Sd, Su}), lower-rank criteria are
only considered when higher-rank criteria are equally satis-
fied. Altogether, LexDiff minimizes the regret of the most
important advice types first and then the regret of lower-
rank advice types. Note that this comparator function can
be changed for altering the reaction of the system with re-
gards to advising (e.g. allowing to trade the crossing of one
forbidden state for avoiding many undesirable states).

In terms of solution quality, in our experiments, our algo-
rithm always finds optimal MDP policies when undesirable
and forbidden states can be avoided. When being forced to
cross undesirable and forbidden states, our algorithm gener-
ates very satisfactory trajectories (avoiding as much as pos-
sible forbidden states, then a relatively conservative balance
between avoiding undesirable states and reaching desirable
states).

Professional-Grade Application
Application Context
Our industry partners aim to deploy highly flexible mobile
robots for supporting operators for contexts such as disaster-
recovery (Ramchurn et al. 2015), scouting in risky areas (e.g.
wildlife monitoring, terrorism, illegal activities), and survey-
ing in sensitive sites (e.g. chemical factory, nuclear plant).

Robots are given missions such as live observations (cam-
era feed, establishing maps, monitoring threats) and situa-
tional actions (e.g. open a door, disarm traps). The robot
we work with are NERVA robots illustrated in Figure 1,
which are actually already being deployed by our partners,
exclusively controlled through teleoperation. NERVAs are
very robust (can be thrown over obstacles) and fast (up to
15km/h). They are equipped with four cameras and a wide
array of specific sensors can be plugged in for capturing sit-
uational measurements (e.g. sound, gas, explosives, radioac-
tivity).

As an application for intersecting both industrial and aca-
demic goals, we aim to make the robot capable of reaching
as autonomously as possible set of locations that is required
for completing sensing tasks. This goal revisits the very clas-
sical pathfinding problem, except that the many irregular-
ities of varied, difficult, and unexpected real-world situa-
tions are added to the equation. These irregularities intro-
duce two challenges making fully-autonomy currently un-
feasible: first, available models fail to incorporate all these
irregularities and the design of such an all-encompassing
model would be very difficult and likely to be computa-
tionally too expensive; second, robot sensory capabilities are
sometimes insufficient for recognizing such irregularity (e.g.
the robot, only equipped with cameras, faces a puddle in a
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Figure 3: System loop: operator and sensor input are merged and displayed by the GUI. When goals are set, this input is turned
into Advice-MDPs, given to the planner for generating MDP policies, turned into waypoints, smoothed, and executed by the
robot.

chemical plant: can the puddle be recognized? Can the pud-
dle be crossed? Is it deep? Is it a chemical that will destroy
the robot? If so, how fast?).

We called our system the Anywhere Deployment Robot
System (ADRS). An overview of the system loop presented
in Figure 3. The ADRS generates a map of the surround-
ings via a Simultaneous Localization and Mapping (SLAM)
using a laser. This map is then displayed with a Graphical
User Interface (GUI), presented in Figure 2, on a tablet that
operators wear on their wrist. This GUI enables operators to
advise on goals, desirable, undesirable and forbidden areas,
by simply clicking on an “advice-type” button and drawing
on the map (points, lines, shapes). Then, the system gen-
erates an advice-compliant waypoint-based trajectory that
minimizes the total distance crossed for reaching all goals.
This trajectory is displayed back to the operator, who de-
cides whether the robot should apply it (a “rush mode” can
be turned on for skipping this check). At any time, before
and during plan execution, the operator can update the advis-
ing, which then updates the waypoint trajectory. Likewise,
robot trajectories are updated if the SLAM discovers new
obstacles that jeopardize the current plan. Towards achiev-
ing high responsiveness and smooth interactions with op-
erators, our fast Advice-MDP resolution algorithm enables
completing a whole sense-reason-act loop within two sec-
onds 1, which is satisfactory for operators. Special cases can
be improved through engineering (e.g. having dodge reac-
tive behaviors during replanning, so the robots does not be-
come an easy target).

As an overall idea of the system behavior, and thus of the
advising semantics, desirable areas (in green) mark zones
that are interesting to be crossed by robots (safe ground, con-
cealed from opposing threats), while still generally moving
towards the goal. Undesirable areas (in orange), mark zones
that are best avoided if possible, but that can be crossed for
the sake of reaching the goal, or many more desirable ar-
eas (e.g. populated non-hostile areas, unsteady ground that
slows the robot, slow acid or irradiated areas that will de-
stroy the robot after the mission). Red areas mark zones that
may harm the mission, to be avoided unless they there is no
other means for reaching the goal (e.g. risk of being spotted,
slippery ground that may cause crashes, unidentified pud-
dle). These categories remain flexible and can change due to

1Demonstration videos are available at https://www.youtube.
com/playlist?list=PLcULZgrd6hEgBYO6zJ74S7tH3DvX3Sf7g

situational context (e.g. slow acid areas may be set to forbid-
den if losing the robot after its mission becomes an issue for
follow-up actions).

Technically, the generated map is a 4096 × 4096 pixel
map. Each pixel captures a 4cm2 square. For keeping high
responsiveness, this map is abstracted into a 400 × 400-
tiles hexagonal grid (any tile containing at least one obsta-
cle pixel is considered as an obstacle tile). This grid is then
transformed into a canonical transition function for moving
on grids (e.g. playing “East” on state/tile “(4,12)” leads to
state/tile “(5,12)”). The optimal policy, π∗, provides a path-
way, i.e. a sequence of sets of optimal tiles per iteration. As a
straight transformation of this pathway creates highly ineffi-
cient step-by-step “stop-and-turn” move, a smoothing phase
fastens robot moves by greedily searching for the waypoint
path with the least number of steps that is totally covered
by the optimal pathway. This step is illustrated in Figure 4a.
Note that, for descriptive simplicity, this implementation re-
lies on a deterministic MDP. However, Advice-MDPs can be
applied on non-deterministic MDPs (e.g. uncertainty on the
tile to be reached when playing move actions).

Empirical Evaluation
Varying The Degree of Autonomy
We compared Advice-MDPs against Fully-Autonomous
Systems (FAS, based on classic advice-less MDPs) and
Non-Autonomous systems (i.e. teleoperation), along the fol-
lowing criteria, partly drawn from (Hart and Staveland 1988;
Steinfeld et al. 2006): 1) flexibility (range of situations that
can be handled by the system); 2) efficiency (time for com-
pleting the mission); 3) Operator Workload (OW) (time re-
quired from operators for having the task completed, i.e. for
teleoperation and advising); 4) effectiveness (percentage of
the mission that is autonomously completed); 5) OW flexi-
bility (flexibility left for the operator to decide when to oper-
ate), 6) responsiveness (time from task-allocation to action).

As a setup, we compared the performance of FAS,
Advice-MDPs, and teleoperation in two scenarios of differ-
ing degrees of flexibility: in the corridor scenario, the robot
is tasked to move to the other side of a building (Figure
4b); in the hole scenario, a (virtual) hole in the ground is to
be avoided, else the robot risks breaking (Figure 4c). Each
experiment was repeated 20 times. Each experimenter was
trained to teleoperate and advise the robot for at least ten
minutes.
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(a) Optimal pathway towards the goal (blue tiles),
considering obstacles (grey tiles). Red lines are the
base waypoint path generated from the base MDP
policy (many stop and turn operations). Green
lines represented the smoothed path (minimizing
the amount of waypoint, exploiting diagonals).

(b) Advice-MDP waypoint trajectories for
the corridor scenario. Lines are former
robot paths.

(c) Advice-MDP trajectories for the hole
scenario. Red marks are “forbidden” ad-
vice, drawn by the operator.

Figure 4: Pathways on hexagonal and pixel maps

Experimental results (Table 1) detail the compromises be-
tween efficiency, flexibility, and OW costs. In terms of flex-
ibility, FASs only succeed in the corridor scenario, as they
risk getting stuck in the hole scenario; the Advice-MDPs
systems handle both the corridor and hole missions; teleop-
eration handles all situations. Teleoperation remains more
flexible than Advice-MDPs, as humans can make situational
assumptions that fall out of the planning model (e.g. seeing
empty crates as pushable objects rather than impassable ob-
stacles).

In terms of OW costs, FASs are obviously the most effec-
tive, followed by Advice-MDPs, which only require one fast
intervention for augmenting the planning model, and teleop-
eration last, which is much more expensive. Note that, once
augmented, Advice-MDPs can operate with no subsequent
OW costs, unless major changes in the environment (e.g. a
zone catches fire).

In terms of efficiency, teleoperation is the most efficient;
Advice-MDPs and FASs are equivalent (teleoperation al-
lows for higher speed and avoiding ineffective stop-and-turn
actions at waypoints).

In terms of effectiveness, Advice-MDPs achieve a score
of 81.3% when augmenting the planning model is needed,
which is very reasonable. In terms of OW flexibility, Advice-
MDPs offers the highest OW-flexibility as advising can be
done a priori, while teleoperation offers no OW-flexibility
(must be done last minute, any delay lowers the efficiency
of the system). Last, in terms of responsiveness, the software
responds within two seconds for FASs and Advice-MDPs.

Comparing Against Related Approaches
This section compares Advice-MDPs against the two related
approaches: MIPS and ASRL approaches. The experimental
results are detailed in Table 1.

For the MIPS approaches, the operator is in charge of
validating or rejecting the trajectories generated by the sys-
tem. When rejecting a trajectory, operators indicate at which
point the trajectory is incorrect. Then, the system removes
the indicated state, replans and proposes an alternative tra-
jectory.

In terms of performance, Advice-MDPs achieve slightly
better efficiency for lower OW costs for the corridor ex-
periment, as operators are asked to perform an unnecessary
check for the MIPS (although, the cost is relatively low). For
the hole experiment, Advice-MDPs achieve much better per-
formance than MIPS, as rejecting plans until one becomes
acceptable incurs low efficiency and high OW costs. Further-
more, after one planning phase, the Advice-MDPs system is
ready to be operated without subsequent OW costs, while
the whole process is to be repeated for the MIPS approach.

For the ASRL approach, a module has been implemented
using the most relevant technique from (Abel et al. 2017)
for this context: action pruning. During the training phase,
the system asks before playing an action whether this action
is the most relevant. If not, the system associates it with a
low reward and proceeds with the new best action. Results
highlight the that the Advice-MDP approach overcomes the
ASRL approach. First, Advice-MDP avoids a very slow and
OW-cost expensive learning phase, totally in 98 operator
checks for the corridor scenario and 123 operator checks
for the hole scenario. Second, the Advice-MDP approach
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Table 1: Average autonomy effectiveness, efficiency, and operator workload costs, over 12 repetitions for the corridor and hole
scenarios, depending on the system type. Lines marked by an asterisk note the OW cost during a training phase.

Scenario System Autonomy Effectiveness Efficiency (s) OW (s)
Corridor Advice-MDPs 100% 33.7 0
Corridor Teleop 0% 22.3 22.3
Corridor Base MDPs 100% 34.5 0
Corridor Action Pruning (ASRL) NA 269.9 348.8∗
Corridor Plan Revision (MIPS) 95.1% 35.0 1.7

Hole Advice-MDPs 81.3% 43.4 8.1
Hole Teleop 0% 27.2 27.2
Hole Base MDPs 100% Falls 0
Hole Action Pruning (ASRL) NA 316.7 472.7∗
Hole Plan Revision (MIPS) 54.6% 75.2 34.9

enables for an effective prescription of all undesired states,
while the ASRL approach only learns what is related to this
specific trajectory. While some knowledge is re-used, the
system is to be trained again for moving back to the initial
position. Furthermore, during this learning phase, the robot
can only rely on brute MDP-based plans, which imply oper-
ating on the level of “stop and turn” low-level actions, which
dramatically slow down robot operations.

Conclusions and Perspectives
This paper introduces Advice-MDPs, a new formalism for
designing systems capable of integrating operator support
for augmenting planning models towards efficiently adapt-
ing the behavior of the system to real-world unexpected
irregularities. Advice-MDPs expand the Markov Decision
Process (MDP) formalism with the possibility to advise on
the desirability, undesirability, or prohibition of states and
actions. Furthermore, this paper introduces a fast algorithm
for generating near-optimal advice-compliant policies, mak-
ing possible to create reactive interaction-loops with opera-
tors for smoothing the task of supporting the robot.

We empirically demonstrate the benefits of Advice-MDPs
against fully autonomous planning systems (Advice-MDPs
trade reasonable operator workload costs for greater system
flexibility), fully teleoperated systems (Advice-MDPs can
dramatically decrease the operator workload costs), clas-
sic mixed-initiative planning systems (Advice-MDPs lower
operators workload costs, the invested time from operator
is better re-used over multiple planning operations, oper-
ators can better manage when to advise the system), and
reinforcement-learning based planning systems (Advice-
MDPs skip a long learning phase, thus decreasing opera-
tor workload costs and making the system much faster to
set up). Conceptually, the core novelty and benefits offered
by Advice-MDPs compared to classic approaches lies in en-
abling operators to prescriptively augment the world-model.
This augmentation can then be used for multiple subsequent
planning operations, be given early on (before planning is
required), and does not require system training. Though,
the benefits of advising depend on external factors, such as
the advising quality (e.g. mistakes from operators) and un-
expected environmental changes (e.g. new areas becoming

forbidden or desirable), which can require additional efforts
from operators (e.g. watching the environment and the robot,
updating advising) and introduce risks of failure.

We demonstrate the applicability of these theoretical
findings, by deploying Advice-MDPs in the design of a
professional-grade robotic system, which we called the Any-
where Deployment Robot System (ADRS). The ADRS has
been tested by its intended final users (our industry partners),
who were highly satisfied by the flexibility features offered
by Advice-MDPs and the relief the ADRS brings on the cog-
nitive strain required for operating the system. The ADRS is
being integrated within the robotic platform of our industry
partners.

Regarding future work, we are expanding Advice-MDPs
for integrating more advice types (e.g. a “passable” ad-
vice type for handling e.g. box-pushing behavior). Addition-
ally, we are expanding our application to a multi-robot set-
ting, considering new challenging issues in term of multi-
agent planning and multi-robot coordination. Furthermore,
we are investigating the combination between Advice-MDP
and HOP-POMDP for combining the benefits of both ap-
proaches (Rosenthal and Veloso 2011).
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