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Abstract

Given a text description, most existing semantic parsers syn-
thesize a program in one shot. However, it is quite challenging
to produce a correct program solely based on the description,
which in reality is often ambiguous or incomplete. In this pa-
per, we investigate interactive semantic parsing, where the
agent can ask the user clarification questions to resolve am-
biguities via a multi-turn dialogue, on an important type of
programs called “If-Then recipes.” We develop a hierarchical
reinforcement learning (HRL) based agent that significantly
improves the parsing performance with minimal questions to
the user. Results under both simulation and human evaluation
show that our agent substantially outperforms non-interactive
semantic parsers and rule-based agents.1

1 Introduction
Semantic parsing aims to map natural language to formal
domain-specific meaning representations, such as knowl-
edge base or database queries (Berant et al. 2013; Dong
and Lapata 2016; Zhong, Xiong, and Socher 2017; Gao,
Galley, and Li 2018), API calls (Campagna et al. 2017;
Su et al. 2017) and general-purpose code snippets (Yin and
Neubig 2017; Rabinovich, Stern, and Klein 2017). In this
work, we focus on semantic parsing for synthesizing a sim-
ple yet important type of conditional statements called If-
Then recipes (or If-Then programs), based on a natural lan-
guage description (Quirk, Mooney, and Galley 2015; Belt-
agy and Quirk 2016; Liu et al. 2016; Yin and Neubig 2017;
Chaurasia and Mooney 2017). For example, the descrip-
tion “Create a link note on Evernote for my liked tweets”
should be parsed into an If-Then recipe with 4 components:
trigger channel Twitter, trigger function New liked
tweet by you, action channel Evernote, and action
function Create a link note. On the one hand, If-
Then recipes allow users to perform a large variety of tasks
such as home security (“text me if the door is not locked”).
On the other hand, developing intelligent agents that can au-
tomatically parse these recipes is an important step towards
complex natural language programming (Quirk, Mooney,
and Galley 2015).

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1All source code and documentations are available at
https://github.com/LittleYUYU/Interactive-Semantic-Parsing.

User: “record to evernote”
Ground-truth recipe: [tc: Twitter, tf: New liked
tweet by you, ac: Evernote, af: Create a link
note]
(Liu et al. 2016): [tc: Phone Call, tf: Leave IFTTT any
voicemail, ac: Evernote, af: Append to note]
User: “record to evernote”
HRL-fixedOrder agent: “Which channel triggers the action?”
User: “twitter”
HRL-fixedOrder agent: “Which event triggers the action?”
User: “If I like a tweet”
HRL-fixedOrder agent: “Which event results from the trig-
ger?”
User: “Create a note with link”
Agent Prediction: [tc: Twitter, tf: New liked tweet
by you, ac: Evernote, af: Create a link note]
User: “record to evernote”
HRL agent: “Which event triggers the action?”
User: “If I like a tweet”
HRL agent: “Which event results from the trigger?”
User: “Create a note with link”
Agent Prediction: [tc: Twitter, tf: New liked tweet
by you, ac: Evernote, af: Create a link note]

Table 1: Semantic parsers on an ambiguous description: The
state-of-the-art non-interactive model (Liu et al. 2016) can-
not correctly parse the recipe while our two HRL-based in-
teractive agents can. Particularly, by coordinating the sub-
task order, the HRL agent asks fewer questions than the
HRL-fixedOrder agent (tc: trigger channel, tf: trigger func-
tion, ac: action channel: af: action function).

Most previous work translates a natural language descrip-
tion to an If-Then recipe in one turn: The user gives a recipe
description and the system predicts the 4 components. How-
ever, in reality, a natural language description can be very
noisy and ambiguous, and may not contain enough infor-
mation. For simplicity, we refer to this problem as descrip-
tion ambiguity. In fact, in the widely used If-Then evalu-
ation dataset (Quirk, Mooney, and Galley 2015), 80% of
the descriptions are ambiguous. As shown in Table 1, the
description “record to evernote” is paired with the same
ground-truth recipe as in the first example, but even humans
cannot tell what the “record” refers to (i.e., trigger chan-
nel/function) and what kind of note to create on Evernote
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(i.e., action function). Therefore, it is quite challenging, if
not impossible, to produce a correct program in one shot
merely based on an ambiguous description.

Driven by this observation, we investigate interactive se-
mantic parsing, where an intelligent agent (e.g., the two
HRL-based agents in Table 1) strives to improve the parsing
accuracy by asking clarification questions. Two key chal-
lenges are addressed: (1) Lack of supervision on when to
ask a question. To date, there is no large-scale annotated
dataset on whether and when an agent should ask a ques-
tion during parsing. The only feedback an agent can obtain
is whether or not a synthesized program is correct. (2) How
to improve the parsing accuracy with a minimal number of
questions? To guarantee a good user experience, the agent
should only ask “necessary” questions and learn from hu-
man interactions over time.

Previous work (Chaurasia and Mooney 2017) developed
rule-based agents to interactively predict the 4 components
of an If-Then recipe. These agents decide to ask a question
when the prediction probability of a recipe component is
lower than a predefined threshold. However, such rule-based
agents are not trained in an optimization framework to si-
multaneously improve the parsing accuracy and reduce the
number of questions.

We address these challenges via a Hierarchical Reinforce-
ment Learning (HRL) approach. We formulate the inter-
active semantic parsing in the framework of options over
Markov Decision Processes (MDPs) (Sutton, Precup, and
Singh 1999), where the task of synthesizing an If-Then
recipe is naturally decomposed into 4 subtasks or options
(i.e., predicting trigger/action channel/function). In particu-
lar, we propose an HRL agent with a hierarchical policy: A
high-level policy decides the order of the subtasks to work
on, and a low-level policy for each subtask guides its com-
pletion by deciding whether to (continue to) ask a clarifi-
cation question or to predict the subtask component. We
train the policies to maximize the parsing accuracy and min-
imize the number of questions with the rewarding mecha-
nism, where the only supervision (reward signal) is whether
or not a predicted component is correct.

Compared with the approach of solving the entire task
with one flat policy (Mnih et al. 2015), HRL takes advan-
tage of the naturally defined “4-subtask” structure. Such de-
sign also allows the agent to focus on different parts of a
recipe description for each subtask, as emphasized in (Liu
et al. 2016), and endows each low-level policy with a re-
duced state-action space to simplify the learning. On the
other hand, the high-level policy optimizes the subtask order
by taking into account both the recipe description and user
responses. As shown in Table 1, the HRL agent learns to ask
about the trigger function first, to which the user response
(i.e., “tweet”) implies the trigger channel. This mechanism
leads to fewer questions than the HRL-fixedOrder agent,
which executes subtasks in the fixed order of “tc-tf-ac-af”.

Experimental results under both simulation and human
evaluation show that our HRL agent can obtain a signif-
icantly better accuracy while asking fewer questions than
rule-based agents like (Chaurasia and Mooney 2017). In ad-
dition, we show the effectiveness of the high-level policy on

reducing the number of questions. Our agent tends to pre-
dict functions before channels, which is different from most
existing works that either assume independence among sub-
tasks (Chaurasia and Mooney 2017) or predict channels be-
fore functions (Beltagy and Quirk 2016; Dong and Lapata
2016; Yin and Neubig 2017).

2 Background
If-Then recipes allow people to manage a variety of web ser-
vices or physical devices and automate event-driven tasks.
We focus on recipes from IFTTT.com, where a recipe has 4
components: trigger channel, trigger function, action chan-
nel, and action function. There are a variety of channels,
like GMail and Facebook, representing entities such as
web applications and IFTTT-provided services. Each chan-
nel has a set of functions representing events (i.e., trigger
functions) or action executions (i.e., action functions). In one
recipe, there could be exactly one value for trigger/action
channel/function.

Following (Liu et al. 2016; Chaurasia and Mooney 2017),
we decompose the task of parsing a natural language de-
scription into four subtasks, i.e., predicting trigger/action
channel/function in a recipe. We have made two key obser-
vations about real-life recipe descriptions and existing se-
mantic parsing work: (1) Around 80% recipe descriptions
are ambiguous or contain incomplete information, according
to the human annotations provided by Quirk, Mooney, and
Galley (2015), which makes it extremely difficult to synthe-
size a recipe in one turn (see the prediction result of (Liu et
al. 2016) in Table 1). Therefore, (Liu et al. 2016; Chaura-
sia and Mooney 2017; Yin and Neubig 2017) focus on the
unambiguous 20% recipes for evaluation. (2) Previous work
assumes either independence (Chaurasia and Mooney 2017)
or heuristic dependencies among the 4 subtasks. In particu-
lar, Liu et al. (2016) assumes that functions should be pre-
dicted before channels since a channel can be derived from
the function prediction, while (Beltagy and Quirk 2016;
Dong and Lapata 2016; Yin and Neubig 2017) assume that
channels should be predicted before functions and triggers
before actions.

Given these observations, we propose an interactive se-
mantic parser that can ask users for clarification to make
more accurate predictions. Moreover, we abandon the inter-
subtask (in)dependence assumptions used in previous work.
Our agent learns to optimize the subtask order for each
recipe to save questions.

3 Interactive Semantic Parser
3.1 Framework Overview
Given a recipe description, four components need to be pre-
dicted. Thus, the semantic parsing task can be naturally de-
composed into four subtasks G = {st1, st2, st3, st4}, stand-
ing for predicting the trigger channel (st1), trigger function
(st2), action channel (st3) and action function (st4), respec-
tively. We aim at an agent that can decide the order of sub-
tasks for each parsing task, and only moves to the next sub-
task when the current one has been completed. We formu-
late this as a hierarchical decision making problem based on
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Figure 1: Hierarchical policy: The high-level policy chooses
a subtask to work on while the low-level policy decides to
predict the subtask or ask the user at each time step.

the framework of options over Markov Decision Processes
(MDPs) (Sutton, Precup, and Singh 1999).

Specifically, the agent uses a hierarchical policy consist-
ing of two levels of policies operating at different time
scales. The high-level policy selects the next subtask (or op-
tion) to work on, which can be viewed as operating on a
Semi-MDP (Sutton, Precup, and Singh 1999). The low-level
policy selects primitive actions (i.e., predicting a component
value or querying the user) to complete the selected subtask.
As elaborated in Section 3.2, we adopt 4 low-level policies,
each for one subtask.

Figure 1 shows the process. At an eligible time step t (i.e.,
at the beginning of a parsing task or when a subtask termi-
nates), the high-level policy πh(g; st) receives a state st and
selects a subtask gt ∈ G to work on. Then the low-level pol-
icy πlgt(a; st) for this subtask chooses an action at ∈ Agt .
By taking this action, the agent receives a low-level reward
rlgt(st, at). For the next N time steps (e.g., N = 2 in Fig-
ure 1), the agent will work on the same subtask gt until it
terminates (i.e., when either the agent has predicted the cor-
responding component or the agent has interacted with the
user for Max Lobal Turn turns). The agent will receive
a high-level reward rh(st, gt) for this subtask completion,
then select the next subtask gt+N and repeat the above pro-
cedure until the entire task terminates (i.e., when either all
four components are predicted or the agent has worked on
Max Global Turn subtasks).
States. A state s tracks 9 items during the course of interac-
tive parsing:
• The initial recipe description I.
• The boolean indicator bi (i = 1, 2, 3, 4) showing whether

subtask sti has been predicted.
• The received user answer di (i = 1, 2, 3, 4) for subtask
sti, respectively.

For each subtask sti, we learn a low-level state vector slsti
to summarize state information of this subtask for low-level
policy πlsti to select the next action. Similarly, a high-level
state vector sh is learned to present a summary of the entire
state, consisting of the 4 low-level state vectors and other
state information, for high-level policy πh to choose the next
subtasks. Section 3.2 details how states are represented.
Actions. The action space for the high-level policy is G =
{st1, st2, st3, st4}, where each action denotes one subtask
mentioned earlier. The action space of subtask g is Ag =

Vg ∪{AskUser}, where Vg is the set of available component
values for subtask g (e.g., all trigger channels for subtask
st1), meaning that the agent can either predict a component
or ask the user a clarification question.
Rewards. At each eligible time step t, the agent selects a
subtask gt ∼ πh(g; st) and receives a high-level reward
rh(st, gt) when the subtask terminates after N steps. The
high-level reward will be used to optimize the high-level
policy via RL. We define rh(st, gt) as the accumulated low-
level rewards from time step t to t+N . For intermediate
time steps (during which the agent works on a selected sub-
task), there is no high-level reward.

rh(st, gt) =

{∑t+N
k=t r

l
gt(sk, ak) for eligible t

0 otherwise

While working on subtask gt, the agent receives a low-
level reward for taking action at (i.e., predicting gt or query-
ing the user):

rlgt(st, at) =


1 if at = `gt
−β if at = AskUser
−1 otherwise

where `gt is the ground-truth label for subtask gt and β ∈
[0, 1) is the penalty for querying the user. The received re-
ward will be used to optimize the low-level policy πlgt for
this subtask via RL.

Essentially, the low-level reward rlg alleviates the reward
sparsity in the long trajectory of the entire task, and stim-
ulates the agent to predict a correct component with fewer
questions. Note that during the course of RL we do not stop
the parsing even if one of the predictions is incorrect in or-
der to encourage the agent to predict as more correct com-
ponents as possible. This also fits the realistic application
setting where the agent does not know the ground truth at
the component level, and does not receive the external re-
ward signal until it recommends a synthesized program to
the user at the end of the interactive parsing process.
Transition. Interactive semantic parsing starts with a state
s0 where bi = 0 (i.e., no subtask is completed) and di = ∅
(i.e., no user answer). As the agent takes actions, it deter-
ministically transits to a new state with updated bi and di.

3.2 Hierarchical Policy Functions
Low-level policy function. The low-level policy
πlsti(a; s) decides whether to ask a question or predict
subtask sti (e.g., selecting a trigger channel name for
st1). When it selects the “AskUser” action, the user will
clarify the subtask with a natural language utterance as
shown in Table 1. The policy then decides the next action
by considering both the recipe description and the user
response.

To understand a recipe description, we choose one of the
state-of-the-art models, Latent Attention Model (LAM) (Liu
et al. 2016). The main idea behind LAM is to first understand
the latent sentence structure and then pay attention to words
that are critical for a subtask. For example, given a descrip-
tion with a pattern “X to Y,” LAM adopts a latent attention
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Figure 2: High- and low-level policy designs.

mechanism to first locate the keyword “to,” and then focus
more on “X” when predicting the trigger channel/function
and on “Y” when predicting the action channel/function.
This reveals that different subtasks need different policies,
so that they can focus on different parts of a recipe descrip-
tion. Such design also allows each subtask to have a differ-
ent and reduced action space. Hence, we define 4 low-level
policy functions with the same model structure yet different
parameters for the 4 subtasks, respectively.

To deal with user responses, one straightforward adapta-
tion from LAM is to simply concatenate them with the ini-
tial recipe description as the input and extend the predic-
tion space with an extra “AskUser” action. However, we ob-
serve that user answers are fundamentally different from a
recipe description, e.g., user answers typically contain in-
formation related to the queried subtask (rather than all sub-
tasks). Therefore, we propose to model these two parts sep-
arately as shown in Figure 2. In particular, we employ LAM
to instantiate the “recipe description understanding” module
to capture the meaning of the initial recipe description (i.e.,
vI ), and utilize a bidirectional GRU-RNN with the attention
mechanism (Zhou et al. 2016) to instantiate the “user an-
swer understanding” module.2 Details can be found in the
Appendix. Since each subtask maintains a separate policy
function, the learned vI can be different for different sub-
tasks. The agent can ask the user to clarify a subtask for
multiple times,3 and the newly received answers will be con-
catenated with the old ones to update di.

We combine the representations of recipe description (vI )
and user answers (vdi ) as the semantic representation related
to subtask sti:

vi = (1− wd)vI + wdvdi , (1)

2We also verified this separate design is much better than the
straightforward adaptation from LAM mentioned earlier during
model development.

3Using the same predefined question (see User Simulation).

where wd ∈ [0, 1] is a weight controlling information from
the initial recipe description versus from user answers. The
semantic vector vi, concatenated with the information of
other subtasks, defines the low-level state vector slsti of
subtask sti via a multi-layer perceptron model (the “MLP”
module in Figure 2):

slsti = tanh(Wci [s
l
st1 ; ...; s

l
sti−1

; vi; s
l
sti+1

; ...; slst4 ]).
4 (2)

Essentially, slsti summarizes the state information for
completing subtask sti, including the initial recipe de-
scription, user answers for sti, and the current low-level
state vectors of other subtasks (such that the completion
status of other subtasks can affect the current one, as
shown in Table 1). Finally, the low-level policy function
πlsti(a; s)=softmax(W l

stis
l
sti), takes the state vector as the

input, and outputs a probability distribution over the action
space of subtask sti.
High-level policy function. The high-level policy πh(g; s)
receives a state s and decides the next subtask g. The high-
level state vector sh is learned to encode the state of overall
parsing task through a multi-layer perceptron model (i.e., the
“MLP” module in Figure 2) using the 4 low-level state vec-
tors slsti ’s, as well as the subtasks’ boolean indicators bi’s,
as inputs:

sh = tanh(Wc[s
l
st1 ; b1; s

l
st2 ; b2; s

l
st3 ; b3; s

l
st4 ; b4]),

πh(g; s) = softmax(Whsh). (3)

Optimization. The high-level policy πh is trained to max-
imize the expectation of the discounted cumulative rewards
for selecting subtask gt in state st:

max
πh

J(θ) = max
πh

Eπh [rh(st, gt) (4)

+ γrh(st+N1
, gt+N1

) + γ2rh(st+N1+N2
, gt+N1+N2

)

+ ...+ γ∞rh(st+
∑∞

n=1Nn
, gt+

∑∞
n=1Nn

)|st, gt, πh(θ)],

where θ stands for parameters in πh, Nn(n = 1, 2, ...,∞)
is the number of time steps that the agent spent on the previ-
ous subtask, and γ ∈ [0, 1] is the discount factor. Similarly,
we train the low-level policy πlgt for the selected subtask gt
to maximize its expected cumulative discounted low-level
reward:

max
πl
gt

Jgt(φgt) = max
πl
gt

Eπl
gt
[ (5)∑

k≥0

γkrlgt(st+k, at+k)|st, at, gt, π
l
gt(φgt)],

where φgt denotes the parameters in πlgt , and γ is the same
discount factor.

All policies are stochastic in that the next subtask or action
is sampled according to the probability distribution which
allows exploration in RL, and that the policies can be op-
timized using policy gradient methods. In our experiments
we used the REINFORCE algorithm (Williams 1992). De-
tails are outlined in Algorithm of the Appendix.

4Bias terms are omitted for clarity.
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Test Data CI VI TotalVI-1/2 VI-3/4
Size 727 1,271 1,872 3,870
(%) (18.79) (32.84) (48.37) (100)

Table 2: Statistics of the test subsets.

4 Experiments
We experiment with our proposed HRL agent under both
simulation and human evaluation.

4.1 Dataset
We utilize the 291,285<recipe, description> pairs collected
by Ur et al. (2016) for training and the 3,870 pairs from
Quirk, Mooney, and Galley (2015) for testing.5 20% of the
training data are randomly sampled as a validation set. All
recipes were created by real users on IFTTT.com. In total,
the datasets involve 251 trigger channels, 876 trigger func-
tions, 218 action channels and 458 action functions. For each
description in the test set, Quirk, Mooney, and Galley (2015)
collected five recipe annotations from Amazon Mechanical
Turkers. For each subtask, if at least three annotators make
the same annotation as the ground truth, we consider this
recipe description as clear for this subtask; otherwise, it is
labeled as vague. In this way, we split the entire test set into
three subsets as shown in Table 2: (1) CI: 727 recipes whose
descriptions are clear for all 4 subtasks; (2) VI-1/2: 1,271
recipes containing 1 or 2 vague subtasks; (3) VI-3/4: 1,872
recipes containing 3 or 4 vague subtasks.

4.2 Methods Comparison
• LAM: The Latent Attention Model (Liu et al. 2016),6

one of the state-of-the-art models for synthesizing If-Then
recipes. We do not consider the model ensemble in (Liu et
al. 2016), as it can be applied to all other methods as well.
Our reproduced LAM obtains a performance close to the
reported one without ensemble.

• LAM-rule Agent: A rule-based agent built on LAM, sim-
ilar to (Chaurasia and Mooney 2017). Specifically, the
agent makes a prediction on a subtask with a certain prob-
ability. If the probability is lower than a threshold,7 the
user is asked a question. The user answer is concatenated
with the initial recipe description for making a new pre-
diction. This procedure repeats until the prediction proba-
bility is greater than the threshold or the agent has run for
Max Local Turn turns on the subtask.

5Quirk, Mooney, and Galley (2015) only released the urls of
recipes in their test set, among which the unavailable ones have
been removed from our test set. Each recipe is associated with a
unique ID. We ensure no overlapping recipes between training and
testing set by examining their IDs.

6Unlike (Liu et al. 2016), which consolidates channel and func-
tion names (e.g., “Twitter.New liked tweet by you”)
and builds 2 classifiers for trigger and action respectively, we de-
velop 4 classifiers so that an agent can inquire channel or function
separately.

7We set it at 0.85 based on validation set.

• LAM-sup Agent: An agent based on LAM, but with the
user answer understanding module in Figure 2 and an ex-
tra “AskUser” action for each subtask. It is trained via
a supervised learning strategy and thus is named LAM-
sup. We collected the training data for each subtask sti
based on the LAM-rule agent: If LAM-rule completes the
subtask without interactions with humans, we add a tuple
<I,∅, `sti> to the training set, where I is the recipe de-
scription and `sti is the ground-truth label for subtask sti;
otherwise, we add two tuples <I,∅, “AskUser”> and
<I, di, `sti>, where di is the received user answer. We
train the agent by minimizing the cross entropy loss. Dur-
ing testing, for each recipe description, the agent starts
with no user answer; for each subtask, if it predicts the
“AskUser” label, the received user answer will be con-
catenated with previous ones to make a new prediction
until a non-AskUser label is selected.

• HRL Agent: Our agent with a two-level hierarchical pol-
icy.

• HRL-fixedOrder Agent: A variant of our HRL agent
with a fixed subtask order of “st1-st2-st3-st4” and no
high-level policy learning.

Evaluation metrics. We compare each method on three
metrics: (1) C+F Accuracy: A recipe is considered
parsed correctly only when all its 4 components (i.e.,
Channel+Function) are accurately predicted, as adopted in
(Quirk, Mooney, and Galley 2015; Liu et al. 2016). (2) Over-
all Accuracy: We measure the average correctness of pre-
dicting 4 components of a recipe, e.g., the overall accuracy
for predicting 3 components correctly and 1 incorrectly is
0.75. (3) #Asks: The averaged number of questions for com-
pleting an entire task. Generally, the C+F Accuracy is more
challenging as it requires no mistake on any subtask. On the
other hand, #Asks can reveal if an agent asks redundant ques-
tions. In our experiments, we consider C+F Accuracy and
#Asks as two primary metrics.
Implementation details. The word vector dimension is set
at 50, the weight factor wd is 0.5, and the discount fac-
tor γ is 0.99. The max turn Max Local Turn is set at 5
and Max Global Turn at 4, which allows four subtasks
at most. β is a trade-off between parsing accuracy and the
number of questions: A larger β trains an agent to ask fewer
questions but with less accuracy, while a lower β leads to
more questions and likely more accurate parses. With the
validation set, we experimented with β={0.3, 0.4, 0.5}, and
observed that when β = 0.3, the number of questions raised
by the HRL-based agents is still reasonable compared with
LAM-rule/sup, and its parsing accuracy is much higher.
More details are shown in Appendix.

4.3 User Simulation
In our work, for each subtask, agent questions are predefined
based on templates,8 and a user answer is a natural language
description about the queried subtask. Given that it is too
costly to involve humans in the training process, we intro-
duce a user simulator to provide answers to agent questions.

8Automatically generating recipe-specific questions is non-
trivial, which we leave for future work.

2551



Simulation Eval Human Eval

Model All CI VI-1/2 VI-3/4 VI-3/4
C+F Acc Overall Acc #Asks C+F Acc #Asks C+F Acc #Asks C+F Acc #Asks C+F Acc #Asks

LAM 0.374 0.640 0 0.801 0 0.436 0 0.166 0 0.206 0
LAM-rule 0.761 0.926 3.891 0.897 1.433 0.743 2.826 0.721 5.568 0.518 2.781
LAM-sup 0.809 0.940 2.028 0.894 0.684 0.803 1.482 0.780 2.921 0.433 2.614

HRL-fixedOrder 0.881 0.966 2.272 0.950 1.522 0.855 1.958 0.871 2.777 0.581 2.306∗
HRL 0.894∗ 0.968 2.069∗ 0.949 1.226∗ 0.888∗ 1.748∗ 0.878∗ 2.615∗ 0.634∗ 2.221∗

Table 3: Model evaluation on the test set. For Simulation Eval, each number is averaged over 10 runs. For Human Eval, the
LAM result is calculated on the sampled 496 recipes. ∗ denotes significant difference in mean between HRL-fixedOrder vs.
HRL in Simulation Eval and between HRL-based agents vs. {LAM-rule, LAM-sup} agents in Human Eval (p < 0.05).

For a trigger/action function, we adopt several strategies
to simulate user answers, including revising its official de-
scription on IFTTT.com and replacing words and phrases
in the function description with their paraphrases accord-
ing to the PPDB paraphrase database (Pavlick et al. 2015).
In addition, we extract user descriptions of a function from
our training set, based on six manually defined templates.
For example, for a recipe description following pattern “If
X then Y,” X will be considered as an answer to questions
about the ground-truth trigger function and Y as an answer
to those about the ground-truth action function. More details
regarding the strategies are in Appendix and source code
will also be released. For each function, we collected around
20 simulated user answers on average. In our simulations,
for each question we randomly select one from this set of
possible answers as a response.

For trigger/action channels, when an agent asks a ques-
tion, the user simulator will simply provide the channel
name (e.g., GMail), since it is straightforward and natural
for real users as well.

4.4 Simulation Evaluation
Table 3 shows results on the test set in the simulation envi-
ronment, where our user simulator provides an answer when
requested. By enabling the user to clarify, all agents ob-
tain much better accuracy compared with the original non-
interactive LAM model. In particular, HRL-based agents
outperform others by 7% ∼ 13% on C+F accuracy and 2%
∼ 4% in terms of Overall accuracy. For vague recipes in
VI-1/2 and VI-3/4 subsets, which make up more than 80%
of the entire test set, the advantage of HRL-based agents is
more prominent. For example, on VI-3/4, HRL-based agents
obtain 9% ∼ 15% better C+F accuracy than LAM-rule/sup,
yet with fewer questions, indicating that they are much more
able to handle ambiguous recipe descriptions.

Compared with HRL-based agents, the LAM-rule agent
usually asks the most questions, partly because it relies on
heuristic thresholding to make decisions. On VI-3/4, it asks
twice the number of questions but parses with 15% less
accuracy than HRL-based agents. On the other hand, the
LAM-sup agent always asks the least questions, especially
when the recipe description is relatively clear (i.e., CI and
VI-1/2). However, it may simply miss many necessary ques-
tions, leading to at least 5% accuracy loss.

Finally, we evaluate the high-level policy by compar-
ing HRL with HRL-fixedOrder. The significance test shows

that HRL requires fewer questions to obtain a similar or
better accuracy. Interestingly, we observe that, under the
interactive environment, HRL tends to predict the func-
tion before the channel, which is different from the inter-
task (in)dependence assumptions in previous work. This is
mainly because users’ descriptions of a function can be more
specific and may contain information about its channel. The
HRL agent is thus trained to utilize this intuition for asking
fewer questions.

4.5 Human Evaluation
We further conduct human evaluation to test the four inter-
active agents on the most challenging VI-3/4 subset. Two
students familiar with IFTTT were instructed to participate
in the test. For each session, a recipe from VI-3/4 and one
agent from {LAM-rule, LAM-sup, HRL-fixedOrder, HRL}
were randomly picked. The participants were presented the
description and the ground-truth program components of the
recipe, and were instructed to answer clarification questions
prompted by the agent with a natural language sentence. To
help the participants better understand the recipe, we also
showed them the official explanation of each program com-
ponent. However, we always encouraged them to describe
a component in their own words when being asked. For a
better user experience and an easier comparison, we limited
each agent to ask at most one question for each subtask. In
total, we collected 496 conversations between real humans
and the four agents. Examples are shown in Appendix.

We compare each agent primarily on C+F Accuracy and
#Asks. As shown in Table 3, all agents perform much better
than the non-interactive LAM model. Particularly, the HRL
agent outperforms the LAM model by >40% accuracy, with
an average of ∼2.2 questions on VI-3/4 (which is a reason-
able number of questions as each task contains at least 3
vague subtasks). We also observe that the two HRL-based
agents obtain 6% ∼ 20% better parsing accuracy with even
fewer questions than the LAM-rule/sup agents. Moreover, in
comparison with the HRL-fixedOrder agent, the HRL agent
can synthesize programs with a much better accuracy but
fewer questions, showing the benefit of optimizing subtask
order at the high level. However, there is still large space to
improve compared with simulation results in Table 3, mainly
because agents are trained with the user simulator while the
language used by real users for answers can be very differ-
ent (e.g., having the Out-Of-Vocabulary issue, misspellings,
less or non- relevant information). How to simulate user re-
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sponses as close as possible to real ones for training is a
non-trivial task, which we leave for future work.

4.6 Discussion
Here we further discuss our framework and future work on
the following aspects:
Error analysis. Due to the discrepancy between real users
and simulated users, several major factors affect the perfor-
mance of the HRL agent, including user typos (e.g., “emial”
for “email”) and unseen expressions (e.g., “i tweeted some-
thing” to describe the function New tweet by you). To
improve the robustness of the HRL agent, possible solutions
as future work can be modeling user noises in simulation (Li
et al. 2016b), or crowdsourcing more diverse component de-
scriptions as user answers for training.
Training with real users in the loop. Theoretically, our
agents can be trained with real users. However, it is too
costly to be practical because the agent can require many
interactions during the training phase. An alternative way
is to train the agent in simulation and fine-tune it with real
users, or to build a world model that mimics real user be-
haviors during the human-in-the-loop training (Peng et al.
2018). Both approaches need significant efforts to be care-
fully designed, which we leave as future work.
Generalizability to other semantic parsing tasks. The
proposed HRL framework can be easily generalized to re-
solve ambiguities in other semantic parsing tasks where sub-
tasks can be pre-defined. For example, in the knowledge-
graph-based question answering task (Berant et al. 2013;
Yih et al. 2015), the subtasks include identifying entities,
predicting relations, and associating constraints. To train the
HRL agent, one can build a user simulator by paraphrasing
the ground-truth entities or relations, similar to Section 4.3.
HRL can be very promising for these tasks, as it enables tem-
poral abstractions over the state and action space (leading to
a smaller search space) and can model the dependencies be-
tween subtasks, as shown in Table 1. We will explore these
applications in the future.

5 Related Work
In addition to the aforementioned work on If-Then program
synthesis, Dong, Quirk, and Lapata (2018) investigated how
to measure a semantic parser’s confidence in its predictions,
but did not further resolve uncertainties. Others include:
Interactive Systems for Resolving Ambiguities. Resolv-
ing ambiguities via interactions with humans has been ex-
plored in Natural Language Understanding in dialog sys-
tems (Thomason et al. 2015; Dhingra et al. 2017), Question
Answering (Guo et al. 2016; Li et al. 2017), CCG parsing
(He et al. 2016) and parsing for SQL and web APIs (Li
and Jagadish 2014; Gur et al. 2018; Su et al. 2018). Guo
et al. (2016) built an agent to ask relevant questions until it
has enough information to correctly answer user’s question,
but expected the user to respond with an oracle value. He
et al. (2016) investigated generating multi-choice questions
for humans to resolve uncertainties in parsing sentences.
They determined the necessity of a question by a heuris-
tic threshold. In contrast, we allow users to respond with

natural language utterances, and our HRL-based agents can
learn when to ask through the reward mechanism. Recently,
(Li et al. 2016a; Azaria, Krishnamurthy, and Mitchell 2016;
Iyer et al. 2017) explored human feedback on the final re-
sults as training supervision. Different from theirs, we in-
clude humans during the parsing process for them to pro-
vide necessary information in natural language, and define
rewards as the only feedback.
Hierarchical Reinforcement Learning (HRL). To solve a
complex task, HRL decomposes the task into several eas-
ier subtasks and solve them sequentially via MDPs (Parr
and Russell 1998; Sutton, Precup, and Singh 1999; Di-
etterich 2000). Recently, HRL-based approaches are ap-
plied to tasks like game playing (Kulkarni et al. 2016;
Tessler et al. 2017), travel planning (Peng et al. 2017), and
visual question answering and captioning (Wang et al. 2017;
Gordon et al. 2017; Zhang, Zhao, and Yu 2018). Inspired
by these work, given that our semantic parsing task can be
naturally decomposed into 4 subtasks, we learn a two-level
policy where a high-level policy decides the subtask order
while a low-level policy accomplishes each subtask by ask-
ing humans clarifying questions if necessary.

6 Conclusion
In this paper we explored using HRL for interactive seman-
tic parsing, where an agent asks clarification questions when
the initially given natural language description is ambiguous
and accomplishes subtasks in an optimized order. On the If-
Then recipe synthesis task, in both simulation and human
evaluation settings, we have shown that our HRL agent can
substantially outperform various interactive baselines in that
it produces more accurate recipes but asks the user fewer
questions in general. As future work, we will generalize
our HRL framework to other semantic parsing tasks such as
knowledge based question answering, explore better training
strategies such as modeling real user noises in simulation, as
well as further reduce the user interaction turns.

Acknowledgments
We would like to thank Chris Brockett, Michel Galley and
Yu Su for their insightful comments on the work. This re-
search was sponsored in part by the Army Research Office
under cooperative agreements W911NF-17-1-0412, NSF
Grant IIS1815674, Fujitsu gift grant, and Ohio Supercom-
puter Center (Center 1987). The views and conclusions con-
tained herein are those of the authors and should not be inter-
preted as representing the official policies, either expressed
or implied, of the Army Research Office or the U.S. Govern-
ment. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding
any copyright notice herein.

References
Azaria, A.; Krishnamurthy, J.; and Mitchell, T. M. 2016. In-
structable intelligent personal agent. In AAAI, 2681–2689.
Beltagy, I., and Quirk, C. 2016. Improved semantic parsers for
if-then statements. In ACL, volume 1, 726–736.

2553



Berant, J.; Chou, A.; Frostig, R.; and Liang, P. 2013. Semantic
parsing on freebase from question-answer pairs. In EMNLP,
1533–1544.
Campagna, G.; Ramesh, R.; Xu, S.; Fischer, M.; and Lam, M. S.
2017. Almond: The architecture of an open, crowdsourced,
privacy-preserving, programmable virtual assistant. In WWW,
341–350.
Center, O. S. 1987. Ohio supercomputer center. http://osc.edu/
ark:/19495/f5s1ph73.
Chaurasia, S., and Mooney, R. J. 2017. Dialog for language to
code. In IJCNLP, volume 2, 175–180.
Dhingra, B.; Li, L.; Li, X.; Gao, J.; Chen, Y.-N.; Ahmed, F.; and
Deng, L. 2017. Towards end-to-end reinforcement learning of
dialogue agents for information access. In ACL.
Dietterich, T. G. 2000. Hierarchical reinforcement learning
with the maxq value function decomposition. Journal of Artifi-
cial Intelligence Research 13:227–303.
Dong, L., and Lapata, M. 2016. Language to logical form with
neural attention. In ACL, volume 1, 33–43.
Dong, L.; Quirk, C.; and Lapata, M. 2018. Confidence model-
ing for neural semantic parsing. In ACL.
Gao, J.; Galley, M.; and Li, L. 2018. Neural approaches to
conversational ai. arXiv preprint arXiv:1809.08267.
Gordon, D.; Kembhavi, A.; Rastegari, M.; Redmon, J.; Fox, D.;
and Farhadi, A. 2017. Iqa: Visual question answering in inter-
active environments. arXiv preprint arXiv:1712.03316.
Guo, X.; Klinger, T.; Rosenbaum, C.; Bigus, J. P.; Campbell,
M.; Kawas, B.; Talamadupula, K.; Tesauro, G.; and Singh, S.
2016. Learning to query, reason, and answer questions on am-
biguous texts.
Gur, I.; Yavuz, S.; Su, Y.; and Yan, X. 2018. Dialsql: Dialogue
based structured query generation. In ACL, 1339–1349.
He, L.; Michael, J.; Lewis, M.; and Zettlemoyer, L. 2016.
Human-in-the-loop parsing. In EMNLP, 2337–2342.
Iyer, S.; Konstas, I.; Cheung, A.; Krishnamurthy, J.; and Zettle-
moyer, L. 2017. Learning a neural semantic parser from user
feedback. In ACL, volume 1, 963–973.
Kulkarni, T. D.; Narasimhan, K.; Saeedi, A.; and Tenenbaum,
J. 2016. Hierarchical deep reinforcement learning: Integrating
temporal abstraction and intrinsic motivation. In NIPS.
Li, F., and Jagadish, H. 2014. Constructing an interactive natu-
ral language interface for relational databases. VLDB.
Li, J.; Miller, A. H.; Chopra, S.; Ranzato, M.; and Weston,
J. 2016a. Dialogue learning with human-in-the-loop. arXiv
preprint arXiv:1611.09823.
Li, X.; Lipton, Z. C.; Dhingra, B.; Li, L.; Gao, J.; and Chen,
Y.-N. 2016b. A user simulator for task-completion dialogues.
arXiv preprint arXiv:1612.05688.
Li, H.; Min, M. R.; Ge, Y.; and Kadav, A. 2017. A context-
aware attention network for interactive question answering. In
SIGKDD, 927–935. ACM.
Liu, C.; Chen, X.; Shin, E. C.; Chen, M.; and Song, D. 2016.
Latent attention for if-then program synthesis. In NIPS.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness, J.;
Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland, A. K.;
Ostrovski, G.; et al. 2015. Human-level control through deep
reinforcement learning. Nature 518(7540):529.

Parr, R., and Russell, S. J. 1998. Reinforcement learning with
hierarchies of machines. In NIPS, 1043–1049.
Pavlick, E.; Rastogi, P.; Ganitkevitch, J.; Van Durme, B.; and
Callison-Burch, C. 2015. Ppdb 2.0: Better paraphrase ranking,
fine-grained entailment relations, word embeddings, and style
classification. In ACL-IJCNLP, 425–430.
Peng, B.; Li, X.; Li, L.; Gao, J.; Celikyilmaz, A.; Lee, S.; and
Wong, K.-F. 2017. Composite task-completion dialogue pol-
icy learning via hierarchical deep reinforcement learning. In
EMNLP, 2221–2230.
Peng, B.; Li, X.; Gao, J.; Liu, J.; and Wong, K.-F. 2018. Deep
dyna-q: Integrating planning for task-completion dialogue pol-
icy learning. In ACL, volume 1, 2182–2192.
Quirk, C.; Mooney, R. J.; and Galley, M. 2015. Language to
code: Learning semantic parsers for if-this-then-that recipes. In
ACL, 878–888.
Rabinovich, M.; Stern, M.; and Klein, D. 2017. Abstract syntax
networks for code generation and semantic parsing. In ACL,
volume 1, 1139–1149.
Su, Y.; Awadallah, A. H.; Khabsa, M.; Pantel, P.; Gamon, M.;
and Encarnacion, M. 2017. Building natural language inter-
faces to web apis. In CIKM, 177–186. ACM.
Su, Y.; Awadallah, A. H.; Wang, M.; and White, R. W. 2018.
Natural language interfaces with fine-grained user interaction:
A case study on web apis. In SIGIR.
Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between mdps
and semi-mdps: A framework for temporal abstraction in rein-
forcement learning. Artificial intelligence 112(1-2):181–211.
Tessler, C.; Givony, S.; Zahavy, T.; Mankowitz, D. J.; and Man-
nor, S. 2017. A deep hierarchical approach to lifelong learning
in minecraft. In AAAI, volume 3, 6.
Thomason, J.; Zhang, S.; Mooney, R. J.; and Stone, P. 2015.
Learning to interpret natural language commands through
human-robot dialog. In IJCAI, 1923–1929.
Ur, B.; Pak Yong Ho, M.; Brawner, S.; Lee, J.; Mennicken, S.;
Picard, N.; Schulze, D.; and Littman, M. L. 2016. Trigger-
action programming in the wild: An analysis of 200,000 ifttt
recipes. In CHI, 3227–3231. ACM.
Wang, X.; Chen, W.; Wu, J.; Wang, Y.-F.; and Wang, W. Y.
2017. Video captioning via hierarchical reinforcement learning.
arXiv preprint arXiv:1711.11135.
Williams, R. J. 1992. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. In Rein-
forcement Learning. Springer. 5–32.
Yih, S. W.-t.; Chang, M.-W.; He, X.; and Gao, J. 2015. Se-
mantic parsing via staged query graph generation: Question an-
swering with knowledge base.
Yin, P., and Neubig, G. 2017. A syntactic neural model for
general-purpose code generation. arXiv:1704.01696.
Zhang, J.; Zhao, T.; and Yu, Z. 2018. Multimodal hierarchical
reinforcement learning policy for task-oriented visual dialog.
arXiv preprint arXiv:1805.03257.
Zhong, V.; Xiong, C.; and Socher, R. 2017. Seq2sql: Gener-
ating structured queries from natural language using reinforce-
ment learning. CoRR abs/1709.00103.
Zhou, P.; Shi, W.; Tian, J.; Qi, Z.; Li, B.; Hao, H.; and Xu, B.
2016. Attention-based bidirectional long short-term memory
networks for relation classification. In ACL, 207–212.

2554


