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Abstract

Analysis of resting state - functional Magnetic Resonance
Imaging (rs-fMRI) data has been a challenging problem
due to a high homogeneity, large intra-class variability,
limited samples and difference in acquisition technolo-
gies/techniques. These issues are predominant in the case of
Attention Deficit Hyperactivity Disorder (ADHD). In this pa-
per, we propose a new Deep Transformation Method (DTM)
that extracts the discriminant latent feature space from rs-
fMRI and projects it in the subsequent layer for classification
of rs-fMRI data. The hidden transformation layer in DTM
projects the original rs-fMRI data into a new space using the
learning policy and extracts the spatio-temporal correlations
of the functional activities as a latent feature space. The sub-
sequent convolution and decision layers transform the latent
feature space into high-level features and provide accurate
classification. The performance of DTM has been evaluated
using the ADHD200 rs-fMRI benchmark data with cross-
validation. The results show that the proposed DTM achieves
a mean classification accuracy of 70.36% and an improve-
ment of 8.25% on the state of the art methodologies was ob-
served. The improvement is due to concurrent analysis of the
spatio-temporal correlations between the different regions of
the brain and can be easily extended to study other cognitive
disorders using rs-fMRI. Further, brain network analysis has
been studied to identify the difference in functional activities
and the corresponding regions behind cognitive symptoms in
ADHD.

Introduction
Blood Oxygen Level Dependent (BOLD) fMRI is widely
used to map the brain functional activities (Song and Lu
2017). The correlations between the regional functional ac-
tivities during a cognitive task are studied using the multi-
channel time series fMRI data to evaluate the interactions
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

between the various regions of the brain (Yousefnezhad and
Zhang 2017). fMRI data have been used to understand the
etiopathogenesis of neurological disorders such as Atten-
tion Deficit Hyperactivity Disorder (ADHD) (Mahanand,
Savitha, and Suresh 2013), autism (Subbaraju et al. 2017)
and epilepsy (Gill, Mirsattari, and Leung 2017). Studies on
the automatic diagnosis of neurological disorders from fMRI
data have focused on analyzing the correlations between the
regions to find discriminant activities. Among them, Spatial
Filtering Method (SFM) (Subbaraju et al. 2017) proposed a
spatial transformation method to obtain discriminatory fea-
tures by projecting the fMRI data into a new dimension,
such that the two classes are highly separable. Their results
represent the state of the art diagnostic performance on the
Autism dataset. Recently, (Aradhya et al. 2018) utilized a
regularized SFM based technique to improve the accuracy
in the automatic detection of accuracy of ADHD from rs-
fMRI data. SFM and its deravative techniques have adopted
the ‘Fukunaga-Koontz ‘transform (Fukunaga 2013) to math-
ematically derive the spatial transformation filter which is
greatly dependent on the mean distribution of the training
data. Further, the mean co-variance based spatial transfor-
mation methodologies such as SFM overlooks the temporal
information of the data, resulting in plausible loss of dis-
criminative information.

Deep learning algorithms have recently gained impor-
tance due to their ability to extract ingenious discrimina-
tory information from highly homogeneous data. With rapid
advancements in computational power and parallelization
techniques along with the increasing availability of large-
scale dataset, there has been an increased effort to better un-
derstand the human body using deep learning methodolo-
gies. (Ravı̀ et al. 2017), provided a brief overview of recent
works utilizing deep learning approaches in health infor-
matics. Deep learning methodologies have especially been
advantageous in investigating neurological and psycholog-
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ical disorders (Vieira, Pinaya, and Mechelli 2017). The re-
sults indicate that deep learning methodologies achieve bet-
ter classification in comparison to the traditional methods.
However, direct application of deep learning methodologies
on neurological datasets is a challenge due to - the small
size of the dataset, imbalanced class distribution, high vari-
ability in the data and lack of discriminatory information
between the classes. Deep learning approaches have been
explored in the diagnosis of ADHD, (Kuang and He 2014)
used Restricted Boltzmann Machines (RBM) for classifica-
tion of ADHD. They converted the fMRI time series into a
1D spectral feature vector and then trained a Deep Belief
Network (DBN) for the classification task and reported a
classification accuracy below 50% on the ADHD200 bench-
mark dataset.

Recently, there has been increasing interest in the applica-
tion of Convolution Neural Networks (CNNs) in the detec-
tion and identification of biomarkers of diseases from fMRI,
X-ray images, computed tomography scans and positron
emission tomography scans (Ravı̀ et al. 2017). (Riaz et al.
2017) adopted a CNN based feature extraction method to
identify the discriminant functional activities using rs-fMRI
and phenotypic information. They obtained an average ac-
curacy of 62%, with a Support Vector Machine (SVM) clas-
sifier. (Zou et al. 2017) introduced a multi-modal 3D CNN
approach to study ADHD. Here, the encoded structural-MRI
and fMRI are jointly extracted as features and achieved a
classification accuracy of 69.15%. In (Vieira, Pinaya, and
Mechelli 2017), the functional connectivity in the brain be-
tween the different regions was examined and the results
concluded that the functional connectivity between the var-
ious regions of the brain encodes critical information in
understanding ADHD. However, directly applying existing
CNN algorithms to diagnose ADHD is not feasible due to
the small size of the publicly available ADHD dataset and
the lack of separability between the two classes. Motivated
by the findings in the above studies and to address the chal-
lenges in the automatic diagnosis using rs-fMRI data, in this
paper, we develop a new deep learning method to effectively
capture the spatio-temporal functional correlations between
the different regions of the brain.

In this paper, we propose a Deep Transformation Method
(DTM), which project the rs-fMRI time series data into la-
tent feature space using hidden transformation layer and the
subsequent convolution/decision layers help in classifica-
tion. The cross-correlations across the different regions are
used by hidden transformation layer to capture the spatio-
temporal correlations between the regions of the brain. Fur-
ther, the convolution layer transforms the latent space to
high-level features. A softmax activation function in the de-
cision layer estimates the class conditional probabilities to
classify the rs-fMRI data. DTM shows that the functional
correlations and convolution filters are complementary, and
not only help in extracting the spatio-temporal correlations
in the multi-channel data but also boost the classification
performance.

The three significant contributions of this paper are:
1. The hidden transformation layer in DTM handle the ho-

mogeneity and provide discriminant analysis by preserv-

ing the spatial-temporal information. Further, DTM is
suitable to handle transformation from a small sample
size, and uncertainties in time-series data due to differ-
ences in data acquisition methods.

2. We find that the functional activity disruptions in
ADHD are spatio-temporally correlated and the proposed
methodology provides support to the brain network dys-
function hypotheses proposed to explain dysfunctional
functional brain activities in ADHD.

3. The proposed methodology achieves a state of the art
classification accuracy of 70.36% on a hold-out testing
dataset from the ADHD200 consortium dataset, demon-
strating the significance of concurrently analyzing the
spatio-temporal information in fMRI for the diagnosis of
neurological disorders.
The rest of the paper is organized as follows, first, an

overview of the problem, its implications and a brief liter-
ature review is presented. Further, a detailed methodology
of the proposed Deep Transformation Method (DTM) is de-
scribed. The results and discussion section presents the in-
ferences and classification performance of DTM using the
ADHD200 dataset. In the next section, a brief overview of
the experimental setup and dataset is presented. The perfor-
mance of the DTM is evaluated using the state of the art
methodologies and the significance of the concurrent analy-
sis of the spatio-temporal correlations are presented. Finally,
the conclusions from the study are summarized and future
scope of work is defined.

Problem Formulation
Diagnosis of ADHD from rs-fMRI is challenging due to
a highly homogeneous dataset with large intra-class vari-
ability. ADHD is one of the most prevalent developmen-
tal neurological disorders in the world with (3-10% world-
wide) (Burd et al. 2003). Traditional diagnostic methods for
ADHD are based on cognitive tests, interviews and obser-
vations by the doctors and associates. However, these are
highly prone to variations due to human errors like inaccu-
rate observations and inter-observer variability. The intelli-
gence quotient, culture and language of the subject is also
known to have a major influence on the diagnostic proce-
dure. These discrepancies in the current diagnostic proce-
dure have led to a high risk of misdiagnosis and administra-
tion of improper medications.

To overcome the shortcomings of the traditional diagnos-
tic procedures and to have a better understanding of the
etiopathogenesis of ADHD, researchers have looked at the
Blood Oxygen Level Dependent (BOLD) functional Mag-
netic Resonance Imaging (fMRI) to find discriminant brain
activities in children with ADHD. Task based fMRI stud-
ies have shown variations in functional activity in various
brain networks such as the default mode network (Konrad
and Eickhoff 2010), cingulo-fronto-parietal network (Bush
2011), central executive network and the salience network
(SN) (Menon 2011). However, a clear consensus on the
pathophysiological cause of ADHD was not achieved due
to variations in the tasks and the resulting activation regions
between the studies. Therefore, researchers have looked at
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Figure 1: Architecture of the proposed DTM for the diagnosis of ADHD from rs-fMRI data.

resting state fMRI (rs-fMRI) which measures the intrinsic
brain activities to underline the causal factors of ADHD.
rs-fMRI although independent from task-directed cognitive
processes, are extremely homogeneous and presents a chal-
lenge in identifying the discriminant functional activities.

(Mahanand, Savitha, and Suresh 2013) studied the re-
gional anatomy of the brain using the amygdala and cerebel-
lar vermis regions. They used a meta-cognitive learning clas-
sifier and achieved a classification accuracy of 65%. Analyz-
ing rs-fMRI activity from specific regions of the brain leads
to a potential loss of valuable discriminative information.
(Anderson et al. 2014) used a decision tree based approach
to achieve a maximum classification accuracy of 66.8% us-
ing both the phenotypic and rs-fMRI data. However, the
classification accuracies of studies focusing of automated di-
agnosis of ADHD from rs-fMRI alone (without using phe-
notypic information or predetermined neural regions) have
been substantially lower. (Ghiassian et al. 2013) used a his-
togram based feature reduction technique along with an Sup-
port Vector Machine (SVM) classifier and achieved a clas-
sification accuracy of 62.81%. (Guo et al. 2014) studied the
regional connectivity between the regions of the brain and
reported an accuracy of 63.75%. The existing approaches is
not able to handle high homogeneity, large intra-class vari-
ability, limited samples and difference in acquisition tech-
nologies/techniques.

Deep Transformation Method (DTM)

DTM is a deep learning based classifier that projects the
rs-fMRI data into a latent space and captures the spatio-
temporal correlations to handle the above-mentioned issues
and understand the discriminant functional activities of the
brain. For this purpose, we propose a multi-layered Deep
Transformation Method (DTM). The schematic representa-
tion of the DTM architecture is shown in Figure 1. DTM
uses the Hidden Transformation Layer (HTL) to project the
rs-fMRI data into a latent space where the classes are highly
separable. The convolution layers extract high-level features
from the grey scale correlation images and the decision layer
uses a sigmoid activation function to classify the data.

Hidden Transformation Layer (HTL)

The hidden transformation layer transforms the time series
rs-fMRI data Xi = {X1

i , X
2
i , X

3
i , · · · , X90

i } (annotated in
accordance to the automated anatomical labeling template)
into an image data by preserving spatio-temporal informa-
tion. These transformed images are highly discriminative for
both the classes. Conventionally the transformation filters
are determined using mathematical derivations such as the
‘Fukunaga-Koontz ‘transform (Fukunaga 2013). Previous
studies (Subbaraju et al. 2017) have used the derivative ap-
proaches and have achieved significant improvement in clas-
sification accuracy. However, the classification performance
of such deterministic methodologies are greatly reliant on
the accurate estimation of the spatial filter W ∈ R90×90, that
transforms the BOLD rs-fMRI time series data X ∈ R90×T

(from the 90 regions of the brain with T time points). The
different classes of the rs-fMRI data are highly separable in
the new space and the transformed rs-fMRI data Y ∈ R90×T

calculated as

Y =WX (1)

Although the eigen value decomposition based ap-
proaches provide a good approximation of the transforma-
tion filter, they are highly reliant on the mean distribution
of the data. Also, such methods are susceptible to noise in
problems with small dataset and high intra-class variability
resulting in loss of discriminatory information. The discrim-
inatory functional activities of the brain in the transformed
rs-fMRI are represented as differences in functional con-
nectivity between the different regions of the brain (Vieira,
Pinaya, and Mechelli 2017). Therefore, it is beneficial to de-
velop a non-deterministic approach to study the correlations
between the rs-fMRI signals in order to validate the discrim-
inant activities of the brain.

DTM proposes a new deep learning based spatial trans-
formation method, that projects the rs-fMRI data using a
learn-able hidden transformation layer while preserving the
spatio-temporal information using a cross-correlation based
regional connectivity estimation. In DTM, the regional con-
nectivity matrix is estimated as
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S(i,j) =
Yi[t]Yj [t− d]′

trace(Yi[t]Yj [t− d]′)
(2)

The above equation can be simplified as

Ŝ(i,j) =
Wi[t]Xi[t]Xj [t− d]′Wj [t− d]′

trace(Wi[t]Xi[t]Xj [t− d]′Wj [t− d]′)
(3)

where, d = −tn, · · · , tn and i, j = 1, 2, · · · , 90

In Equation 3, tn represents the total number of time
points in the time series data X, d is the delay used in cal-
culating the cross-correlations while i and j are indices rep-
resenting a pair of regions. The regional covariance matrix
S ∈ R90×90×tn is a non-symmetric three dimensional ma-
trix where 0 ≤ ||S|| ≤ 1. In order to determine the regional
connectivity, it is beneficial to analyze the cross-correlation
between the rs-fMRI time series signals as cross-correlation
effectively captures the temporal correlations between the
various regions of the brain, which is otherwise lost during
simple linear correlation based estimation.

Further, as Equation 3 can be represented as a series
of linear matrix operations and therefore is differentiable
with respect to W. The transformation filter W is therefore
updated using the backpropagation based learning strategy
such that error in classification performance is minimized.
Therefore, DTM uses a data-centric deep learning approach
to derive the transformation filter W to optimize the classifi-
cation performance. Moreover, this enables the formulation
of HTL as an independent deep learning layer which can be
used in a multi-layer deep learning network to transform the
data into a latent feature space.

In this paper, we have applied a multi-layer convolutional
network along with the HTL transformation layer in order
to extract high-level features from the rs-fMRI data. Con-
volution neural networks use two-dimensional filters and
therefore necessitate the conversion of the three-dimensional
regional covariance matrix into a two-dimensional feature
space. Hence, the mean (Ŝm) and variance (Ŝv) across the
time dimension was calculated as

Ŝm =
1

(2tn − 1)

(2tn−1)∑
t=1

Ŝ(t) (4)

Ŝv = var
(
Ŝ(t)

)
(5)

where, Ŝm and Ŝv are non-symmetric matrices of dimen-
sion 90 × 90 which encapsulate the spatio-temporal func-
tional activity between the 90 regions of the brain.

Convolutional Layer
The functional relationship between the different regions
of the brain is represented by the correlations between the
neighbouring (spatially correlated) elements in the regional
covariance matrices (Vieira, Pinaya, and Mechelli 2017).

Convolutional neural networks is a popular deep learning
method that is adept at capturing spatial information and has
been effective in the classification of natural images (Le-
Cun, Bengio, and Hinton 2015). DTM exploits the convo-
lutional layers to extract low-level spatial features and trans-
form them into high-level features. The regional connectiv-
ity matrices Ŝm and Ŝv are converted into normalized mean
greyscale image Gm and the variance greyscale image Gv

are given as

Gm = 0.5 (Ŝm + 1) (6)

Gv = 0.5 (Ŝv + 1) (7)

Gm andGv are used as inputs to train the two convolution
layers. Convolution operations are generally data intensive,
wherein the accuracy is directly proportional to the quantity
of data used to train the network and the number of layers
(depth) used.

However, neurological datasets pose a challenging prob-
lem as the number of data samples available are generally
limited. Using a large number of convolution layers would
thus lead to over-fitting, resulting in a bad generalization of
the data. Therefore, DTM uses a shallow LeNet (LeCun and
others 2015) based architecture with two layers of Conv-
RELU-Maxpool followed by a decision layer.

The first convolutional layer consists of eight 4× 4 filters
with a depth two (corresponding to the 2 input channels).
A stride of one was adopted in both horizontal and vertical
directions to ensure that none of the discriminatory infor-
mation is neglected. In order to maintain the dimension of
the inputs, they are padded with zeros (’SAME’ padding).
Further, a Leaky Rectified Linear Units (ReLU) layer with
α = 0.2 was used to add non-linearity to the network. A
max-pooling layer with a 8 × 8 filter and 8 × 8 stride was
introduced which although leads to some information loss,
prevents having too many learnable parameters compared to
the size of the dataset to avoid overfitting. The second con-
volution layer had more depth along with narrower filters as
per the standard practice. It consisted of sixteen 2× 2 filters
with 8 input channels with a unit stride, followed by a leaky
ReLU (α = 0.2) non-linearity and a max-pooling layer with
4× 4 filter and 4× 4 stride.

Decision Layer
The decision layer consists of a fully connected layer and
a softmax layer. The output from the last Conv-RELU-
Maxpool layer is connected to a fully connected layer with
about 1000 neurons, which are then connected to the soft-
max layer with two output neurons. The softmax layer with
a sigmoid activation function was used to estimate the condi-
tional probability P (Cx|X); that is, the confidence of DTM
in predicting the class of the current input X correctly as Cx.
The class with the maximum conditional probability was
given as the predicted class for the input X.

Brain Functional Activity Maps
The activity maps of the brain are useful in analyzing the
differences in functional activities in the regions of the brain
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between subjects with neurological disorders and neurotyp-
ical subjects. The differences in neural activity are obtained
using the inverse of the spatial filter W, derived such that
the original time series can be regenerated from the inverse
spatial filter (W−1) and the projected time series data Y as

X̂ =W−1Y (8)

where X̂ is the regenerated BOLD rs-fMRI data. The
columns of W−1 is referred to as spatial distributions. Each
element in the column of W−1 is called as a spatial weight
and is assigned to each of the corresponding of the 90 Au-
tomated Anatomical Labelling (AAL) regions. The spatial
weights with significant variance from the mean of each col-
umn highlights the significant regions with differences in
BOLD rs-fMRI signals between the classes. The polarity of
the spatial weights do not hold any significance, and only the
absolute value of the spatial weight needs to examined. The
mean spatial distribution and standard deviation of each of
the spatial distribution were calculated and the regions with
spatial weights whose magnitude is greater than two times
the standard deviation away from the mean were considered
significant in this paper. The inverse spatial filter from the
trail with the highest classification accuracy was chosen and
a representative spatial distribution is plotted and the dis-
tribution of the spatial weights are analyzed. The regions
are further visualized using a brain functional map to depict
the regions with discriminant functional activity between the
classes.

Experimental Setup
The deep transformation method was implemented as a
”TensorFlow” graph in ”Python” scripting language and was
trained over one hundred (100) iterations with a learning rate
of 0.001 using a mini-batch gradient descent approach with a
batch size of 32. The batch learning approach prevents con-
vergence is a trade-off between avoiding local minima and
the convergence time. Although the DTM took thirty min-
utes (30) of training time using an ’Intel(R) Xeon(R) CPU
E5-1630 v4 @ 3.70GHz’ central processing unit, it signif-
icantly reduced to seven (7) minutes with the use of ’Tesla
P100-SXM2-16GB’ graphical processing unit. Each fold of
data consisted of non-intersecting training and testing data
samples drawn in the ratio 371:54. Every consecutive fold
of test data was ensured to have no overlap with the pre-
vious test data to obtain generalized results and the aver-
age performance over the five folds are reported as the mean
classification performance measure.

ADHD200 Dataset
In order to validate the performance of the DTM, we have
used the benchmark ADHD200 dataset from the Interna-
tional Neuroimaging Data-sharing Initiative (INDI). INDI
has facilitated Deep learning research on ADHD by aggre-
gating rs-fMRI data from 947 people between the age of 7
years to 22 years, aggregated from 8 different institutions
under the ADHD200 consortium. However, for the study
presented in this paper the data from Brown University were
excluded as the diagnostic information of the rs-fMRI data

were not available at the time of compilation of this study.
Of the 947 people in the ADHD200 consortium dataset, 563
people (59.45%) were found to male right-handed. Previ-
ous studies (Skounti, Philalithis, and Galanakis 2007) have
shown that the gender and handedness of a person severely
influence the presentation of functional brain activities in rs-
fMRI data. Hence, in order to preserve the homogeneity in
the data, this study is confined to male right-handed people.

The rs-fMRI data from the ADHD200 consortium was
pre-processed using the ATHENA pipeline (Bellec et al.
2017) in order to remove the variations due to the physio-
logical noise, head motion and scanner drifts. The denoised
rs-fMRI data without bandpass filtering provided by (Bellec
et al. 2017) was anatomized using the AAL template into
116 regions. The 26 regions corresponding to the cerebel-
lum were excluded to minimize the effects of involuntary
activities such as breathing and cardiac activity. Finally, a
manual quality control (QC) check was performed and sam-
ples with incomplete data and that failed the QC in (Bellec et
al. 2017) were removed and rs-fMRI data from the 90 AAL
regions were obtained from 465 people. Further details on
the preprocessing and QC measures can be obtained from
(Bellec et al. 2017).

To facilitate cross-validation and evaluate the perfor-
mance of the algorithm, the dataset was partitioned into
training and test data-sets of 371 and 94 subjects respec-
tively. A 10-fold random partition was done ensuring the
ratio of ADHD to TDC remained constant across the folds.
The mean classification accuracy and the standard deviation
across the partitions are considered as the key indicators of
the performance of DTM.

Results and Discussion
In this section, the diagnostic performance of the DTM in
classifying ADHD from BOLD rs-fMRI time series data
has been presented. The performance is measured in terms
of accuracy, sensitivity, specificity and F-score of the clas-
sification. First, we compare the performance of the pro-
posed DTM with previous studies on the automatic diag-
nosis of ADHD in Table 1. Studies (Ghiassian et al. 2013;
Guo et al. 2014) on the diagnosis of ADHD using BOLD
fMRI data from the ADHD200 consortium dataset utilizing
various feature extraction algorithms and a linear classifier
like SVM have achieved a maximum accuracy of 63.75%.
However, (Mahanand, Savitha, and Suresh 2013) used a
metacognitive classifier to achieve the best performance of
65%. Using phenotype data along with BOLD fMRI data
improved the classification accuracy. (Anderson et al. 2014)
explored a decision tree based approach to achieve a clas-
sification accuracy of 66.8%, whereas (Riaz et al. 2017)
adopted a CNN based process in order to extract the func-
tional connectivity as features and then evaluated them using
an SVM classifier to obtain an accuracy between 63.4% and
68.6%. Also, (Riaz et al. 2017) used data from individual
acquisition sites in order to validate the results in order to
avoid inter-site variability. (Zou et al. 2017) made use of the
s-MRI and rs-fMRI data to extract six types of 3D features
and introduced a 3D CNN based classifier. They achieved a
maximum classification accuracy of 69.15%. These results

2560



Table 1: Comparison of diagnostic performance between the proposed DTM and state of the art methodologies using ADHD200
consortium dataset

Reference Data Classifier Testing
accuracy

(Ghiassian et al. 2013) BOLD rs-fMRI SVM 62.81%
(Guo et al. 2014) BOLD rs-fMRI SVM 63.75%

(Mahanand, Savitha, and Suresh 2013) BOLD rs-fMRI
Meta-cognitive Radial

65%
Basis Function

(Anderson et al. 2014) BOLD rs-fMRI and phenotype data Decision tree 66.8%
(Riaz et al. 2017) BOLD rs-fMRI and phenotype data SVM 63.4% - 68.6%
(Zou et al. 2017) BOLD rs-fMRI and s-MRI 3D CNN 69.15%

DTM BOLD rs-fMRI Softmax 70.36%

show the highest accuracy in diagnosis achieved by previ-
ous studies. Although from the above results it is observed
that phenotype data and s-MRI data when used along with
the rs-fMRI data improves the classification performance,
it hinders the derivation significant conclusions on the dis-
criminant functional activities in ADHD. Therefore, DTM
uses only BOLD rs-fMRI as input and in comparison yields
a better diagnostic performance on a hold-out test dataset.
DTM achieves a mean classification accuracy of 70.36%
with a low standard deviation of 0.02 which is a significant
improvement of 8.25% over the existing methods. The con-
fusion matrix of the classification performance is given in
Table 2.

Table 2: Classification performance of DTM
Parameter Train Percentage Test Percentage

True Positive 49.8% 41.5%
True Negative 39.5% 28.9%
False Positive 10.5% 13.7%
False Negative 0.2% 15.9%

Evaluation of significance of concurrent analysis of
spatio-temporal information

Table 3: Comparison of diagnostic accuracy of DTM with
different region correlation methodologies

Region correlation Training Testing
measure Mean S.D Mean S.D
Linear correlation 95.12% 0.12 55.27% 0.01
Cross-correlation 89.23% 0.007 70.36% 0.02

The advantages of substituting the linear correlation re-
gional covariance matrix with the mean and variance of the
region covariance matrix derived using the cross-correlation

approach is shown in Table 3. Adopting the linear correla-
tion approach to derive the regional covariance matrix al-
though leads to an increase in mean training accuracy, the
mean testing accuracy sharply reduces to 55.27% due to
overfitting. These results indicate that the time series signals
of the different regions of the brain have higher correlations
when shifted in time. These findings prove that the func-
tional activity disruptions in ADHD are spatio-temporally
correlated and supports the brain network dysfunction the-
ory proposed by (Menon 2011).

Identification of distinguishable brain activities in
ADHD right handed male subjects
The spatial weight distribution and brain activity maps of the
regions of the brain highlight the discriminant regions of the
brain with significant differences in functional activity. The
spatial weights from the 90 regions of one of the prominent
spatial distributions is plotted in Figure 2. The magnitude
of the spatial weights in the figure represent the importance
of the region for classification. As the signs of the spatial
weights do not signify any information the absolute value of
the spatial weights is considered. The magnitude of each of
the spatial weights corresponds to the influence of the cor-
responding regions functional activity in the classification
process.

From the Figure 2 it shows that the Rolandic Operculum
(18), Medial Frontal Gyrus (23), Posterior Cingulate Gyrus
(36), Hippocampus (38) and the Middle Temporal Gyrus
(85) have significantly greater spatial weights. Therefore, it
implies that these regions of the brain display discriminative
functional activity among male right-handed subjects diag-
nosed with ADHD. The corresponding brain functional ac-
tivity map is presented in Figure 3, where the regions of the
brain are marked by their AAL region number. Prominent
differences in functional activity are observed in the tem-
poral lobe and the posterior cingulate cortex. The temporal
lobe is primarily responsible for the long-term memory (Si-
mons and Spiers 2003), while the posterior cingulate cortex
is an integral part of the Default Mode Network (DMN) and
acts as the functional link between the prefrontal and pari-
etal regions of the brain (Fransson and Marrelec 2008). It is
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Figure 2: AAL regions exhibiting discriminant functional activity and the associated spatial weights obtained from DTM

Figure 3: Brain functional activity map showing the lateral and dorsal view of the brain, presenting the regions of the brain with
significant variances in rs-fMRI signal between ADHD patients and neurotypical males
Note: Rolandic Operculum (18), Medial Frontal Gyrus (23), Posterior Cingulate Gyrus (36), Hippocampus (38) and the Middle
Temporal Gyrus (85)

observed that the regions identified with discriminant func-
tional activity by DTM are related to the cognitive symp-
toms associated with ADHD such as hyperactivity, impul-
sivity and inattentiveness.

Conclusions
The proposed deep transformation method uses a hidden
transformation layer to project the rs-fMRI into discrimi-
native latent space and preserve the spatio-temporal infor-
mation. Further, the convolution layers and decision layer

helps in accurate classification. The experimental study us-
ing ADHD200 right-handed male dataset clearly shows that
the proposed DTM method are higher (approximately 8%)
when compared to the existing results reported in the lit-
erature. DTM extracts the spatio-temporal correlations in
functional activities of the brain instead of the simple spa-
tially correlated functional activities in order to train the
CNN based classifier. The results demonstrate that ADHD
is characterized by differences in connectivity between the
different regions of the brain and therefore should be treated
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as a brain network dysfunctional neurological disorder. The
brain network analysis reveals that the difference in func-
tional activities is predominant in the temporal lobe and pos-
terior cingulate cortex which implies inattentiveness and im-
pulsivity in ADHD.
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