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Abstract

We consider the task of aggregating scores provided by ex-
perts that each have scored only a subset of all objects to be
rated. Since experts only see a subset of all objects, they lack
global information on the overall quality of all objects, as well
as the global range in quality. Inherently, the only reliable in-
formation we get from experts is therefore the relative scores
over the objects that they have scored each.
We propose several variants of a new aggregation frame-
work that takes this into account by computing consensual
affine transformations of each expert’s scores to reach a glob-
ally balanced view. Numerical comparisons with other ag-
gregation methods, such as rank-based methods, Kemeny-
Young scoring, and a maximum likelihood estimator, show
that the new method gives significantly better results in prac-
tice. Moreover, the computation is practically affordable and
scales well even to larger numbers of experts and objects.

Score Aggregation for Partial Valuations
We consider the task of aggregating scores from experts
who have only had access to a part of all objects. We fo-
cus purely on empirical performance in this paper, for the
purpose of providing an effective tool that helps, for ex-
ample, when aggregating reviewer scores in conference re-
viewing, the organization of large online learning courses
where students grade each others’ homework, or when mul-
tiple information-retrieval algorithms score webpages with
respect to different sources of information (text, images,
video, audio, etc). The recurring characteristic is that each
expert only considers a part of the universe of objects, for
example because the workload for each expert would be too
high to score all objects, or because not every expert has the
expertise to score every object. This can lead to very specific
kinds of biases that need to be actively taken into account in
the mechanism that is used to reach a decision on the ranking
of objects.

The main contributions of our work are the development
of a new, computationally efficient, practical approach to
reduce partial valuation bias. Moreover, to the best of our
knowledge we conduct the first comprehensive numerical
comparison of partial value aggregation methods.

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Problem Definition
Let us begin our work by introducing some terminology.

Definition 1 Let O be a finite set of N ∈ N objects, and
assume that there exists a function f : O → R assigning a
“ground truth” value to each object. Furthermore, let E be
a finite set of experts. For each o ∈ O, we assume there is a
set Eo ⊆ E of experts each estimating f(o). For each o ∈ O
and e ∈ Eo, denote with feo ∈ R the valuation of expert e of
object o.

The objective of the Score Aggregation Problem (SAP) is
to estimate the ground truth valuations for each object as
good as possible using only the expert valuations.

Definition 2 Let A be a finite set of alternatives and E a
finite set of voters or experts. Assume that each voter has
a strict preference order for [a subset of] the alternatives,
i.e., the preference order is transitive and anti-symmetric.
Such a ranking can be described by a ranking map B 7→
{0, . . . , |B| − 1}, where B ⊆ A. If the maps do not just
provide a ranking but a score for each alternative, we speak
of a cardinal voting system.

A collection of alternatives together with the set V of
ranking maps re, for e ∈ E , of expert preferences is called
a preference profile (A,V). A social choice function (SCF)
f , also called a voting scheme, is a map that assigns to each
preference profile (A,V) a ranking map f(A,V), which rep-
resents the aggregate choice of the experts.

A simple way is to consider the cumulative rank each ob-
ject has for all rankings where it appears. This ordering is
commonly referred to as the Borda count (de Borda 1781;
Lippman 2013).

Caragiannis et al. (2015) study peer grading in massive
online open courses where students grade each other. They
prove that the Borda count can result in approximate ground-
truth-revealing grading schemes provided that reviewers are
carefully assigned to objects. They use bundle graphs for
this purpose. Complete freedom when assigning experts to
objects is required for this method, which somewhat limits it
to settings like grading in massive online courses. In confer-
ence reviewing, experts typically have pockets of expertise,
and we cannot assign a knowledge representation paper to
an expert in combinatorial search.

Another rank-based aggregation method is unweighted
Kemeny–Young method. It is based on summing, for each
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pair of objects, the number of experts who ranked the pair
oppositely to the given ordering. The Kemeny–Young rule
thus results in a ranking that minimizes the number of pair-
wise disagreements with the expert votes. (Conitzer, Daven-
port, and Kalagnanam 2006; Conitzer and Sandholm 2012;
Conitzer 2013)

The starting point for our work is the paper by Roos
et al. (2011). They introduce a quadratic programming ap-
proach that computes a maximum likelihood estimator based
on the assumption that each object has one correct score
that all experts aim to assess. The assessment is distorted
in two ways: First, the experts assess the correct score with
some random Gaussian noise of equal variance. Second, be-
cause of personal and systemic partial-view bias, the result-
ing score undergoes an affine transformation.

Consensual Affine Transformations
The inherent problem with the SAP is the limited view that
each expert has on the universe of objects. Consequently,
even when ignoring personal or methodological biases, ex-
perts are simply not in a position to judge how good their set
of objects, as a whole, is, nor what the correct range in qual-
ity over their objects is, relative to the objects they have not
seen. Therefore, it is all right to modify or normalize expert
scores before averaging the experts’ opinions to arrive at an
aggregated vote.

Example: Assume 5 reviewers each rate 3 out of 5 papers.

reviewer paper scores
1 6 8 10 * *
2 5 * 6 * 7
3 1 2 * 5 *
4 * * 2 3 4
5 * 2 * 4 5
average 4 4 6 4 5.3
true 1 3 5 7 9

Table 1: Reviewer scores

The objective scores are given in the last row. Note how
every reviewer assesses the relative quality of their sets of
papers reasonably well. However, due to a lack of global
scale, the mediocre paper 3 rises to the top of the heap, bene-
fiting from the fact that it was reviewed by positive reviewers
and reviewers whose other papers were objectively worse,
while better papers were reviewed by more negative review-
ers and reviewers who got assigned to a set of high-quality
papers to begin with. This distorts the global ranking to a
point where the second best paper 4 becomes indistinguish-
able with the worst paper 1. Moreover, looking at reviewer
3, e.g., we find that he or she gives an average score of 2.7
to his/her papers 1, 2, and 4, while the average of the aggre-
gated scores is 4, which indicates significant disagreement
between reviewer 3 and the group as a whole as to how good,
on average, the papers 1, 2, and 4 actually are.

We develop a general procedure for the modification and
aggregation of experts’ scores that will prove valuable al-

ready in the special case of affine transformations. Con-
sider a finitely parameterized set Φ of monotonically in-
creasing expert modification functions ϕe : R → R that
we want to use to modify each expert’s scores: ϕe(x) :=
ϕ(x; ae1, . . . , a

e
m), the function parameters aei , i = 1, . . . ,m,

depending on the expert. We set ϕe(feo ) =: ϕeo. Moreover,
let Ψ be a family of averaging functions ψ(x1, . . . , xk) :
Rk → R that are increasing in every variable and that we
intend to use to average the modified experts’ valuations to
arrive at our final value estimate: ψ(ϕe1o , . . . , ϕ

ek
o ) =: ψo for

Eo = {e1, . . . , ek}.
Then, for every expert e, our task consists in determining

the parameters ae1, . . . , a
e
m such that the ordering induced by

the ψo is close to the ordering induced by the ground-truth
values f(o).

We now study the two questions which constitute the core
of our contribution: 1. The first question is, which modifi-
cation functions should we consider? 2. And second, since
we do not know the ground truth values, what is a reason-
able proxy objective that will indirectly lead to a reasonable
ordering of objects?

1. Regarding the type of modification functions, we
consider linear monotonic affine transformations as intro-
duced in (Roos, Rothe, and Scheuermann 2011) (in fact,
we learned about their work only after making this choice,
which at least suggests that linear transformations are nat-
ural candidates here). In the following, we will consider
ϕe(x) := ϕ(x; ae1, a

e
2) = ae1x + ae2 for ae1 ≥ ε with fixed

small 0 < ε ∈ R to avoid disregarding or reversing an
expert’s opinion. Note how the two parameters selected for
each expert allow the system to scale the range of valuations
as well as shift the entire range. This directly addresses the
inherent inability of experts to judge the correct range and
the average quality of valuations their objects should have
within the unknown universe of objects. At the same time,
monotonicity and linearity ensure that the modified scores
respect the relative values experts have assigned to their set
of objects.

For the averaging functions ψ, in this paper we choose
the arithmetic mean. This gives all reviewers the same in-
fluence, which may be important to gain acceptance in con-
ference reviewing. However, note that other choices could
easily be made here (and the algorithmic realizations of this
framework, which we introduce in the next section, can eas-
ily accommodate some of these modifications). For exam-
ple, one could consider a weighted average to take into ac-
count different reviewer confidences. It is also noteworthy
that, while not explicitly mentioned in (Roos, Rothe, and
Scheuermann 2011), the density function they use is max-
imized when the true score estimates equal the arithmetic
mean of the transformed expert scores. In this regard, by us-
ing a simple arithmetic we stay in line with the published
literature, even though we arrived there through a different
motivation.

2. Regarding the second question, Roos et al. (2011)
model reviewer distortions based on a probabilistic model
and can thus derive the proxy as a maximum likelihood ob-
jective. Aiming to avoid the assumption of a specific proba-
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bilistic model, we propose to use transformations that drive
a specific notion of consensus among the experts. Namely,
with consensus we do not mean to force experts into agree-
ment on individual objects, because we obviously cannot,
and do not want to, force experts to agree on each object.
However, we can try and find modification functions so that
each expert can agree what the mean score and range of
scores for their set of objects should be, taking into account
the views of all experts who have seen these objects.

We want to find modification functions such that, for each
expert, the average modified score over all objects they con-
sidered is close to the average overall scores for all experts
that have scored these same objects. More formally, for each
expert e we want ∑

o∈Oe

ϕeo ≈
∑
o∈Oe

ψo, (1)

whereby Oe := {o ∈ O | e ∈ Eo}.
Analogously, we want the range of modified valuations

for each expert to be close to the range of overall modified
scores. In more formal terms, for all experts e, we want

max
o∈Oe
{ϕeo} − min

o∈Oe
{ϕeo} ≈ max

o∈Oe
{ψo} − min

o∈Oe
{ψo}. (2)

Example (contd): Consider Reviewer 3 in our previous ex-
ample. We may decide to scale and shift the scores provided
using the function ϕ(x) := 2x − 2 and would arrive at a
scoring of 0, 2 and 8 for papers 1, 2 and 4. Note how this
is still in accordance with the reviewer’s original opinion
in terms of the relative score for each paper. The average
score for these three papers, according to reviewer 3, is now
3.3. If we also (still sub-optimally) scale other reviewers as
shown in Table 2, we get an aggregated score of 0.7, 2.7 and
7.3 for these three papers, with a mean of 3.6. Therefore,
the discrepancy between this reviewer’s view on the quality
of papers 1, 2, and 4 is now much closer to the global view
than it was before (recall that it was 2.7 versus 4 before, now
it is 3.3 vs 3.6.)

reviewer a1 a2 new paper scores
1 1 -5 1 3 5 * *
2 4 -19 1 * 5 * 9
3 2 -2 0 2 * 8 *
4 2 1 * * 5 7 9
5 2 -1 * 3 * 7 9
average 0.7 2.7 5 7.3 9
true 1 3 5 7 9

Table 2: Adjusted reviewer scores

Note that, so far, we used the≈ to express our general de-
sire to make certain terms close to one another. This vague
objective obviously needs further refinement to become a
prescriptive method. In the following, we propose four spe-
cific realizations of the above framework as optimization
models. We stress again that our objective here is to find a
practically efficient method that can effectively deal with the

inherent bias introduced by partial valuations, without hav-
ing to make assumptions about the underlying probabilistic
model of how experts’ scores may be distorted.

Linear Formulations
Let us begin by considering linear optimization models. The
decision variables in the model are obviously the continuous
aek for all e ∈ E and k ∈ {1, 2}. For practical purposes, we
will assume that each variable is bounded from above and
below. Bounds typically arise from the respective applica-
tion. E.g., when aggregating reviewers’ scores at a confer-
ence, we may assume that there is some absolute truth in
the valuations given, but we may still consider shifting the
scores by up to 10% of the total range and/or scaling the
range by up to 10%.

The main issue is now to formulate our objective that
averages and ranges should be “close” to one another as
loosely expressed in statements (1) and (2). Limiting our-
selves to linear models in this subsection, we could simply
minimize the sums of absolute deviations. Alternatively, we
could consider the maximum norm and minimize the max-
imal absolute deviation. We propose to do both at the same
time to strike a balance between worst and average case:

For all e ∈ E , we set Me := |Oe| and introduce con-
tinuous variables de with associated constraints Mede ≥∑
o∈Oe(ϕeo − ψo) and Mede ≥

∑
o∈Oe(ψo − ϕeo). At op-

timum, de is then the absolute difference between the ad-
justed average score that this expert assigned to his/her ob-
jects, and the adjusted average score that all experts as-
signed to the same set of objects. We also add a variable
Z1 with constraints Z1 ≥ de for all e ∈ E . At optimum,
Z1 is then ||de||∞. Then, we minimize

∑
e de + |E|

2 Z1 =

||de||1 + |E|
2 ||de||∞. To make both one-norm and infinity

norm operate at roughly the same magnitude, we multiply
the maximum norm with the number of terms in the one-
norm over 2.

This takes care of statements (1). Note how, so far, we
have been able to formulate the problem as a convex lin-
ear continuous optimization problem. Unfortunately, when
considering statement (2), we lose convexity (and thereby
the ability to solve the resulting instances efficiently) be-
cause we need to minimize absolute differences of ranges.
The first range, that of the modified scores of the respective
expert, can be computed efficiently: The monotone linear
transformation of expert scores guarantees that the worst and
best objects (let us call them oemin and oemax) for each expert
remain identical. We can therefore compute the indices of
the modified values that define that minimum and maximum
in the range for the expert a priori. However, for the range
of the aggregate modified scores, the objects that define the
minimum and maximum values may very well change. In
fact, the whole point of modifying expert scores is to allow
them to change! Otherwise we might as well use the expert
scores at face value and aggregate them to arrive at the joint
ordering.

In the following we consider three ways to deal with the
problem. One of them leads to an integer problem, two to a
(sequence of) continuous problem(s).
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Integer Programming Formulation To compute the
range of the aggregate modified scores, we introduce con-
tinuous variables xemin, x

e
max ∈ R and binary indicator vari-

ables beo for all experts e ∈ E and o ∈ Oe. We constrain
these variables by requiring xemin ≤ ψo, xemin ≥ ψo −Mbeo,
and

∑
o∈Oe beo = 1 for all experts e ∈ E , o ∈ Oe and an

appropriately large value for M .1
After convergence, xemin (xemax) denotes the minimum

(maximum) average (over all experts scoring the same ob-
ject) adjusted score over all objects scored by expert e. beo is
an indicator variable that is 1 if and only if object o has the
smallest average (over all experts scoring object o) adjusted
score of all objects scored by expert e. For the computation
of xemax, another variable like this is introduced analogously.

We then introduce continuous variables re for all experts
e ∈ E with associated constraints re ≥ xemax − xemin −
(ϕeoemax

−ϕeoemin
) and re ≥ ϕeoemax

−ϕeoemin
− (xemax − xemin).

At optimum and after convergence, re is the absolute dif-
ference between the range of the adjusted scores that this
expert assigned to his/her objects, and the range of the aver-
age adjusted scores that all experts assigned to the same set
of objects.

As before, we introduce a continuous variable Z2 for the
maximum norm and constrain it with Z2 ≥ re for all experts
e ∈ E . The respective part of the objective for the range
approximation is then to minimize

∑
e re+

|E|
2 Z2 = ||re||1+

|E|
2 ||re||∞.

Linear Continuous Formulation A simple model that
leads to a convex linear formulation is to simply ignore
statement (2) altogether. Alternatively, we will approximate
the range of aggregate modified scores by setting it to
ψoemax

− ψoemin
. That is, we use the initially worst and best

objects for the expert as approximate representatives of the
final objects that mark the aggregate worst and best scores.
After we solved this model, the worst and and best scores
for an expert may have shifted. We can then iterate the pro-
cess using these new worst and best objects (while carefully
adjusting the bounds on the variables aek so that overall we
do not alter the scores in excess of the initially given limits)
until either an iteration limit is reached or the best and worst
objects for all experts no longer change.

Non-linear Continuous Formulation
We used a mixture between one-norms and infinity norms
above in order to keep the objective function linear. Another
choice is to use a quadratic programming approach and to
minimize the Euclidean norms over the average score devi-
ation and the average range deviation for each expert when
compared with the entire group of experts. In this last for-
mulation, we therefore minimize

∑
e d

2
e +

∑
e r

2
e .

For the re, we run into the same problem as before:
For a given expert e, the affine transformations of ex-
pert scores may lead to a change in argmaxo∈Oeψo and
argmino∈Oeψo. Consequently, the objects that define the
group worst and group best over the objects that expert e has

1We tried alternative models based on special ordered sets as
well, which did not lead to performance improvements.

name type iterated objective

NoRange LP no
∑
e de + |E|

2 Z1.

Aff-LP LP yes
∑
e de + |E|

2 Z1 +
∑
e r̃e + |E|

2 Z̃2.

Aff-IP IP no
∑
e de + |E|

2 Z1 +
∑
e re + |E|

2 Z2.

Aff-NLP QP yes
∑
e d

2
e +

∑
e r̃

2
e .

Table 3: Four realizations of consensual affine transforma-
tions as (iterated) optimization models. Z̃ and r̃ denote the
terms whose definition changes in consecutive iterations.

scored are not stable. We could formulate a non-linear inte-
ger program to deal with this. However, key for a successful
application of the technology we develop here is computa-
tional efficiency.

Consequently, we propose to use the same approach as
presented in the second linear continuous approach. Namely,
we solve a sequence of quadratic programs. At the begin-
ning we fix, for each expert, the group-worst and group-best
objects over the set of objects she scored, and use them to
define the size of the group range. At the end of each itera-
tion, we check if any of these have changed for any expert, as
a result of the affine transformations applied to the experts’
scores. If so, we continue, otherwise we stop. In our experi-
ments we limit the number of iterations to 20. In Table 3 we
summarize the four models introduced in this section.

Numerical Results
We have devised four optimization approaches to deal with
the biases introduced by partial valuations commonly oc-
curring in conference reviewing. In a set of extensive ex-
periments, we now evaluate and compare the various pro-
posed formulations of the consensual affine transformation
approach with each other and the most prominent existing
techniques for score aggregation. Ultimately, we want to as-
sess which methods can effectively deal with partial valua-
tion bias.

Metric
There are different ways how we could evaluate the qual-
ity of an aggregate estimate. For conference reviewing, the
main task is to identify the top-rated set of objects. A defect
occurs when a paper that should be published is not identi-
fied as being part of the top X%, and a paper of lesser quality
is put into the program instead. As our error metric, we thus
chose to count the number of objects erroneously included
in a top set of all objects, when compared to a ground truth
top set. We track this “error rate” as the percentage of mis-
placed objects in the top set. In our experiments we choose
25%, but this choice did not affect the results which were
the same for other percentages, both lower and higher.

Benchmarks
One True Value Per Object: The first benchmark follows
the randomized model in (Roos, Rothe, and Scheuermann
2011): For a desired number of objects and experts, as well
as a target range for the number of scores per object, our
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generator first picks a true score for each object as an inte-
ger between 1 and 10 by drawing from a normal distribution
with mean 5 and standard deviation 2, then rounding the re-
sult to the nearest integer, and clipping the interval at 1 and
10. These values are the ground-truth values for each object.

The generator then assigns random experts to each object,
whereby the total number of scores per object is guaranteed
to be in the range given, and the total number of scores each
expert gives is limited from above by 20% over the average
of objects that each expert needs to score if each object had
to receive the maximum number of scores.

Finally, the generator picks a scaling factor and shift value
for each expert, whereby the maximal distortion is con-
trolled by user-defined ranges for the scaling as well as the
shift. The final score each expert gives to her set of objects
is then the nearest integer in 1 to 10 of ground truth value of
each object times the scaling factor plus the shift value plus
noise.

The parameters for this first probabilistic model were set
to somewhat resemble the distribution of papers we would
expect at a typical conference, with a big body of papers
with average quality. However, the particular parameters we
chose did not affect our comparative results as additional
experiments showed.

Latent Metric: The generator for the second random-
ized benchmark essentially follows the procedure of the first.
However, instead of picking one “true” score for each ob-
ject, it picks one score for each object/expert pair to which
the randomized linear distortion and the noise are applied to
generate the benchmark instance.

To generate a “true” valuation of each expert for each ob-
ject reviewed, we choose three latent values for each ob-
ject. The idea is that there are multiple metrics (this could
be novelty, impact, and quality of evaluation) that under-
lie the overall score for each object. For each of the latent
metrics, in this benchmark we assume there exists one true
score. However, different reviewers value different metrics
differently strongly. For each expert, we therefore choose
three non-negative weights that add up to 1 to reflect the rel-
ative importance of each metric. We arrive at the “true” score
for an object/expert pair by computing the expert-dependent
convex combination of the true object scores regarding the
latent metrics. Then, the affine and noise distortion works
exactly as in the generator for the first benchmark.

Instances Derived From Real Conferences: To gener-
ate a different, more realistic type of benchmark, we were
fortunate to obtain real-world data from two AI conferences
(we also tried to obtain data from previous AAAI confer-
ences, unfortunately to no avail). The first had 41 submis-
sions (objects) and 33 reviewers (experts). The second was a
bit larger, it received 71 submissions and had 67 reviewers.
As ground truth, we experiment with two setups: In the first,
we use the unaltered conference data as ground truth, distort
it (see below), and then see how well we can re-construct
the original data. In the second setup, we compute “true”
scores for each paper by consensually scaling and shifting
reviewers’ scores and using the aggregate scores to define
an ordering on all submissions. We then aim to recover the
top-rated objects according to this ordering. To distort the

ground truth, we shift and scale the experts’ scores and add
noise to each individual score, followed by rounding the re-
sult to the nearest integer in 1 to 10.

The resulting benchmark instances differ in two impor-
tant aspects from the instances that were generated com-
pletely automatically. First, and most importantly, the bipar-
tite graph structure of which experts score which objects is
given by the two real-world examples and can thus reflect
mechanisms like bidding as well as areas of expertise, etc.
Secondly, contrary to the one-true-value generated data, the
value from which we generate experts’ scores by noisy affine
distortion is not identical for all experts scoring the same ob-
ject. Instead, we use the “true” scores for each expert/object
pair as derived from the original data. Consequently, even
if a score aggregation method can find a perfect consensual
affine transformation to undo the distortions, on individual
objects, we still find experts disagreeing by more than just
the noise that was added to generate the benchmark instance.
Note that the latent-metric generated benchmark also has
this latter property.

Competitors
Apart from the four methods introduced in this paper, we
compare with simple averaging (still most commonly used
in conference systems), the Borda count (for which Cara-
giannis et al. (2015) showed that it can lead to provably
good performance when the assignments of experts to ob-
jects permits), with un-scored and thus un-ranked candi-
dates receiving zero points, as well as the unweighted and
weighted Kemeny-Young methods. Our last competitor is
the quadratic programming method from Roos et al. (2011).
Note that our first automatically generated benchmark set
is specifically constructed so that the assumptions for their
method are met perfectly.

In summary, we compare the following nine approaches:
Ave (order objects by average score received), Borda (rank
objects for each reviewer, then sort objects by average rank
received), KY (use Kemeny-Young scoring to order objects),
wKY (use weighted Kemeny-Young scoring to order ob-
jects), MLE (Roos et al.’s maximum likelihood estimator),
NoRange (use linear continuous affine transformations with-
out penalizing range difference, then sort objects by mean
adjusted score received), Aff-LP (use affine transformations
computed by iterated linear programming to adjust experts’
scores, then sort objects by mean adjusted score received),
Aff-IP (use consensual linear affine transformations to ad-
just experts’ scores, then sort objects by mean adjusted score
received), and Aff-NLP (use affine transformations com-
puted by iterated quadratic programming to adjust experts’
scores, then sort objects by mean adjusted score received).

All approaches have been implemented in C++ using the
Gnu g++ compiler 4.4.5 (Red Hat 4.4.5-6) and were run on
Intel Xeon CPU X3430 processors at 2.40GHz. Whenever
optimization was needed, we used Ilog Cplex 12.6.

Small Test Sets
We start our comparison on small generated data sets. These
instances are simple and small enough to run all nine com-
petitors.
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In Table 4 we show the results. In this experiment, we
set the distortion limits to [ 56 ,

6
5 ] for scaling and [−1.8, 1.8]

for shifting (which corresponds to 20% of the total score
range in each direction). The noise was chosen uniformly
at random in [−0.72, 0.72] (or 40% of the maximal shifting
distortion).

We observe that Kemeny-Young scoring takes orders of
magnitude more computation time than any of the other
methods. The reason why it is so much more computation-
ally intensive than, e.g., the integer linear model we use
to compute consensual affine transformations, is that, in
Kemeny-Young scoring, we need to determine the full order-
ing of all objects using integer variables in the model. This
translates into a number of binary variables that is quadratic
in the number of objects. In Aff-IP, on the other hand, we
only need binary variables to set the worst and best object for

Method Rank Error CPU Time
µ µ [%] σ [%] µ [s]

Ave 6.78 9.62 5.91 0.01
Borda 6.55 8.46 5.30 0.01
KY 6.46 7.44 4.60 7.38K
wKY 6.46 7.44 4.60 7.3K
MLE 3.14 0.23 1.16 0.02
NoRange 3.29 0.55 1.76 0.01
Aff-LP 3.66 1.27 3.22 0.06
Aff-IP 3.38 0.70 1.92 47.1
Aff-NLP 3.40 0.70 2.26 0.25

(a) 50 Objects, 30 Experts, One True Value

Method Rank Error CPU Time
µ µ [%] σ [%] µ [s]

Ave 4.57 13.1 8.84 0.02
Borda 5.16 14.9 8.32 0.02
KY 5.82 17.2 8.24 18.1K
wKY 5.82 17.2 8.24 18.3K
MLE 4.32 12.2 8.07 0.03
NoRange 3.66 9.72 7.22 0.03
Aff-LP 4.09 11.4 8.09 0.03
Aff-IP 4.14 11.6 7.53 92.4
Aff-NLP 4.10 11.35 7.01 0.06

(b) 40 Objects, 20 Experts, Latent Metric

Method Rank Error CPU Time
µ µ [%] σ [%] µ [s]

Ave 3.85 13.7 7.63 0.01
Borda 6.05 18.2 3.97 0.01
KY 6.55 22.0 8.13 135K
wKY 6.55 22.0 8.13 135K
MLE 4.9 15.9 6.43 0.01
NoRange 3.5 11.4 5.24 0.02
Aff-LP 3.5 11.4 5.13 0.03
Aff-IP 3.85 12.1 5.10 277
Aff-NLP 3.15 10.6 3.69 0.14

(c) 50 Objects, 30 Experts, Latent Metric

Table 4: Mean rank, error mean and std. dev., and runtime
as average over 100 instances each for various score aggre-
gation methods run on generated data, where each paper re-
ceived between 3 and 5 reviews each, and 25% of papers get
accepted.

each expert. Since each expert scores at most all objects (and
usually much fewer), and there are usually way fewer ex-
perts than objects, the corresponding integer programming
models are significantly easier to solve in practice.

To address the complexity of Kemeny-Young scoring,
approximation algorithms (in the theorist sense of the
term, meaning these algorithms come with performance
guarantees) have been developed for Kemeny-Young scor-
ing (Kenyon-Mathieu and Schudy 2007). The problem with
these approaches is that the approximation guarantees regard
the objective function value instead of the ordering itself.
Consequently, the objects that end up in the top set could
differ substantially, even though the overall stress in the sys-
tem may not be much more than it would be for the optimal
Kemeny-Young solution.

More fundamentally, though, the experiments show that
the approximation target itself, the Kemeny-Young order-
ing, does not exhibit great strength when dealing with partial
valuation bias, which we must assume exists in our applica-
tion, given that experts only get to see a small subset of the
universe of all objects, even when setting other considera-
tions such as personality differences aside. We observe that
Kemeny-Young scoring performs marginally better than av-
eraging and simple rank aggregation in the Borda count on
the one-true-value benchmarks, and worse than both on the
latent-metric benchmarks. The MLE from Roos et al. (2011)
and all affine consensual transformation methods, on the
other hand, are significantly more effective at reducing par-
tial valuation bias, whereby all but the integer programming
based method work very fast. In fact, we ran a comparison
on the one-value benchmark with 2,000 objects and 500 ex-
perts (distortion 20% and noise 40%, 4 to 5 scores per ob-
ject). Aff-NLP had an error rate under 0.6% and ran in less
than 8 minutes on average. Since the Aff-IP is slower and
does not appear to give any significant benefit over the other
consensual-affine transformation methods anyway, we ex-
clude the Kemeny-Young methods and Aff-IP from further
experiments.

Scaling Experiments
We now scale both generated benchmarks, varying the num-
ber of objects between 20 and 100 in increments of 10, and
the number of experts between 10 and the respective number
of objects, also in increments of 10. In Figure 1, we visualize
the results of over 464,000 experiments (100 runs per data
point). Distortion and noise limits, as well as the range of
scores per object, are the same as before.

The one-true-value benchmark was constructed specifi-
cally to meet the assumptions of the MLE from Roos et
al. (2011). Consequently, the maximum likelihood method
sets the gold standard for this data set. Averaging and the
Borda count both cannot compete and have markedly worse
error rates, whereby the Borda count gets better when there
are fewer reviewers.2 This is quite natural as this implies that
each expert sees a larger percentage of the entire universe of

2Not shown here: Our data shows that the MLE error rate de-
clines with the ratio of number of experts over number of objects.
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Figure 1: One-true-value (top left), small conference (top right), and latent-metric benchmark experiments (scatter plots on
bottom left with 100 instances per data point, second order polynomials on right). We give error rates (y-axis in %) for six score
aggregation methods (MLE as gray line, Ave in brown, Borda in green, NoRange in blue, Aff-Cont in purple, and Aff-NLP in
black) over the MLE error rate (x-axis in %) when varying the number of objects and experts.

objects, which makes the partial ranking of objects more in-
formative.

We find that the NoRange method, where we ignore dif-
ferences in expert ranges, is statistically not worse than the
MLE in this experiment. Moreover, when we consensually
shift and scale by repeatedly solving linear or non-linear pro-
grams in the Aff-Cont and Aff-NLP methods, respectively,
we observe only slightly worse error rates.

On the latent-metric benchmark, we see how brittle max-
imum likelihood methods can become when the underly-
ing probabilistic assumptions are not met perfectly. Even
a slight deviation from the original model (recall that now
each object has three latent values instead of just one, out of
which we form ground-truth object/expert scores by convex-
combining the latent object scores consistently for each ex-
pert) leads to much less convincing performance. Statisti-
cally worse performs only the simple Borda count. Not even
the simplistic averaging method is overall worse than the
MLE. Best performing on this benchmark, however, are the
consensual affine transformation methods, whereby the No-
Range method is the best, with Aff-NLP trailing marginally
in second place.

One reason why the maximum likelihood estimator may
not work well in case different experts actually truly disagree
is shown in the following example:

Paper evaluation
Reviewer # reviews 1 2 3 4 5 6 7 8

1 4 1 – – 2 – 2 – 1
2 6 2 – 2 1 2 1 – 2
3 4 – 2 2 – 2 – 2 –
4 4 1 – – 2 – 2 – 1
5 4 – 2 1 – 1 – 2 –

In this case, an optimal solution to the QP introduced
in (Roos, Rothe, and Scheuermann 2011) is to set scaling
and shifting values p̂, q̂ to 0 for reviewers 1, 2, 4, and 5,
while reviewer 3’s values are scaled by a factor of 5 and
then shifted by -10. The resulting objective costs are obvi-
ously 0 and thus optimal, with all objects receiving the same
score of 0. That means, the MLE-based ordering in this ex-
ample is completely arbitrary, due to the marginalization of
expert opinions which run contrary to one another. Note that
this is not the result of some pathological example but inher-
ent to the MLE optimization itself which will always benefit
from washing out actual differences of opinion which, in its
motivating probabilistic model, should not exist in the first
place. Due to the variable bounds, consensual affine trans-
formations naturally preserve contrary ratings and thus pre-
vent the undesirable outcome of arbitrary object orderings.
In the example above, NoRange and Aff-NLP both return
the meaningful order 1 = 8 < 4 = 6 < 3 = 5 < 2 = 7.
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Figure 2: Fitted polynomials for conference benchmark ex-
periments (smaller conference on left). Axes and color cod-
ing of aggregation methods as in Figure 1.

Real-world Inspired Benchmarks
While they were able to show the need for methods that are
tailor-made to deal with partial valuation bias, the previous
experiments lack realism in the sense that the matching of
experts to objects is rarely random. We now use real-world
data from two AI conferences. As this setting does not allow
us to scale the problem size, we instead vary distortion and
noise intervals between 5% and 30%, which leads to over
400,000 values per conference that we analyze.

Figure 1 shows the results on the smaller conference when
using the first setup where we use the unaltered, original
reviewer values as ground truth. While we can see again
clearly that neither Borda nor the MLE work competitively,
and consensual affine transformations work best, we notice
that, strangely, averaging as well as the various consensual
methods have an error pattern that is reversed from MLE’s.
The problem here is that the experimental setup is flawed:
Recall that we strive to eliminate systematic bias that arises
from partial valuations. In this setup, we start with a ground
truth that still contains this bias. We then add even more
bias, which we consequently strive to remove again. Even-
tually, we compare with the original, biased data. Clearly, to
assess if any noise filter works, we need to conduct the final
comparison with a noise-free pattern so that we can properly
assess if the noise filter works. Otherwise, we cannot distin-
guish undesirable effects of our filter from its actual function
of removing bias.

In Figure 2, we present the results on the conference data,

starting from de-noised ground truth valuations. We observe
that the MLE, which performed well by design on the one-
value benchmark, but struck out on the latent-value bench-
mark and the unaltered conference data, can again not com-
pete with consensual affine transformation-based methods.

These experiments confirm that the consensual affine
transformation techniques are not only computationally af-
fordable, but also lead to the lowest error rates when select-
ing top objects for all methods that we compared.

Conclusion
We studied aggregation methods for partial valuation aggre-
gation. In the first extensive comparison of this kind, we
showed that standard methods, like Borda count or Kemeny-
Young aggregation, perform poorly for this task. Moreover,
we found that a maximum likelihood approach designed
specifically for the problem of ordering conference papers
works very well for the noise model it was designed for,
but generalizes poorly. We introduced various optimization
approaches to compute consensual affine transformations of
the experts’ scores. Our tests on automatically generated and
real-life data showed that these scale well and yield better re-
sults than other methods. Overall best perform the NoRange
and Aff-NLP methods, whereby the first often leads to the
best results and the latter works overall most robustly, giv-
ing the best or second best performance on all benchmarks
we tested.
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