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Abstract
This paper continues the rather recent line of research on
the dynamics of non-monotonic formalisms. In particular, we
consider semantic changes in Dung’s abstract argumentation
formalism. One of the most studied problems in this context
is the so-called enforcing problem which is concerned with
manipulating argumentation frameworks (AFs) such that a
certain desired set of arguments becomes an extension. Here
we study the inverse problem, namely the extension removal
problem: is it possible – and if so how – to modify a given
argumentation framework in such a way that certain unde-
sired extensions are no longer generated? Analogously to the
well known AGM paradigm we develop an axiomatic ap-
proach to the removal problem, i.e. a certain set of axioms
will determine suitable manipulations. Although contraction
(that is, the elimination of a particular belief) is conceptually
quite different from extension removal, there are surprisingly
deep connections between the two: it turns out that postulates
for removal can be directly obtained as reformulations of the
AGM contraction postulates. We prove a series of formal re-
sults including conditional and unconditional existence and
semantical uniqueness of removal operators as well as vari-
ous impossibility results – and show possible ways out.

Introduction
Computational models of argumentation have received a lot
of interest over the recent years. There are two major lines
of research in the area. Structured argumentation (Besnard
and Hunter 2008), as the name suggests, deals with the for-
mal structure of arguments, their generation from a possibly
inconsistent knowledge base and the identification of rela-
tionships among arguments. Abstract argumentation (Baroni
et al. 2018) is concerned with the evaluation of arguments,
viewed as abstract entities. Here the evaluation is most com-
monly based on the attack relation among arguments. The
leading formal tools in abstract argumentation are Dung’s
abstract argumentation frameworks (AFs) (Dung 1995). An
AF basically is a graph whose nodes represent arguments
whereas the links describe the attack relation. A semantics
assigns to each AF a collection of argument sets which con-
stitute a coherent view of the world.

In recent years dynamic aspects of abstract argumenta-
tion have become an important focus of research in the area,

Copyright © 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

which is far from surprising as argumentation is an inher-
ently dynamic process. Much of this work has been in-
fluenced – in one way or another – by the famous AGM
theory (Alchourrón, Gärdenfors, and Makinson 1985), the
leading formal account of revision and contraction in the
context of propositional logic. Whereas revision potentially
replaces information with new knowledge, contraction re-
moves information from a given knowledge base. In con-
trast to revision where several works already exist (Coste-
Marquis et al. 2014a; 2014b; Baumann and Brewka 2015;
Diller et al. 2018) to mention a few, contraction in AFs as
yet has not received much attention. A notable exception is
(Bisquert et al. 2011) which investigates the removal of a
single argument.

An intensively studied issue in argumentation is the so-
called enforcing problem (Baumann and Brewka 2010; Bau-
mann 2012; Dupin de Saint-Cyr et al. 2016). Enforcement
is concerned with manipulating argumentation frameworks
(in a certain minimal way) such that a certain desired set of
arguments becomes an extension. Recently, (Haret, Wallner,
and Woltran 2018) presented a first axiomatic treatment of
this manipulating operation and showed its close relation-
ship to classical AGM revision. However, from a concep-
tual point of view there are still differences. For instance,
whereas revision operates on the level of single beliefs, en-
forcement operates on sets of arguments representing com-
plete views of the world.

The topic of this paper is the inverse problem to extension
enforcement, namely the problem of extension removal, that
is: given an AF F and a set of extensions E , identify an AF
H that is as close as possible to F but has none of the exten-
sions in E . In the same way as enforcement shifts revision to
the level of extensions, extension removal shifts contraction
to the level of extensions.

To the best of our knowledge the extension removal prob-
lem has not been studied in the literature before – which is
surprising since removal appears to be as important as en-
forcement. Assume an argumentation framework F repre-
sents what an agent knows/believes about the world. As dis-
cussed earlier, the available arguments may give rise to mul-
tiple extensions, that is, multiple equally plausible views of
the world “sanctioned” by the available arguments and their
relations. It may well be that the agent realizes that for some
reason some of these extensions do not reflect adequate op-
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tions and should thus be removed. The operators studied in
this paper achieve exactly this.
Example 1 (Running example). Consider the following
AF F under stable semantics. Stable semantics selects
non-conflicting sets of arguments attacking all remaining
arguments. This means, the stable extensions of F are given
by {a, e}, {b, e} and {c, d, f}.

F ∶

a b

c d

e

f

Let us now assume that the set E = {b, e} is undesired
for certain reasons. One naive method for forbidding E is
simply to delete both arguments b and e (depicted in H ).
Another option is to maintain all arguments and to delete
the attack (e, f) only (depicted in H ′).

H ∶

a

c d

f H ′ ∶

a b

c d

e

f

Clearly, both frameworks H and H ′ do not possess E as a
stable extension anymore. However, from a semantical point
of view both frameworks exhibit undesired behaviour. For
instance, the initial set {a, e} is no longer a stable exten-
sion in H . Even worse, the AF H ′ possesses the new stable
extension {e, f} which was not stable before.

As the AGM theory for propositional change, the ap-
proach to extension removal developed in this paper is ax-
iomatic. This means that the formal definition of removal op-
erators is based on a collection of axioms (postulates) iden-
tifying desired properties of these operators.

The paper is organized as follows. After providing the
necessary background in abstract argumentation and AGM-
style contraction in Sect. 2 we develop our axiomatic treat-
ment of extension removal in Sect. 3. Here we also discuss
the close relationship to AGM contraction. Sect. 4 estab-
lishes conditional existence and uniqueness results for ar-
bitrary AF semantics. The special case of stable semantics
is analyzed in Sect. 5 where we show that the existence of
removal operators is guaranteed for stable. Sect. 6 discusses

impossibility results for other semantics and shows that for-
bidding to remove all extensions can be a reasonable way
out of the impossibility for a high number of representa-
tive argumentation semantics. Sect. 7 investigates syntacti-
cal desiderata and proves first results in this direction. Fi-
nally, Sect. 8 discusses related work and summarizes the
core ideas of the paper.

Background
Abstract Argumentation
An argumentation framework (AF) is a directed graph F =
(A,R) (Dung 1995). A node a ∈ A is called an argument
and in case of (a, b) ∈ R we say that a attacks b or a is an
attacker of b. Furthermore, an argument b is defended by a
setA if each attacker of b is counter-attacked by some a ∈ A.
In this paper we consider finite AFs only (cf. (Baumann and
Spanring 2015; 2017) for a consideration of infinite AFs).
We fix an infinite set of arguments U and use F = {F =
(A,R) ∣ A ⊆ U ,A finite } for the set of all considered AFs.
We use ℘(X) to denote the power set of a set X . A set E ∈
℘(℘(U)) is called an extension-set. For a set E ∈ ℘(U) we
useE⊕ = E∪{b ∣ (a, b) ∈ R,a ∈ E} and as usual, we denote
(A,R) ⊑ (A′,R′) whenever A ⊆ A′ and R ⊆ R′.

An extension-based semantics is a function σ ∶ F →
℘(℘(U)) which assigns to any AF F = (A,R) a set of
reasonable positions, so-called σ-extensions, i.e. σ(F) ⊆
℘(A). Beside the most basic conflict-free and admissi-
ble sets (abbr. cf and ad ) we consider the following ma-
ture semantics, namely stable, stage, semi-stable, com-
plete, preferred, grounded, ideal and eager semantics (abbr.
stb, stg , ss, co,pr , gr , id and eg respectively). A very good
overview can be found in (Baroni, Caminada, and Giacomin
2011).

Definition 1. Let F = (A,R) be an AF and E ⊆ A.

1. E ∈cf (F) iff for no a, b∈E, (a, b)∈R,
2. E ∈ad(F) iff E ∈cf (F) and E defends all its elements,
3. E ∈stb(F) iff E ∈cf (F) and E⊕=A,
4. E ∈stg(F) iff E ∈cf (F) and for no I ∈cf (F), E⊕⊂I⊕,
5. E ∈ss(F) iff E ∈ad(F) and for no I ∈ad(F),E⊕⊂I⊕,
6. E ∈ co(F) iff E ∈ad(F) and for any a ∈A defended by

E , a∈E ,
7. E ∈pr(F) iff E ∈co(F) and for no I ∈co(F), E ⊂I ,
8. E ∈gr(F) iff E ∈co(F) and for any I ∈co(F), E ⊆I ,
9. E ∈ id(F) iff E ∈ co(F), E ⊆ ⋂pr(F) and there is no

I ∈co(F) satisfying I ⊆⋂pr(F) s.t. E ⊂I ,
10. E ∈ eg(F) iff E ∈ co(F), E ⊆ ⋂ss(F) and there is no

I ∈co(F) satisfying I ⊆⋂ ss(F) s.t. E ⊂I .

A semantics σ is universally defined if σ(F) ≠ ∅ for any
F ∈ F . If in addition ∣σ(F)∣ = 1 we say σ is uniquely de-
fined, like grounded, ideal and eager semantics. All seman-
tics apart from stable are universally defined. This means,
stable semantics may collapse, i.e. there are AFs F , s.t.
stb(F) = ∅. This property will play an essential role in this
paper. Finally, for a given semantics σ we say that two AFs
F and G are (ordinarily) σ-equivalent if σ(F) = σ(G).
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AGM-style Contraction
We now recap the basic AGM postulates for belief contrac-
tion (Alchourrón, Gärdenfors, and Makinson 1985). In the
AGM paradigm the underlying logic is assumed to be propo-
sitional logic and the beliefs are modeled by a deductively
closed set of sentences (a so-called belief set). The provided
postulates address the problem of how a current belief set K
should be changed in the light of removing a belief p. We
use ⊧ for the classical consequence relation, K ÷ p for the
results of contracting a belief p from K and K + p for ⊆-
least deductively closed set of formulas containing both K
and p. The latter operator is called expansion and it simply
adds new beliefs without restoring consistency.1

C1 K ÷ p is a belief set (closure)

C2 K ÷ p ⊆K (inclusion)

C3 p /∈K ⇒K ÷ p =K (vacuity)

C4 /⊧ p⇒ p /∈K ÷ p (success)

C5 K ⊆ (K ÷ p) + p (recovery)

C6 ⊧ p↔ q⇒K ÷ p =K ÷ q (extensionality)

Removal Operators: A Semantic Approach
Let us assume that an AF F reflects the arguments and their
interrelationships considered by an agent, and the associated
extensions correspond to different views of the world the
agent considers plausible (cf. (Coste-Marquis et al. 2014a;
Nouioua and Würbel 2014; Diller et al. 2015) for similar
approaches). Consequently, removing extensions in AFs can
be seen as ruling out certain alternative views a knowledge
base admits. Although (w.r.t. sceptical reasoning mode) this
amounts to strengthening an agent’s beliefs, it turns out that
naturally arising postulates for extension removal can be
more or less directly be derived from the AGM contraction
postulates. In the following, we will denote the result of re-
moving an extension-set E from a given AF F as r(F ,E).
Clearly, the result will highly depend on the considered se-
mantics. Therefore we parameterize our axiomatization with
a certain argumentation semantics σ. In order to figure out
which axioms should be demanded for suitable removal op-
erator let us start with some reflections:

1. The result of removing alternative views of the world
should be in the same format as the input was. This
means, in our setup we want to end up with an AF
(R1σ).

2. Moreover, as the name removal problem suggest we
definitely do not want to add new extensions, i.e. the
resulting views of the world should be a subset of the
initial ones (R2σ).

3. Removing a view of the world which is not considered
acceptable anyway should not change anything (R3σ).

4. Now: what about views of the world which have been
considered as acceptable before? Clearly, in general we

1The two additional “supplementary” postulates proposed by
Gärdenfors do not play a role here and will not be discussed.

want removal to be successful, but depending on the un-
derlying formalisms some views might not be remov-
able. In consideration of the first item we have to check
whether there are certain unremovable views, i.e. exten-
sions which belong to any AF (R4σ).

5. If we add the undesired extensions to the result of re-
moving them we should recover at least all initial views
of the world. This means, a removal operator should
not delete an unnecessarily large amount of information
(R5σ).

6. Finally, the more extensions to be removed, the fewer
extensions should be acceptable in the resulting frame-
work (R6σ).

We proceed with a precise definition of unremovable
views. In analogy to classical logic we will call them tau-
tologies.
Definition 2. For a semantics σ we define the set of σ-
tautologies as

⊺σ = ⋂
H ∈F

σ(H ).

Note that ⊺σ ⊆ σ(F) for any semantics σ and any F ∈ F .
For instance, in case of admissible and conflict-free sets we
have ⊺ad = ⊺cf = {∅}. Whereas for all other considered
semantics σ we obtain ⊺σ = ∅, i.e. there are no tautologies
at all.2

R1σ r(F ,E) is an AF.
R2σ σ (r(F ,E)) ⊆ σ(F).
R3σ For E ′ = E ∖ σ(F) we have, σ(F) = σ (r(F ,E ′)).
R4σ For E ′ = E ∖ ⊺σ we have E ′ ∩ σ (r(F ,E)) = ∅.
R5σ σ(F) ⊆ σ (r(F ,E)) ∪ E .
R6σ E ⊆ E ′ ⇒ σ (r(F ,E ′)) ⊆ σ (r(F ,E)).
Definition 3. An operator r ∶ F × ℘(℘(U)) → F where
(F ,E) ↦ r(F ,E) is called a σ-removal operator iff axioms
R1σ-R6σ are satisfied.

The attentive reader may have already recognized that
apart from the axiom R6σ all stipulated removal postulates
might be almost directly reconstructed from the contraction
postulates by equating K ÷ p and K with σ (r(F ,E)) or
σ(F), respectively and associating single occurrences of p
with the extension-set E . This is exactly what we mean by
stating that extension removal shifts contraction to the level
of extensions.

Conditional Existence and Uniqueness
Conditional Existence
The very idea underlying extension removal is that certain
extensions should no longer exist. Consequently, a natural
candidate for the result of removal are those AFs which pos-
sess all those initial extensions which do not appear in E .
However, as propositional tautologies are exempt from pos-
sible contraction in the AGM theory, we also have to accept

2The claimed sets of tautologies can be verified by computing
the semantics of F = ({a},∅) and G = ({b},∅) as well as ac-
cepting that the empty set is always conflict-free and admissible.
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that some sets of arguments cannot be removed. In order to
maintain the possibility of realizing such a set we thus have
to add all tautological extensions since they are accepted by
any framework. This leads to the following generic defini-
tion of σ-candidates which plays a central role throughout
this section.
Definition 4. Given a semantics σ, an AF F and an
extension-set E . We define the set of σ-candidates (for F and
E) as

CσFE = {H ∈ F ∣ σ(H ) = (σ(F) ∖ E) ∪ ⊺σ}.
The following theorem proves the conditional existence

of removal operators for any semantics σ. More precisely,
if the set of σ-candidates is non-empty for any possible pair
of an AF and an extension-set, then selecting one AF out of
each set yields a σ-removal operator.
Theorem 1. Given semantics σ, s.t. CσFE ≠ ∅ for each AF
F and extension-set E . Any function fσ ∶ F ×℘(℘(U))→ F
with fσ(F ,E) ∈ CσFE yields a σ-removal operator.

Proof. Given fσ as described above. We have to prove that
all removal postulates are satisfied. In the following we con-
sider F and E as arbitrary but fixed AF or extension-set, re-
spectively.

R1σ Since for any AF F and each extension-set E the non-
emptiness of CσFG is guaranteed by assumption we have
that fσ is well-defined, i.e. it is indeed a function. Conse-
quently, fσ(F ,E) ∈ F .

R2σ According to Definition 4 we have σ (fσ(F ,E)) =
σ(H ), s.t. H ∈ CσFE . This means σ(H ) = (σ(F)∖E)∪⊺σ .
Moreover, obviously, σ(F) ∖ E ⊆ σ(F) and due to Defi-
nition 2, ⊺σ ⊆ σ(F). Altogether, σ (fσ(F ,E)) ⊆ σ(F) as
required.

R3σ Given E ′ = E ∖ σ(F). Then, σ (fσ(F ,E ′)) =
σ (fσ(F ,E ∖ σ(F))) = σ(H ) with H ∈ CσFE∖σ(F).
Hence, σ(H ) = (σ(F) ∖ (E ∖ σ(F))) ∪ ⊺σ . Applying
the following set theoretical equality C ∖ (B ∖ A) =
(A ∩ C) ∪ (C ∖ B) yields σ(H ) = σ(F) ∪ ⊺σ . Fi-
nally, since ⊺σ ⊆ σ(F) for any semantics σ we deduce
σ (fσ(F ,E ′)) = σ(F).

R4σ Assume E ′ = E ∖ ⊺σ . We have to show that E ′ ∩
σ (fσ(F ,E)) = ∅. In consideration of Definition 4
we have to verify (E ∖ ⊺σ) ∩ ((σ(F) ∖ E) ∪ ⊺σ)) =
∅. Striving for a contradiction, let (E ∖ ⊺σ) ∩
((σ(F) ∖ E) ∪ ⊺σ)) ≠ ∅. Hence there is an extension-set
E, s.t. E ∈ E ∖ ⊺σ and E ∈ (σ(F) ∖ E) ∪ ⊺σ . We deduce
E ∈ E and E ∉ ⊺σ . Thus, E ∈ σ(F)∖ E has to hold which
implies E ∉ E . Contradiction!

R5σ Removal postulate R5σ can be shown in the follow-
ing direct manner. σ(F) ⊆set.th. (σ(F) ∖ E) ∪ E =Def.2

((σ(F) ∖ E) ∪ ⊺σ) ∪ E =Def.4 σ (fσ(F ,E)) ∪ E .
R6σ According to Definition 4 we have σ (fσ(F ,E ′)) =
(σ(F) ∖ E ′) ∪ ⊺σ . Due to the assumption E ⊆ E ′ we
deduce (σ(F) ∖ E ′) ∪ ⊺σ ⊆ (σ(F) ∖ E) ∪ ⊺σ which
proves the anti-monotonicity in the second component,
i.e. σ (fσ(F ,E ′)) ⊆ σ (fσ(F ,E)).

Semantical Uniqueness of Removal Operators
In the following we show that all removal operators produce
the same semantical output. This means, in contrast to clas-
sical AGM-style contraction there is no choice for the re-
sulting belief set. Any two removal operators produce ordi-
narily equivalent AFs for the same input. In order to prove
this bold claim we firstly show the main lemma stating that
σ-candidates are the only possible results for any removal
operator.

Lemma 2. Given a semantics σ and a removal operator
r ∶ F × ℘(℘(U)) → F . For each AF F and any extension-
set E we have, r(F ,E) ∈ CσFE .

Proof. Striving for a contradiction, suppose that there are
a removal operator r, an AF F and an extension-set E , s.t.
r(F ,E) ∉ CσFE . Consequently, according to Definition 4 we
deduce σ(r(F ,E)) ≠ (σ(F) ∖ E) ∪ ⊺σ . This assertion is
equivalent to σ(r(F ,E)) ⊈ (σ(F) ∖ E) ∪ ⊺σ or (σ(F) ∖
E) ∪ ⊺σ ⊈ σ(r(F ,E)). We show that both cases lead to a
contradiction.

1. Assume σ(r(F ,E)) ⊈ (σ(F) ∖ E) ∪ ⊺σ .
Hence, there is a set E with E ∈ σ(r(F ,E)) and
E ∉ (σ(F) ∖ E) ∪ ⊺σ . Consequently, E ∉ σ(F) ∖ E
and E ∉ ⊺σ . Since σ (r(F ,E)) ⊆ σ(F) by removal
postulate R6σ we have E ∈ σ(F). Together with E ∉
σ(F) ∖ E we obtain E ∈ E . Applying E ∉ ⊺σ yields
E ∈ E ∖ ⊺σ . Now, we can employ the removal postulate
R4σ which results in E ∉ σ(r(F ,E)). Contradiction.

2. Assume (σ(F) ∖ E) ∪ ⊺σ ⊈ σ(r(F ,E)).
In consideration of removal postulate R5σ we obtain
σ(F) ⊆ σ (r(F ,E))∪E . If E is omitted on both sides we
get σ(F)∖E ⊆ σ (r(F ,E))∖E . Thus, even σ(F)∖E ⊆
σ (r(F ,E)) is guaranteed. Now, since due to Defini-
tion 2 ⊺σ ⊆ σ(H ) for any AF H and moreover, since
r(F ,E) yields indeed an AF because it is a removal op-
erator we finally obtain (σ(F)∖E)∪⊺σ ⊆ σ (r(F ,E)).
Contradiction.

Having Lemma 2 and Definition 4 at hand we immedi-
ately obtain the claimed semantical uniqueness result. For
ease of notation we introduce equivalence among opera-
tors first. That is, two operators are equivalent iff they pro-
duce ordinarily equivalent AFs for any initial framework
and extension-set. We want to stress that the theorem below
holds for any semantics.

Definition 5. Given a semantics σ and two σ-removal op-
erators r, r′ ∶ F × ℘(℘(U)) → F . We say r and r′ are
σ-equivalent (denoted r ≡σ r′) if for any AF F and any
extension-set E we have: r(F ,E) ≡σ r′(F ,E).
Theorem 3. Given a semantics σ and two σ-removal oper-
ators r and r′. Then r ≡σ r′.
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Removal Operators for Stable Semantics
So far we did not tackle the question whether there are re-
moval operators at all. In consideration of the previous re-
sults (Theorem 1, Lemma 2) we deduce that the existence
of removal operators depends on the non-emptiness of the
set of σ-candidates. In consideration of Definition 4 the ex-
istence problem of removal operators shifts to a realizabil-
ity problem of argumentation semantics. More precisely, if
a semantics σ allows us to realize the relative complement
of a given set of σ-extensions and an arbitrary extension-set,
then the existence of σ-removal operators is guaranteed. We
mention that expressibility issues highly depend on the log-
ical formalisms. For instance, in case of propositional logic
any finite set of two-valued interpretations is realizable. This
means, given such a finite set I , we always find a set of for-
mulae T , s.t. Mod(T ) = I . A first systematic study for ab-
stract argumentation semantics was given in (Dunne et al.
2015). One of the main insights was that representational
limits highly depend on the chosen semantics (cf. (Baumann
2017, Table 2) for a comprehensive overview).

Let us consider stable semantics first. It was shown that
tightness and incomparability are the decisive properties for
realizability under stable semantics. Consider the following
definition and theorem.

Definition 6 ((Dunne et al. 2015)). Given an extension-set
E ∈ ℘(℘(U)). Then E is called

1. tight if for allE ∈ E and a ∈ ⋃E we have: if S∪{a} ∉ E ,
then there is an s ∈ S, s.t. (a, s) ∉ {(a, b) ∣ ∃E ∈ E ∶
{a, b} ⊆ E} and

2. incomparable if for each E,E′ ∈ E , E /⊂ E′.

Theorem 4 ((Dunne et al. 2015)). Given an extension-set
E ∈ ℘(℘(U)). Then,

F ∈ F s.t. stb(F) = E exists⇔ E is incomparable and tight.

Roughly speaking, tightness encodes that if an argument a
does not occur in some extension E there must be a reason
for that, e.g. an attack between a and E. Incomparability is
just another name for forming a ⊆-antichain. We encourage
the reader to verify the mentioned properties for the running
example F depicted in Example 1.

The following theorem proves that the set of stb-
candidates is guaranteed to be non-empty. The main reason
for this is that the characterizing properties transfer to any
subset of a given set of stable extensions.

Theorem 5. For each AF F and extension-set E , CstbFE ≠ ∅.

Proof. Given an AF F and a extension-set E . In accordance
with Theorem 4 we have that stb(F) is tight and incompa-
rable. Since incomparability implies that tightness of a set
transfers to any subset of it (Baumann 2017, Lemma 3.10,
item 2) we have tightness of stb(F) ∖ E (= (stb(F) ∖ E) ∪
⊺stb since ⊺stb = ∅). Moreover, being a ⊆-antichain obvi-
ously transfers to any subset. This means, stb(F)∖E is tight
and incomparable which implies its realizability according
to Theorem 4. Hence, CstbFE ≠ ∅ concluding the proof.

Now, we are ready to present the main theorem for sta-
ble semantics stating the existence as well as the range of
removal operators.

Theorem 6. Let R = {r ∣ r is a stb-removal operator}.
Then, R = {f ∣ f ∶ F × ℘(℘(U))→ F with f(F ,E) ∈ CstbFE}
and moreover,R ≠ ∅.

Proof. Apply Theorems 1, 5 as well as Lemma 2.

As a matter of fact, knowing that a certain set is realiz-
able does not provide one automatically with a witnessing
AF. Consequently, we have to ask: how to obtain a frame-
work which possesses the required sets of extensions? For-
tunately, in case of stable semantics we are equipped with
a two-step procedure showing realizability in a construc-
tive fashion (Baumann 2017, Definition 3.18, Proposition
3.19). This means, we are able to build a stb-candidate from
scratch. The main idea of the canonical construction is as
follows: For a given extension-set E we start with a frame-
work G possessing all arguments in ⋃E and add an attack
between any two arguments iff they do not occur jointly in
any set E ∈ E . In this way it is guaranteed that any set in
E becomes a stable extension of G (generating step). In a
second step, we augment the initial framework G to I , s.t.
only elements in E become stable. For any undesired stable
extension S in G we add a self-attacking argument s which
is attacked by any argument in ⋃E ∖ S (eliminating step).

Example 2 (Standard Construction). In Example 1 we pre-
sented two ad hoc “solutions” (AFs H and H ′) to the prob-
lem of removing the undesired set E from the AF F . How-
ever, both frameworks can not stem from a removal opera-
tor r in the sense of Definition 3 since several postulates are
not satisfied, e.g. R5stb is violated by H and R2stb is not
fulfilled by H ′.

The following framework I is the above mentioned
standard construction for the required extension-set E =
{{a, e},{c, d, f}}. This means, I ∈ CstbF{E}. We mention that
the framework I is already obtained after the generating
step since no additional stable extensions are constructed.

I ∶

a

c d

e

f

(Im)Possibility Results
Are there removal operators for other semantics considered
in this paper? Unfortunately, the answer is no in general.
The main reason for this result are the already shown se-
mantical uniqueness of contraction operators and the univer-
sal definedness of all considered semantics apart from stable
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one. More precisely, any mature universally defined seman-
tics σ is not able to realize no extensions which is enforced
if we want to remove all initial extensions (cf. Lemma 2).
However, on the positive side, if we forbid to give up all
extensions, i.e. if requesting to start with a tabula rasa is dis-
allowed, then one may define a reasonable form of removal
in the spirit of stable semantics.

Theorem 7. There is no σ-removal operator for each se-
mantics σ ∈ {cf ,ad , stg , stb, ss, co,pr , gr , id , eg}.

Proof. Consider σ ∈ {stg , stb, ss, co,pr , gr , id , eg}. We
have, ⊺σ = ∅. Striving for a contradiction assume that there
is a σ-removal operator r ∶ F × ℘(℘(U)) → F and let F =
({a},∅) and E = {{a}}. Hence, by Lemma 2 and Defini-
tion 4 we deduce σ (r(F ,E)) = (σ(F)∖E)∪⊺σ = ∅∪∅ = ∅.
Since σ is universally defined we obtain σ(H ) ≠ ∅ for any
H ∈ F . This means, r(F ,E) fails to be an AF.

Consider now σ ∈ {cf ,ad}. We have ⊺σ = {∅}.
Suppose for a contradiction that there is a σ-removal
operator r. Consider F ′ = ({a, b},∅) and E ′ =
{∅,{a},{b}}. Hence, according to Lemma 2 and Defini-
tion 4 we obtain σ(r(F ′,E ′)) = (cf (F ′) ∖ E ′) ∪ ⊺cf =
({∅,{a},{b},{a, b}}∖{∅,{a},{b}})∪{∅} = {∅,{a, b}}.
Clearly, if {a, b} ∈ cf (H ), then {a} ∈ cf (H ). Thus,
cf (r(F ′,E ′)) is not realizable by any AF H ∈ F .

Finally, let us turn to admissible sets. Consider F ′′ =
({a1, a2, a3},∅) and E ′′ = {∅,{a1, a2, a3}}. Hence,
ad(F ′′) = ℘({a1, a2, a3}) and thus, according to
Lemma 2 and Definition 4 we deduce σ(r(F ′′,E ′′)) =
℘({a1, a2, a3}) ∖ {{a1, a2, a3}}. It can be checked that this
set does not fulfill so-called conflict-sensitivity which im-
plies that r(F ′′,E ′′) fails to be an AF (Baumann 2017, Def-
inition 3.21, Theorem 3.24).

We close this section with a positive result for several ma-
ture semantics. In analogy to Theorem 5 we may show an
existence result as long as removing all extensions is for-
bidden. The proof uses non-trivial realizability results first
shown in (Dunne et al. 2015).

Theorem 8. Given a semantics σ ∈ {stg , ss,pr , gr , id , eg}.
For any AF F and any extension-set E we have CσFE ≠ ∅,
whenever σ(F) ∖ E ≠ ∅.

Proof. For any considered semantics we have ⊺σ = ∅. This
means, CσFE ≠ ∅ if and only if there is an AF H , s.t.
σ(H ) = σ(F) ∖ E . Consider first the uniquely defined se-
mantics σ ∈ {gr , id , eg}. Since σ(F) ∖ E ≠ ∅ is assumed
we deduce ∣σ(F) ∖ E ∣ = 1. Hence, in accordance with (Bau-
mann 2017, Theorem 3.33) we obtain CσFG ≠ ∅.
Consider now σ ∈ {stg , ss,pr}. The characterization theo-
rems require non-empty extension sets, incomparability, and
conflict-sensitivity or tightness (Baumann 2017, Theorems
3.12, 3.24). The latter both transfer to subsets given incom-
parability (Baumann 2017, Lemmata 3.10, 3.23). Incompa-
rability itself transfers to any subset by definition. Finally,
non-emptiness is implied by the assumption σ(F) ∖ E ≠ ∅.
Hence, CσFE ≠ ∅ concluding the proof.

We emphasize that conflict-free and admissible sets as
well as complete semantics are not included in the theorem
above since the assertion would be false. Moreover, just like
in case of stable semantics witnessing frameworks for the
considered semantics can be constructed from scratch. In
contrast to stage semantics where the same standard con-
struction as for stable semantics is used we have to rely on
a more involved construction for preferred semantics (Bau-
mann 2017, Propositions 3.19, 3.31). Due to translation re-
sults we may use the latter even for semi-stable semantics
(Dvorák and Woltran 2011).

Syntactical Desiderata
One of the main assumptions of belief revision is that of
minimal change. The removal postulates R1σ−R6σ encode
this core idea with respect to the semantical side of AFs. In
this section we will briefly discuss which kind of syntacti-
cal desiderata can be fulfilled on top of the semantical ones.
Consider the following example.
Example 3 (Syntactically Desirable Results). In Example 2
we presented the standard construction which realizes the
required set of extensions. The following two AFs G and G ′
present further possible results for removal operators r since
stb(G) = stb(G ′) = {{a, e},{c, d, f}}, i.e. G ,G ′ ∈ CstbF{E}.

G ∶

a b

c d

e

f G ′ ∶

a

c d

e

f

Which result should be preferred for r(F ,{E})? One may
argue that the resulting framework should be as similar as
possible (w.r.t. some distance measure) to the initial AF. In
this case AF G should be preferred over G ′ as well as I .
Another plausible option is to require as few syntactical ma-
terial as possible. Hence, in this setup AF G ′ should be pre-
ferred over G and I .

As a first result in this direction we show that it is im-
possible to guarantee that there is a removal result which
is a subgraph of the initial framework (as satisfied by H and
H ′ depicted above). We consider stable semantics only since
for the other semantics the general impossibility is already
shown (Theorem 7).
Theorem 9. There is no stb-removal operator r, s.t. for any
AF F and any extension-set E we have, r(F ,E) ⊑ F .

Proof. Striving for a contradiction assume the exis-
tence of a stb-removal operator r. Consider the AF
J = ({a, b, c, d},{(a, b), (b, a), (c, d), (d, c)}) and E =
{{a, c}}. We have stb(J ) = {{a, c},{a, d},{b, c},{b, d}}.
According to Theorem 6 we deduce stb(r(J ,E)) =
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{{a, d},{b, c},{b, d}}. Since any argument of J occurs in at
least one extension we deduce that J and r(J ,E) possess the
same arguments. Moreover, even deleting one attack would
lead to one unattacked argument x. Hence, x is necessarily
contained in any extension in contrast to the required set of
stable extension stb(r(J ,E)). Contradiction!

On the positive side, we may show that a removal result
can always be found as a supergraph of the initial frame-
work. Moreover, the distance (in terms of added arguments)
is guaranteed to be low given that the number of extensions
which has to be removed is low too. A further detailed con-
sideration of this issue will be part of future work.

Theorem 10. There exists a stb-removal operator r, s.t. for
any AF F = (A,R) and any extension-set E we have,

F ⊑ r(F ,E) = (Ar,Rr) and ∣Ar∣ = ∣A∣ + ∣stb(F) ∩ E ∣ .

Proof. Given an AF F = (A,R) and an extension-set E .
Moreover, let E ′ = stb(F) ∩ E . Now, define Ar = A ∪ {E ∣
E ∈ E ′} and Rr = R ∪ {(E,E) ∣ E ∈ E ′} ∪ {(a,E) ∣ E ∈
E ′, a ∈ A ∖E}. By construction we have (A,R) ⊑ (Ar,Rr)
and ∣Ar∣ = ∣A∣ + ∣stb(F) ∩ E ∣ as required.
It remains to show that F r = (Ar,Rr) ∈ CstbFE . This means,
according to Definition 4 we have to prove stb(F r) =
stb(F) ∖ E . We prove stb(F r) ⊇ stb(F) ∖ E only and state
that the ⊆-direction can be shown in a similar fashion.
Let E′ ∈ stb(F)∖E . Consequently, E′ ∈ stb(F) and E′ ∉ E
justifying E′ ∉ E ′ = stb(F) ∩ E . E′ attacks all arguments
in A since E′ ∈ stb(F). Moreover it remains conflict-free
in F r since new attacks involve at least one new argument
in {E ∣ E ∈ E ′}. Since stb(F) forms a ⊆-antichain we have
that E′ possesses at least one distinct element aE w.r.t. each
E ∈ E ′ ⊆ stb(F). This means, aE ∈ E′ ∖ E and therefore
aE ∈ A ∖ E. Thus, any new argument in {E ∣ E ∈ E ′} is
attacked by E according to the definition of Rr. Eventually,
E ∈ stb(F r).

Summary and Related Work
In this paper we presented an axiomatic approach to exten-
sion removal in abstract argumentation. An extension re-
moval operator is a function that is given a Dung argumen-
tation framework and a collection of “undesired” extensions
as input. The outcome is an argumentation framework that
does not possess any of the undesired extensions.

We introduced 6 removal axioms which formalize reason-
able properties a removal operator should possess. Although
removal and contraction are conceptually quite different, it
turned out that the postulates could be obtained as reformu-
lations of the AGM postulates for contraction. We formally
studied extension removal operators and obtained various –
as we believe quite interesting – results for a representa-
tive number of argumentation semantics. This includes exis-
tence, uniqueness and impossibility of various special cases.
Moreover, in case of impossibility results we studied how to
weaken the initial requirements in order to obtain reasonable
removal operators. Stable semantics played an outstanding

role in this study since it guarantees the unconditional ex-
istence of removal operators. Moreover, we showed how to
essentially construct such removal results and proved first
results regarding the distances of such solutions. As indi-
cated in that section the topic of syntactical desiderata is one
central issue for future work.

As mentioned in the Introduction, we are not aware of
any alternative approaches to extension removal for AFs.
The closest work to ours is (Boella, Kaci, and van der Torre
2009) where the authors studied removing arguments and/or
attacks, s.t. the initial semantics remain unchanged. This
problem might be called extension conserving problem and
they studied it for the uniquely defined grounded semantics.

Among the existing work related to ours is work on
contracting defeasible logic programs (Garcı́a et al. 2011),
a specific approach to structured argumentation, and con-
tracting logic programs in general (Binnewies, Zhuang, and
Wang 2015). However, the techniques used there are specific
for the formalisms they are intended for and it is difficult
to see how they could be adapted to AFs. Moreover, they
are concerned with the removal of single beliefs rather than
whole world views, which are what extensions represent.

In (Coste-Marquis et al. 2014a) the emphasis is on finding
assignments of values to arguments which reflect intended
revisions - expressed in a flexible language - and are as close
as possible to the original assignments. A drawback is that
the result of revision may not be representable using a sin-
gle AF. Diller and colleagues (Diller et al. 2018) take up this
issue and present an extension-based approach where the re-
vision of an AF is actually guaranteed to be representable
by an AF. To prove a representation theorem, they make
use of recent advances in both areas of argumentation and
belief change. In particular, they use the concept of realiz-
ability in argumentation and the concept of compliance as
introduced in Horn revision. Finally, (Coste-Marquis et al.
2014b) present an approach which is based on translating
an AF into a propositional formula which is then revised
using a standard propositional revision operator. This lat-
ter translation-based approach could without much effort be
adapted for contraction. However, the outcome of such an
approach heavily depends on the chosen representation of
AFs in propositional logic, and there is certainly more than
one way of choosing such a representation.

There are several obvious directions for future work,
in particular the development and implementation of algo-
rithms for extension removal. Furthermore, we will also ex-
tend our analysis to further semantics, e.g. ranking-based se-
mantics (Amgoud and Ben-Naim 2013; Amgoud et al. 2016)
and abstract dialectical frameworks (ADFs) (Brewka et al.
2013) which generalize AFs significantly. We are confident
that the techniques developed in this paper will also be ap-
plicable to this more general formalism. We will also inves-
tigate the suitability of our approach to other nonmonotonic
formalisms, e.g. to extension removal in default logic (Re-
iter 1980) or answer set removal in answer set programming
(Brewka, Eiter, and Truszczynski 2011).
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