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Abstract

We consider a sequence of successively more restrictive defi-
nitions of abstraction for causal models, starting with a notion
introduced by Rubenstein et al. (2017) called exact transfor-
mation that applies to probabilistic causal models, moving to
a notion of uniform transformation that applies to determinis-
tic causal models and does not allow differences to be hidden
by the “right” choice of distribution, and then to abstraction,
where the interventions of interest are determined by the map
from low-level states to high-level states, and strong abstrac-
tion, which takes more seriously all potential interventions in
a model, not just the allowed interventions. We show that pro-
cedures for combining micro-variables into macro-variables
are instances of our notion of strong abstraction, as are all the
examples considered by Rubenstein et al.

1 Introduction
We can and typically do analyze problems at different lev-
els of abstraction. For example, we can try to understand hu-
man behavior by thinking at the level of neurons firing in the
brain or at the level of beliefs, desires, and intentions. A po-
litical scientist might try to understand an election in terms
of individual voters or in terms of the behavior of groups
such as midwestern blue-collar workers. Since, in these anal-
yses, we are typically interested in the causal connections
between variables, it seems reasonable to model the vari-
ous levels of abstraction using causal models (Halpern 2016;
Pearl 2000). The question then arises whether a high-level
“macro” causal model (e.g., one that considers beliefs, de-
sires, and intentions) is a faithful abstraction of a low-level
“micro” model (e.g., one that describes things at the neu-
ronal level). What should this even mean?

Perhaps the most common way to approach the ques-
tion of abstraction is to cluster “micro-variables” in the
low-level model into a single “macro-variable” in the high-
level model (Chalupka, Eberhardt, and Perona 2015; 2016;
Iwasaki and Simon 1994). Of course, one has to be care-
ful to do this in a way that preserves the causal relation-
ships in the low-level model. For example, we do not want
to cluster variables X , Y , and Z into a single variable
X+Y +Z if different settings (x, y, z) and (x′, y′, z′) such
that x + y + z = x′ + y′ + z′ lead to different outcomes.
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Rubenstein et al. (2017) (RW+ from now on) provided an ar-
guably more general approach to abstraction. They defined a
notion of an exact transformation between two causal mod-
els. They suggest that if there is an exact transformation τ
from causal model M1 to M2, then we should think of M2

as an abstraction of M1, so that M2 is the high-level model
and M1 is the low-level model.

Abstraction almost by definition involves ignoring
inessential differences. So it seems that RW+ would want
to claim that if there exists an exact transformation from M1

and M2, then M2 and M1 are the same, except for “inessen-
tial differences”. This leads to the obvious question: what
counts as an inessential difference? Of course, this is to
some extent in the eye of the beholder, and may well de-
pend on the application. Nevertheless we claim that the no-
tion of “inessential difference” implicitly encoded in the def-
inition of exact transformation is far too broad. As we show
by example, there are models that we would view as sig-
nificantly different that are related by exact transformations.
There are two reasons for this. The first is that, because RW+

consider probabilistic causal models, some differences that
are intuitively significant are overlooked by considering just
the right distributions. Second, besides a function that maps
low-level states to high-level states, RW+ define a separate
mapping of interventions that can mask what we view as es-
sential differences between the interventions allowed at the
low level and the high level.

In this paper, we consider a sequence of successively
more restrictive definitions of abstraction, starting with the
RW+ notion of exact transformation, moving to a notion of
uniform transformation that applies to deterministic causal
models and does not allow differences to be hidden by the
“right” choice of distribution, and then to abstraction, where
the mapping between the interventions is determined by
the mapping from low-level states to high-level states, and
strong abstraction, which takes more seriously all potential
interventions in a model, not just the allowed interventions.
Finally, we define constructive abstraction, which is the spe-
cial case of strong abstraction where the mapping from low-
level states to high-level states partitions the low-level vari-
ables and maps each cell to a unique high-level variable.
As we show, procedures for combining micro-variables into
macro-variables are instances of constructive abstraction, as
are all the other examples considered by RW+. While we
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view constructive abstraction as the notion that is likely to
be the most useful in practice, as we show by example, the
weaker notions of strong abstraction and abstraction are of
interest as well.

Not surprisingly, the idea of abstracting complicated low-
level models to simpler high-level models that in some sense
act the same way has also been considered in other set-
tings; see, for example, (Binahashemi, de Giacomo, and
Lespérance 2017). While we are trying to capture these in-
tuitions as well, considering a setting that involves causality
adds new subtleties.

2 Probabilistic causal models: a review
In this section we review the definition of causal models.
Much of the discussion is taken from (Halpern 2016).

Definition 2.1: A signature S is a tuple (U ,V,R), where
U is a set of exogenous variables (intuitively, variables that
represent factors outside the control of the model), V is a
set of endogenous variables (intuitively, variables whose val-
ues are ultimately determined by the values of the endoge-
nous variables), and R, a function that associates with ev-
ery variable Y ∈ U ∪ V a nonempty set R(Y ) of possible
values for Y (i.e., the set of values over which Y ranges).
If ~X = (X1, . . . , Xn), R( ~X) denotes the crossproduct
R(X1)× · · · × R(Xn).

Definition 2.2: A basic causal model M is a pair (S,F),
where S is a signature and F defines a function that asso-
ciates with each endogenous variable X a structural equa-
tion FX giving the value ofX in terms of the values of other
endogenous and exogenous variables (discussed in more de-
tail below). A causal model M is a tuple (S,F , I), where
(S,F) is a basic causal model and I is a set of allowed in-
terventions (also discussed in more detail below).

Formally, the equation FX maps R(U ∪ V − {X}) to
R(X), so FX determines the value ofX , given the values of
all the other variables in U ∪ V . Note that there are no func-
tions associated with exogenous variables; their values are
determined outside the model. We call a setting ~u of values
of exogenous variables a context.

The value of X may depend on the values of only a few
other variables. Y depends onX in context ~u if there is some
setting of the endogenous variables other thanX and Y such
that if the exogenous variables have value ~u, then varying the
value of X in that context results in a variation in the value
of Y ; that is, there is a setting ~z of the endogenous variables
other than X and Y and values x and x′ of X such that
FY (x, ~z, ~u) 6= FY (x′, ~z, ~u).

In this paper we restrict attention to recursive (or acyclic)
models, that is, models where, for each context ~u, there is
a partial order ≺~u on variables such that if X ≺~u Y , then
Y depends on X in context ~u. In a recursive model, given a
context ~u, the values of all the remaining variables are de-
termined (we can just solve for the value of the variables in
the order given by ≺~u). A model is strongly recursive if the
partial order ≺~u is independent of ~u; that is, there is a par-
tial order≺ such that≺=≺~u for all contexts ~u. In a strongly

recursive model, we often write the equation for an endoge-
nous variable as X = f(~Y ); this denotes that the value of
X depends only on the values of the variables in ~Y , and
the connection is given by f . For example, we might have
X = Y + U . 1

An intervention has the form ~X ← ~x, where ~X is a set of
endogenous variables. Intuitively, this means that the values
of the variables in ~X are set to ~x. The structural equations
define what happens in the presence of external interven-
tions. Setting the value of some variables ~X to ~x in a causal
model M = (S,F) results in a new causal model, denoted
M ~X←~x, which is identical to M , except that F is replaced
by F ~X←~x: for each variable Y /∈ ~X , F ~X←~x

Y = FY (i.e., the
equation for Y is unchanged), while for each X ′ in ~X , the
equation FX′ for is replaced by X ′ = x′ (where x′ is the
value in ~x corresponding to ~x).

The set I of interventions can be viewed as the set of in-
terventions that we care about for some reason or other. For
example, it might consist of the interventions that involve
variables and values that are under our control. In (Halpern
and Pearl 2005; Halpern 2016), only basic causal models are
considered (and are called causal models). RW+ added the
set of allowed interventions to the model. We consider al-
lowed interventions as well, since it seems useful when con-
sidering abstractions to describe the set of interventions of
interest. We sometimes write a causal modelM = (S,F , I)
as (M ′, I), whereM ′ is the basic causal model (S,F), if we
want to emphasize the role of the set of interventions.

Given a signature S = (U ,V,R), a primitive event is a
formula of the form X = x, for X ∈ V and x ∈ R(X).
A causal formula (over S) is one of the form [Y1 ←
y1, . . . , Yk ← yk]ϕ, where

• ϕ is a Boolean combination of primitive events,

• Y1, . . . , Yk are distinct variables in V , and

• yi ∈ R(Yi).

Such a formula is abbreviated as [~Y ← ~y]ϕ. The special
case where k = 0 is abbreviated as ϕ. Intuitively, [Y1 ←
y1, . . . , Yk ← yk]ϕ says that ϕ would hold if Yi were set to
yi, for i = 1, . . . , k.

A causal formula ψ is true or false in a causal model,
given a context. As usual, we write (M,~u) |= ψ if the causal
formula ψ is true in causal modelM given context ~u. The |=
relation is defined inductively. (M,~u) |= X = x if the vari-
able X has value x in the unique (since we are dealing with
recursive models) solution to the equations in M in context
~u (i.e., the unique vector of values that simultaneously satis-
fies all equations in M with the variables in U set to ~u). The

1RW+ do not restrict to acyclic models. Rather, they make the
weaker restriction that, for every setting of the causal variables,
with probability 1, there is a unique solution to the equations. In the
deterministic setting, the analogous restriction would be to consider
causal models where there is a unique solution to all equations.
None of our definitions or results changes if we allow this more
general class of models. We have restricted to recursive models
only to simplify the exposition.
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truth of conjunctions and negations is defined in the standard
way. Finally, (M,~u) |= [~Y ← ~y]ϕ if (M~Y←y, ~u) |= ϕ.

To simplify notation, we sometimes writeM(~u) to denote
the unique element of R(V) such that (M,~u) |= V = ~v.
Similarly, given an intervention ~Y ← ~y, M(~u, ~Y ← ~y) de-
notes the unique element ofR(V) such that (M,~u) |= [~Y ←
~y](V = ~v).

A probabilistic causal model M = (S,F , I,Pr) is just
a causal model together with a probability Pr on contexts.
We often abuse notation slightly and denote the probabilis-
tic causal model (S,F , I,Pr) as (M,Pr), where M is the
underlying deterministic causal model (S,F , I).

RW+ worked with probabilistic causal models, but added
one more feature and made a restrictive assumption. They
consider models M that place a partial order ≺M on inter-
ventions. However, they (and we) consider only what they
call the natural partial order, where ( ~X ← ~x) ≺M ( ~X ′ ←
~x′) if ~X is a subset of ~X ′ and ~x is the corresponding subset
of ~x′, so we do not explicitly introduce the partial order as a
component of the model here. In addition, RW+ assume that
for each endogenous variableX , there is a unique exogenous
variable UX such that UX is the only exogenous variable on
whose value X depends, and UX 6= UY if X 6= Y . We say
that a causal model has unique exogenous variables (uev) if
this is the case.

Assuming that a causal model has uev makes sense if we
think of UX as the noise variable corresponding to X . How-
ever, this assumption is not always appropriate (e.g., if we
take the temperature to be exogenous, and temperature can
affect a number of endogenous variables). Not surprisingly,
in (non-probabilistic) causal models, assuming uev entails
a significant loss of generality. In particular, we cannot ex-
press the correlation in values between two endogenous vari-
ables due to being affected by a common exogenous vari-
able. However, the uev assumption can be made essentially
without loss of generality in probabilistic causal models, as
the lemma below shows.

Definition 2.3 : Two probabilistic causal models M =
((U ,V,R),F , I,Pr) and M ′ = ((U ′,V ′,R′),F ′, I ′,Pr′)
are equivalent, written M ∼ M ′, if V = V ′, R(Y ) =
R′(Y ) for all Y ∈ V , I = I ′, and all causal formulas
have the same probability of being true in both M and M ′;
that is, for all causal formulas ϕ, we have Pr({~u ∈ R(U) :
(M,~u) |= ϕ}) = Pr′({~u′ ∈ R(U ′) : (M ′, ~u′) |= ϕ}).

Lemma 2.4: Given a probabilistic causal model M , there is
a probabilistic causal model M ′ with uev such that M ∼
M ′.2

All the models that we consider in our examples have uev.
Whatever problems there are with the RW+ notions, they do
not arise from the assumption that models have uev.

3 From exact transformations to abstractions
In this section, we review the RW+ definition, point out
some problems with it, and then consider a sequence of
strengthenings of the definition.

2Proofs can be found in the appendix.

3.1 Exact transformations
We need some preliminary definitions. First observe that,
given a probabilistic model M = ((U ,V,R),F , I,Pr), the
probability Pr on R(U) can also be viewed as a probability
on R(V) (since each context in R(U) determines a unique
setting of the variables in V); more precisely,

Pr(~v) = Pr({~u : M(~u) = ~v}).

In the sequel, we freely view Pr as a distribution on both
R(U) and R(V); the context should make clear which we
intend. Each intervention ~X ← ~x also induces a probability
Pr

~X←~x onR(V) in the obvious way:

Pr
~X←~x(~v) = Pr({~u : M(~u, ~X ← ~x) = ~v}).

One last piece of notation: We are interested in when a
high-level model is an abstraction of a low-level model. In
the sequel, we always use ML = ((UL,VL,RL),FL, IL)
and MH = ((UH ,VH ,RH),FH , IH) to denote determin-
istic causal models (where the L and H stand for low level
and high level, respectively). We write (M,Pr) to denote a
probabilistic causal model that extends M .

With this background, we can give the RW+ definition of
exact transformation. Although the definition was given for
probabilistic causal models that satisfy uev, it makes sense
for arbitrary probabilistic causal models.

Definition 3.1: If (ML,PrL) and (MH ,PrL) are probabilis-
tic causal models, ω : IL → IH is an order-preserving,
surjective mapping (where ω is order-preserving if, for all
interventions in i1, i2 ∈ IL such that i1 ≺ML

i2 accord-
ing to the natural order, we have ω(ii) ≺MH

ω(i2)), and
τ : RL(VL) → RH(VH), then (MH ,PrH) is an exact (τ -
ω)-transformation of (ML,PrL) if, for every intervention
~Y ← ~y ∈ IL, we have

Pr
ω(~Y←~y)
H = τ(Pr

~Y←~y
L ), (1)

where τ(PrL) is the “pushforward” distribution on R(VH)
determined by τ and PrL:

τ(PrL)(~vH) = PrL({~vL : τ(~vL) = ~vH}).

The key point here is the requirement that Pr
ω(~Y←~y)
H =

τ(Pr
~Y←~y
L ). Roughly speaking, it says that if you start from

the low-level intervention ~Y ← ~y and move up to the high-
level model following two distinct routes, you end up at the
same place.

The first route goes as follows. The intervention ~Y ← ~y
changes the probability distribution on low-level outcomes,
giving rise to Pr

~Y←~y
L (where an “outcome” is a setting of the

endogenous variables). This distribution can be moved up to
the high level by applying τ , giving τ(Pr

~Y←~y
L ), which is a

distribution on high-level outcomes.
The second route goes as follows. From the low-level in-

tervention ~Y ← ~y we move up to a high-level intervention
by applying ω, giving ω(~Y ← ~y). This intervention changes
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the probability distribution on high-level outcomes, giving

rise to Pr
ω(~Y←~y)
H . To be an exact transformation means that

this distribution and the previous one are identical, for all
interventions ~Y ← ~y.

Despite all the notation, we hope that the intuition is clear:
the intervention ~Y ← ~y acts the same way in the low-level
model as the intervention ω(~Y ← ~y) does in the high level-
model. (See RW+ for more discussion and intuition.) The
following example illustrates Definition 3.1.
Example 3.2: Consider a simple voting scenario where we
have 99 voters who can either vote for or against a propo-
sition. The campaign for the proposition can air some sub-
set of two advertisements to try to influence how the voters
vote. The low-level model is characterized by endogenous
variables Xi, i = 1, . . . , 99, A1, A2, and T , and exogenous
variables Ui, i = 1, . . . , 101. Xi denotes voter i’s vote, so
Xi = 1 if voter i votes for the proposition, and Xi = 0 if
voter i votes against. Ai denotes whether add i is run, and
T denotes the total number of votes for the proposition. Ui
determines how voter i votes as a function of which ads are
run for i = 1, . . . , 99, while U100 and U101 determine A1

and A2, respectively.
We can cluster the voters into three groups: X1–X33,

X34–X66,X67–X99. For example, the first group might rep-
resent older, wealthy voters; the second group might rep-
resent soccer moms; and the third group might represent
young singles. Members of the same group are affected by
the ads in the same way, meaning that Pr(Xi = 1|A1 =
a1 ∧ A2 = a2) = Pr(Xj = 1|A1 = a1 ∧ A2 = a2) for all
a1, a2 and all i, j that belong to the same group. The high-
level model replaces the variables X1, . . . , X99 by variables
G1, G2, and G3, representing the sum of the votes of each
group, it replaces U1, . . . , U99 by U ′1, U

′
2, U

′
3, and replaces

T by a binary variable T ′ that just indicates who won. The
only interventions allowed in the low-level model are inter-
ventions to the variables A1 and A2.

We now have an obvious map τ from VL to VH that maps
a low-level state to a high-level state by taking G1, G2, and
G3 to be the total vote of the corresponding groups; the map
ω is just the identity. Given a probability PrL on UL, there
is an obvious probability PrH on UH such that (MH ,PrH)
is an exact transformation of (ML,PrL). Note that it is crit-
ical here that we don’t allow interventions on the individual
variables Xi at the low level. For example, it is not clear
to what high-level intervention ω should map the low-level
intervention X3 ← 1.

RW+ discuss three applications of exact transformations:
• a model from which some variables are marginalized;
• moving from the micro-level to the macro-level by aggre-

gating groups of variables;
• and moving from a time-evolving dynamical process to a

stationary equilibrium state.
We review the details of their second application here, just
to show how it plays out in our framework.
Example 3.3: Let ML be a causal model with endogenous
variables ~X = {Xi : 1 ≤ i ≤ n} and ~Y = {Yi : 1 ≤

i ≤ m}, and equations Xi = Ui for 1 ≤ i ≤ n and Yi =∑j=1
n AijXj + Vi for 1 ≤ i ≤ m, where A is an m × n

matrix and there exists an a ∈ R such that each column of
the matrix A sums to a. Finally, the intervention set is IL =

{∅, ~X ← ~x, ~Y ← ~y, ( ~X, ~Y )← (~x, ~y) : ~x ∈ Rn, ~y ∈ Rm}.
Let MH be a model with endogenous variables X̄ and Ȳ ,

equations X̄ = Ū and Ȳ = a
mX̄ + V̄ , and intervention set

IH = {∅, X̄ ← x̄, Ȳ ← ȳ, (X̄, Ȳ )← (x̄, ȳ) : x̄, ȳ ∈ R}.
Consider the following transformation that averages the

X and Y variables:

τ : R(VL)→ R(VH) = R2

( ~X, ~Y )→ ( 1
n

∑i=1
n Xi,

1
m

∑i=1
m Yi).

Given a probability PrUL on Ul (the contexts in the low-
level model ML), if we take PrŪ = PrUL( 1

n

∑i=1
n Ui) and

PrV̄ = PrUL( 1
m

∑i=1
m Vi), then MH is an exact (τ -ω)-

transformation of ML for the obvious choice of ω.

3.2 Uniform transformations
As the following example shows, much of the work to en-
sure that a transformation is an exact transformation can be
done by choosing appropriate distributions PrL and PrH .
This leads to cases where (MH ,PrH) is an exact transfor-
mation of (ML,PrL) although it is hard to think of MH as
a high-level abstraction of ML.

Example 3.4: For i = {1, 2}, let Mi be a deterministic
causal model with signature (Ui,Vi,Ri); let ~ui be a fixed
context in Mi; let ~vi ∈ Ri(Vi) be such that (Mi, ~ui) |=
Vi = ~vi; let Ii consist only of the empty intervention;
let Pri put probability 1 on ~ui; let τi map all elements of
R(Vi) to ~v3−i; and let ωi be the identity map from Ii to
I3−i. Clearly (Mi,Pri) is an exact (τi-ωi)-transformation
of (M3−i,Pr3−i).

The fact that each of M1 and M2 is an exact transforma-
tion of the other, despite the fact that the models are com-
pletely unrelated, suggests to us that exact transformations
are not capturing the essence of abstraction. Roughly speak-
ing, what is happening here is that a high-level model MH

can be arbitrary in contexts that do not lead to settings ~vH
that have positive probability for some allowed low-level in-
tervention. This means that if there are few allowed low-
level interventions or few contexts with positive probabil-
ity, then there are very few constraints on MH . We end up
with high-level models MH that should not (in our view)
count as abstractions ofML. We can address this concern by
strengthening the notion of exact transformation to require it
to hold for all distributions PrL.

Definition 3.5: IfML andMH are deterministic causal mod-
els, ω is an order-preserving, surjective mapping ω : IL →
IH , and τ : RL(VL)→ RH(VH), thenMH is a uniform (τ -
ω)-transformation of ML if, for all PrL, there exists PrH
such that (MH ,PrH) is an exact (τ -ω)-transformation of
(ML,PrL).

As we pointed out earlier, since RW+ assume uev, the
probability distribution in general might do a lot of work
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to capture correlations between values of endogenous vari-
ables. It makes sense to consider arbitrary distributions if we
drop the uev assumption (as in fact we do).

In Example 3.4 it is easy to see that neither M1 nor M2 is
a uniform transformation of the other. On the other hand, in
Example 3.2, we do have a uniform transformation.

Considering uniform transformations has other nice fea-
tures. For one thing, it allows us to derive from τ a mapping
τU fromR(UL) toR(UH) that “explains” how PrL and PrH
are related. More precisely, not only do we know that, for
the appropriate ω, for all distributions PrL there exists PrH
such that (MH ,PrH) is an exact (τ -ω)-transformation of
(ML,PrL), we can take PrH to be τU (PrL) (i.e., the push-
forward of PrL under τU ).

Proposition 3.6: If MH is a uniform (τ -ω)-transformation
of ML, then there exists a function τU : R(UL) →
R(UH) such that, for all distributions PrL on R(UL),
(MH , τU (PrL)) is an exact (τ -ω)-transformation of
(ML,PrL).

The next result provides a characterization of when MH

is a uniform (τ -ω)-transformation of ML.

Definition 3.7: τ ′ : R(UL) → R(UH) is compatible with
τ : R(VL) → R(VH) if, for all ~Y ← ~y ∈ IL and ~uL ∈
R(UL),

τ(ML(~uL, ~Y ← ~y)) = MH(τ ′(~uL), ω(~Y ← ~y)).

Theorem 3.8 : Given causal models ML and MH , τ :
R(VL)→ R(VH), and an order-preserving surjective func-
tion ω : I(VL)→ I(VH), the following are equivalent:

(a) MH is a uniform (τ -ω)-transformation of ML;
(b) there exists a function τU : R(UL)→ R(UH) compatible

with τ .

It is easy to check that uniform transformations are closed
under composition.
Theorem 3.9: If MH is a uniform (τ1-ω1)-transformation
of MI and MI is a uniform (τ2-ω2)-transformation of ML,
then MH is a uniform ((τ2 ◦ τ1)-(ω2 ◦ ω1))-transformation
of ML.

3.3 Abstraction
Although the notion of a uniform transformation deals with
some of the problems we see with the RW+ notion of ex-
act transformation, it does not deal with all of them, as the
following two examples show.

Example 3.10: LetM1 andM2 be deterministic causal mod-
els, both with endogenous binary variables X1 and X2 and
corresponding binary exogenous variables U1 and U2. 3 In
M1, the equations are X1 = U1 and X2 = X1. (U2 plays
no role in the equations in M1. We added it just to make
M2 a model that has uev and thus show that having uev
is not an issue here.) In M2, the equations are X1 = U1

and X2 = U2. The only allowed interventions in M1 are

3A variable is binary if its range is {0, 1}.

X1 ← x1, for x1 ∈ {0, 1}; the only allowed interventions
in M2 are (X1, X2) ← (x1, x1), for x1 ∈ {0, 1}. It is easy
to see that M1 is a uniform transformation of M2 and that
M2 is a uniform transformation of M1. If τij and ωij are
the maps showing that Mj is a uniform transformation of
Mi, then we can take both τ12 and τ21 to be the identity, ω12

maps X1 ← x1 to (X1, X2) ← (x1, x1), while ω21 maps
(X1, X2) ← (x1, x1) to X1 ← x1. But this does not match
our intuition that if MH is an abstraction of ML, then MH

is a higher-level description of the situation than ML. What-
ever “higher-level description” means, we would expect that
if ML and MH are different, then we should not have ML

and MH being abstractions of each other.

What is the problem here? If we just focus on these sets of
allowed interventions, then there is in fact no problem. M1

and M2 do, in a sense, work the same way as far as these al-
lowed interventions go. However, the mappings ω12 and ω21

seem to be in conflict with taking τ12 and τ21 to be the iden-
tity. Given that τij is the identity mapping, we would expect
ωij to also be the identity mapping. Why should ω12 map
X1 ← 0 to something other than X1 ← 0 here? It is easy
to see that if we take ω12 to also be the identity mapping
then the problem disappears, as we no longer have uniform
transformations between these two models. More generally,
we define below a natural way in which a mapping τ on
states induces a mapping ω on allowed interventions. But
even when ω is well-behaved there exist counterintuitive ex-
amples of uniform transformations.

Example 3.11: Given a modelM3, letM4 be a model that is
like M3 except that U3 has a new exogenous binary variable
U∗ and a new binary endogenous variable X∗. Modify the
equations in M3 so that U∗ is the only parent of X∗, but X∗
is the parent of every other endogenous variable in M4 (and
thus of every endogenous variable in M3). Take I∗4 = I3.
If X∗ = 1, then all equations in M4 are identical to those
in M3. However, if X∗ = 0, then all equations behave in
some arbitrary way (the exact way they behave is irrelevant).
Define τ : R(V3) → R(V4) by taking τ(~vL) = (~vL, X

∗ =
1). We claim that M4 is a uniform (τ -ω)-transformation of
ML, where ω is the identity. Given a distribution Pr3 on
R(U3), define Pr4 so that its marginal on the variables in U3

is Pr3 and Pr4(U∗ = 0) = 0. It is easy to see that (M4,Pr4)
is an exact (τ -ω)-transformation of (M3,Pr3), regardless of
how the equations in M4 are defined if X∗ = 1.

What goes wrong in this example is that the high level
is more detailed than the low level, contrary to what one
expects of an abstraction. Concretely, introducing the extra
variable X∗ allows M4 to capture a whole range of pos-
sibilities that have no counterpart whatsoever in M3. That
doesn’t sound right (at least to us). We can fix this by simply
demanding that our abstraction function τ be surjective.

Combining both observations, we define a natural way in
which an abstraction function τ determines which sets of
interventions should be allowed at the low level and the high
level, and the mapping ωτ between them.

Definition 3.12: Given a set V of endogenous variables,
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~X ⊆ V , and ~x ∈ R( ~X), let

Rst(V, ~x) = {~v ∈ R(V) : ~x is the restriction of ~v to ~X}.

Given τ : R(VL) → R(VH), define ωτ ( ~X ← ~x) =
~Y ← ~y if there exists ~Y ⊆ VH and ~y ∈ R(~Y ) such that
τ(Rst(VL, ~x)) = Rst(VH , ~y) (as usual, given T ⊆ R(VL),
we define τ(T ) = {τ(~vL) : ~vL ∈ T}). It is easy to see that,
given ~X and ~x, there can be at most one such ~Y and ~y. If
there does not exist such a ~Y and ~y, we take ωτ ( ~X ← ~x)
to be undefined. Let IτL be the set of interventions for which
ωτ is defined, and let IτH = ωτ (IτL).

It is straightforward to check that in Example 3.2, ωτ is
defined on interventions to A1, A2, and on these interven-
tions it is the identity (and thus agrees with ω as defined in
that example), but it is also defined on simultaneous inter-
ventions on X1 − X33, X34 − X66, and X67 − X99, and
on T (as well as combinations of these interventions). In
Example 3.3, the interventions on which ωτ is defined are
precisely those in the set IL of that example; on these inter-
ventions, ωτ = ω.

Note that if τ is surjective, then it follows that ωτ (∅) = ∅,
and for all ~vL ∈ R(VL), ωτ (VL ← ~vL) = VH ← τ(~vL).

Definition 3.13: (MH , IH) is a τ -abstraction of (ML, IL)
if the following conditions hold:
• τ is surjective;
• there is a surjective function τU : R(UL)→ R(UH) com-

patible with τ ;
• IH = ωτ (IL).

As intended, Examples 3.10 and 3.11 are not τ -
abstractions; on the other hand, in Examples 3.2 and 3.3,
MH is a τ -abstraction of ML.

Unlike exact and uniform transformations, τ -abstraction
is a relation between causal models: the mapping ω is de-
termined by τ , and there is no need to specify a probability
distribution.

We can strengthen the notion of τ -abstraction to define a
relation on basic causal models, by considering the largest
possible sets of allowed interventions.
Definition 3.14: If MH and ML are basic causal models,
then MH is a strong τ -abstraction of ML if IτH = I∗H ,
the set of all high-level interventions, and (MH , IτH) is a
τ -abstraction of (ML, IτL).

The notion of strong τ -abstraction provides a clean, pow-
erful relation between basic causal models. However, there
are applications where the two additional requirements that
make an abstraction strong are too much to ask. In the fol-
lowing example, neither requirement is satisfied.

Example 3.15: Consider an object in the earth’s gravita-
tional field. On the low level (ML), there are three endoge-
nous variables: V (velocity), H (height), and M (mass),
and three corresponding exogenous variables, UV , UH , and
UM . The equations in ML are V = UV , H = UH , and
M = UM . The high level captures the object’s current en-
ergy.MH contains endogenous variablesK (kinetic energy)
and P (potential energy), and two corresponding exogenous

variables, UK and UP . The equations in MH are K = UK
and P = UP . We define τ : R(VL) → R(VH) using the
standard equations for kinetic energy and gravitational po-
tential energy, so τ(v, h,m) = ( 1

2mv
2, 9.81mh). It is easy

to see that τ is a surjection ontoR(VH). We claim that MH

is not a strong τ -abstraction of ML. To see why, consider
interventions of the form M ← m for m > 0. Apply-
ing Definition 3.12, we get that ωτ (M ← m) = ∅, since
τ(Rst(VL,m)) = VH ; by choosing v and h appropriately,
we can still get all values in VH , as long as m > 0. We also
clearly have that ωτ maps the empty intervention in ML to
the empty intervention in MH . With this, we can already
show that (MH , IτH) is not a uniform (τ, ωτ )- transforma-
tion of (ML, IτL). Suppose that PrL is a probability on UL
that puts probability 1 on (1, 1, 1). For condition (1) in Defi-
nition 3.1 to hold for the interventionM ← m, the probabil-
ity PrH on UH must put probability 1 on (.5m, 9.81m). But
(1) must hold for all choices ofm. This is clearly impossible.

Although MH is not a strong τ -abstraction of ML, we
can easily construct a sensible and useful τ -abstraction be-
tween these models by simply not allowing interventions of
the form M ← m in the low-level model. Concretely, if we
define IL as containing the empty intervention and all inter-
ventions of the form (V,H,M) ← (v, h,m), then ωτ maps
this to the set IH that contains the empty intervention and
all interventions of the form (K,P )← (k, p).

As the following example shows, there also exist inter-
esting cases where only the first requirement of Definition
3.14 is not satisfied. Roughly speaking, this is because some
high-level variables are not logically independent, so not all
high-level interventions are meaningful.

Example 3.16: Suppose that we have a 100 × 100 grid of
pixels, each of which can be black or white. In the low-
level model, we have 10,000 endogenous variables Xij , for
1 ≤ i, j ≤ 100, and 10,000 corresponding exogenous vari-
ables Uij for 1 ≤ i, j ≤ 100, with the obvious equa-
tions Xij = Uij . We would expect there to be other vari-
ables that are affected by the Xijs (e.g., what a viewer per-
ceives), but for ease of exposition, we ignore these other
variables in this example and focus only on the Xij vari-
ables. Suppose that all we care about is how many of the
pixels in the upper half of the grid are black and how many
pixels in the left half of the grid are black. Thus, in the
high-level model, we have variables UH and LH whose
range is {0, . . . , 5000}. Because of the dependencies be-
tween UH and LH , there is a single exogenous variable that
determines their values, which are pairs (m,m′) such that
0 ≤ m,m′ ≤ 5, 000 and |m −m′| ≤ 2, 500. Now we have
an obvious map τ from low-level states to high-level states.
We claim that (MH , IτH) is a τ -abstraction of (ML, IτL),
where IτL consists of the empty intervention and interven-
tions that simultaneously set all the variables in the upper
half and left half (i.e., all variables Xij with 1 ≤ i ≤ 50 or
51 ≤ j ≤ 100) and an arbitrary subset of the variables in the
bottom right. Given a nonempty intervention ~X ← ~x of this
form, ωτ ( ~X ← ~x) = (UH ← m,LH ← m′), where m is
the number ofXij variables set to 1 with 1 ≤ i ≤ 50 andm′
is the number of Xij variables set to 1 with 51 ≤ j ≤ 100;
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how the variables in the bottom right are set in ~X ← ~x is
irrelevant. Thus, IτH consists of interventions of the form
(UH ← m,LH ← m′), where 1 ≤ m,m′ ≤ 5000 and
|m−m′| ≤ 2500. It is straightforward to check that there is
no low-level intervention ~X ← ~x such that ωτ ( ~X ← ~x) =

UH ← m. For suppose that ωτ ( ~X ← ~x) = UH ← m.
Then τ(Rst(VL, ~x)) = {(m,m′) : 1 ≤ m′ ≤ 5000}. This
means that (m,m′) ∈ τ(Rst(VL, ~x)) for some m′ such that
|m−m′| > 2500, which is a contradiction. A similar argu-
ment shows that no intervention of the form LH ← m′ can
be in IτH . It is straightforward to check that (MH , IτH) is a
uniform (τ, ωτ )-transformation of (ML, IτL), so (MH , IτH)
is a τ -abstraction of (ML, IτL), however it is clearly not a
strong τ -abstraction of ML.

The problem here is that although MH has variables UH
and LH , we can only intervene on them simultaneously. It
may make sense to consider such interventions if we want a
visual effect that depends on both the number of black pixels
in the upper half and the number of black pixels in the left
half. But it is worth noting that if we consider a high-level
model M ′H with only a single variable ULH that counts the
number of pixels that are black in the upper half and the left
half altogether, then M ′H is a strong τ -abstraction of ML

with the obvious map τ .
The full paper (posted on arxiv) gives an example where

the second requirement of Definition 3.14 is not satisfied.

3.4 From micro-variables to macro-variables
Roughly speaking, the intuition for clustering micro-
variables into macro-variables is that in the high-level
model, one variable captures the effect of a number of vari-
ables in the low-level model. This makes sense only if the
low-level variables that are being clustered together “work
the same way” as far as the allowable interventions go. The
following definition makes this precise.
Definition 3.17 : MH is a constructive τ -abstraction of
ML if MH is a strong τ -abstraction of ML and, if
VH = {Y1, . . . , Yn}, then there exists a partition P =

{~Z1, . . . , ~Zn+1} of VL, where ~Z1, . . . , ~Zn are nonempty,
and mappings τi : R(~Zi) → R(Yi) for i = 1, . . . , n such
that τ = (τ1, . . . , τn); that is, τ(~vL) = τ1(~z1) · . . . · τn(~zn),
where ~zi is the projection of ~vL onto the variables in ~Zi,
and · is the concatenation operator on sequences. MH is
a constructive abstraction of ML if it is a constructive τ -
abstraction of ML for some τ .

In this definition, we can think of each ~Zi as describing a
set of microvariables that are mapped to a single macrovari-
able Yi. The variables in ~Zn+1 (which might be empty) are
ones that are marginalized away.

By definition, every constructive τ -abstraction is a strong
τ -abstraction. We conjecture that a converse to this also
holds: that is, if MH is a strong τ -abstraction of ML, that
perhaps satisfies a few minor technical conditions, then it
will in fact be a constructive τ -abstraction of ML. However,
we have not proved this result yet.

We suspect that constructive τ -abstractions are the notion
of abstraction that will arise most often in practice. All three

of the examples discussed by RW+ (one of which is Exam-
ple 3.3) are constructive abstractions. We can easily extend
Example 3.2 by adding low-level and high-level interven-
tions to make it a constructive abstraction as well.

4 Discussion and Conclusions
We believe that getting a good notion of abstraction will be
critical in allowing modelers to think at a high level while
still being faithful to a more detailed model. As the anal-
ysis of this paper shows, there are different notions of ab-
straction, that relate causal models at different levels of de-
tail. For example, τ -abstraction is a relation between basic
causal models, while a uniform (τ, ω)- transformation re-
lates causal models, and RW+’s notion of exact transfor-
mation relates probabilistic causal models. Although our fi-
nal notion of constructive abstraction is the cleanest and ar-
guably easiest to use, we believe that there exist applications
for which the weaker abstraction relations are more appro-
priate. More work needs to be done to understand which
abstraction relation is most suitable for a given application.
We hope that the definitions proposed here will help clarify
the relevant issues. They should also shed light on some of
the recent discussions of higher-level causation in communi-
ties ranging from physics to philosophy (see, e.g., (Fenton-
Glynn 2017; Hoel, Albantakis, and Tononi 2013)).

In fact, we see the current paper as laying the formal
groundwork for several interesting topics that we intend to
explore in future work. First, we hope to generalize the ab-
straction relation to a notion of approximate abstraction,
given that in most real-life settings the mappings between
different levels are only approximately correct. Second, our
framework makes it possible to explore whether the notion
of actual causation could be applied across causal models,
rather than merely within a single causal model. For ex-
ample, it seems to be useful to think of an event in a low-
level model as causing an event in a high-level model. Third,
abstracting causal models of large complexity into simpler
causal models with only a few variables is of direct relevance
to the increasing demand for explainable AI, for in many sit-
uations the problem lies not in the fact that no causal model
is available, but in the fact that the only available model is
too complicated for humans to understand.
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A Appendix: Proofs
Proof of Lemma 2.4: Let M = ((U ,V,R),F , I,Pr) and
defineM ′ = ((U ′,V,R′),F ′, I,Pr′) as follows. U ′ has one
exogenous variable for each endogenous variable in V . Tak-
ing V = {Y1, . . . , Yn}, we take Ui to be the exogenous
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variable corresponding to Yi. Let U ′ = {U ′1, . . . , U ′n}. We
take R(U ′i) = R(U) for i = 1, . . . , n (so the set of possi-
ble values for each variable U ′i is the set of all contexts in
M ). If ~z ∈ R(V − {Yi}), we define F ′Yi

(~z, ~u1, . . . , ~un) =
FYi(~z, ~ui). (Note that here ~ui ∈ R(U) = R(U ′i).) Thus,
it is clear that the only exogenous variable that the value
of Yi in M ′ depends on is U ′i , so M ′ has uev, as desired.
Pr′ places probability 0 on a context (~u1, . . . , ~un) unless
~u1 = . . . = ~un, and Pr′(~u, . . . , ~u) = Pr(~u). It is almost
immediate that, with these choices, M ∼M ′.

Proof of Proposition 3.6: Suppose that MH is a uniform
(τ -ω)-transformation of ML. Say that ~uL and ~uH corre-
spond if τ(ML(~uL, ~Y ← ~y)) = MH(~uH , ω(~Y ← ~y)) for
all interventions ~Y ← ~y ∈ IL.

We claim that for all ~uL ∈ R(UL), there exists at least
one ~uH ∈ R(UH) that corresponds to ~uL. To see this, fix
~uL ∈ R(UL). Let PrL give ~uL probability 1. Then for

each intervention ~Y ← ~y ∈ IL, the distribution Pr
~Y←~y
L

gives probability 1 to ML(~uL, ~Y ← ~y). Let PrH be a
probability distribution such that (MH ,PrH) is an exact

(τ -ω)-transformation of (ML,PrL). Since τ(Pr
~Y←~y
L ) =

Pr
ω(~Y←~y)
H , it follows that Pr

ω(~Y←~y)
H gives probability 1 to

τ(ML(~uL, ~Y ← ~y)), and hence also to the set U~uL,~Y←~y
H =

{~uH : MH(~uH , ω(~Y ← ~y)) = τ(ML(~uL, ~Y ← ~y))}.
Since there are only finitely many interventions in IL,
∩~Y←~y∈ILU

~uL,~Y←~y
H also has probability 1, and thus must be

nonempty. Choose ~uH ∈ ∩~Y←~y∈ILU
~Y←~y
H . By construction,

~uH corresponds to ~uL.
Define τU by taking τU (~uL) = ~uH , where ~uH corre-

sponds to ~uL. (If more than one tuple ~uH corresponds to ~uL,
then one is chosen arbitrarily.) It is now straightforward to
check that (MH , τU (PrL)) is an exact (τ -ω)-transformation
of (ML,PrL). We leave details to the reader.

Proof of Theorem 3.8: To show that (a) implies (b), sup-
pose that MH is a uniform (τ -ω)-transformation of ML. Let
τU : R(UL) → R(UH) be the function guaranteed to exist
by Proposition 3.6. We must show that for all ~Y ← ~y ∈ IL,
~uL ∈ R(UL),

τ(ML(~uL, ~Y ← ~y)) = MH(τU (~uL), ω(~Y ← ~y)).

Fix ~uL ∈ R(UL). From the construction of τU in the proof
of Proposition 3.6, it follows that ~uL and τU (~uL) corre-
spond, which, by definition, means that τ(ML(~uL, ~Y ←
~y)) = MH(τU (~uL), ω(~Y ← ~y)) for all interventions ~Y ←
~y ∈ IL.

To show that (b) implies (a), suppose that (b) holds. Given
a distribution PrL onR(UL), let PrH = τU (PrL). It suffices
to show that (MH ,PrH) is an exact (τ -ω)-transformation of
(ML,PrL). Thus, we must show that for every intervention
~Y ← ~y ∈ IL, we have Pr

ω(~Y←~y)
H = τ(Pr

~Y←~y
L ). Straight-

forward computations now show that

Pr
ω(~Y←~y)
H (~vH)

= PrH({~uH : MH(~uH , ω(~Y ← ~y)) = ~vH})
= PrL({~uL : MH(τU (~uL), ω(~Y ← ~y)) = ~vH)})
= PrL({~uL : τ(ML(~uL, ~Y ← ~y)) = ~vH})
= PrL({~vL : τ(~vL) = ~vH and

∃~uL(ML(~uL, ~Y ← ~y) = ~vL)})
= Pr

~Y←~y
L ({~vL : τ(~vL) = ~vH})

= τ(Pr
~Y←~y
L )(~vH),

as desired.
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