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Abstract

Ontology-based access to large data-sets has recently gained
a lot of attention. To access data efficiently, one approach is to
rewrite the ontology into Datalog, and then use powerful Dat-
alog engines to compute implicit entailments. Existing rewrit-
ing techniques support Description Logics (DLs) from ELH
to Horn-SHIQ. We go one step further and present one such
data-independent rewriting technique for Horn-SRIQu, the
extension of Horn-SHIQ that supports role chain axioms,
an expressive feature prominently used in many real-world
ontologies. We evaluated our rewriting technique on a large
known corpus of ontologies. Our experiments show that the
resulting rewritings are of moderate size, and that our ap-
proach is more efficient than state-of-the-art DL reasoners
when reasoning with data-intensive ontologies.

Introduction
Assertion retrieval (AR)—i.e., the task of inferring im-
plicit assertions from a Description Logics (DL) knowledge
base (KB)—is an important reasoning task with many ap-
plications in knowledge representation and data manage-
ment. For instance, the computation of AR can be used
to solve SPARQL query answering, and to compute statis-
tics on the implicit inferences of data-intensive ontologies
such as in (Callahan, Cruz-Toledo, and Dumontier 2013;
Vrandečić and Krötzsch 2014). For these tasks, both the con-
cepts an object satisfies and the relations between objects are
relevant. Typical DL ontologies focus on providing axioms
about concepts, but expressive ontologies also allow to make
inferences about roles, e.g., through the use of logical con-
structors such as inverse roles and role chains.

Efficient AR on large datasets requires the use of “one-
pass” algorithms that compute the full set of entailed asser-
tions as part of a saturation procedure. Although many cus-
tomised algorithms and implementations of this type have
been developed in the past, to the best of our knowledge,
either these procedures do not support role chains, or they
are not complete for deriving role assertions. Indeed, the re-
trieval of roles in the presence of role chains is a rather chal-
lenging task, as it may require reasoning about paths involv-
ing objects not explicit in the data.
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Example 1. Let Tex be the TBox with the following axioms
modelling conflicts of interests between researchers.

ResearchGroup v ∀hasMember.Researcher

Researcher v ∃hasMember−.ResearchGroup

collaborated ◦ hasMember− ◦ hasMember v hasConflict

hasMember ◦ supervises v hasMember

Here, the third axiom uses a role chain to express that,
if a researcher collaborated with someone who is a mem-
ber of a research group, then he has a conflict of inter-
est with everyone from that group. Using Tex, we can in-
fer from the ABox Aex = {collaborated(gottlob, alonzo),
supervises(alonzo, alan), Researcher(alonzo)} the two as-
sertions Researcher(alan) and hasConflict(gottlob, alan).
Both entailments depend on the existence of a research
group which has both alan and alonzo as members, the
existence of which is implied but not explicit. Specifically,
gottlob has a conflict of interest with alan because there is a
path via alonzo and this research group connecting gottlob
with alan, which corresponds to the role chain in the third
axiom.

We propose a technique for AR from KBs formulated
in Horn-SRIQu—a DL fragment that supports complex
roles and role conjunctions (Krötzsch, Rudolph, and Hitzler
2013)—based on data-independent rewritings into Datalog
rule sets. Specifically, given a TBox T , we describe how
to construct a Datalog rule set RT s.t., for every ABox A
and assertion α only using symbols occurring in T , we have
〈T ,A〉 |= α iff 〈RT ,A〉 |= α.

To show practical feasibility, we implemented and eval-
uated our transformation, showing that Datalog rewritings
for many real-world Horn-SRIQu TBoxes are of moder-
ate size. Moreover, we computed our Datalog rewritings for
two real-world ontologies, and performed AR over the re-
sulting Datalog KBs. Our results show that our approach
can outperform Konclude (Steigmiller, Liebig, and Glimm
2014)—considered as one of the leading DL reasoners (Par-
sia et al. 2017)—when solving AR over data-intensive on-
tologies. This is rather noteworthy, since (unlike Konclude)
our rewritings are complete for role retrieval.

In summary, our contributions are as follows.

• We present a worst-case optimal transformation of Horn-
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SRIQu TBoxes into Datalog rule sets that preserves sat-
isfiability and assertion entailment.

• We show that the resulting rule sets can be transformed
into equivalent DLP ontologies (Grosof et al. 2003)—the
DL fragment underlying the OWL RL standard.

• We empirically show that our rewriting technique pro-
duces Datalog rule sets of moderate size for many real-
world Horn-SRIQu TBoxes.

• We empirically show that the resulting Datalog programs
can be used to solve AR more efficiently than DL reason-
ers when dealing with data-intensive ontologies.

Formal proofs and arguments for the results in this paper,
as well as evaluation details, are in the extended version of
this paper (Carral, González, and Koopmann 2018).

Related Work
Even though there are many algorithms and implementa-
tions for AR on DL KBs, we find that none of them can
satisfactorily handle role retrieval, i.e., the retrieval of role
assertions, in the presence of role chains.

There are many approaches that can efficiently perform
AR for DLs which do not support role chains, and which
are similar in spirit to our approach. Hustadt et al. (2004)
reduce standard reasoning tasks in the DL SHIQ− to rea-
soning over disjunctive query Datalog programs. Eiter et al.
(2012) propose a method that combines materialisation—
a step that can be repurposed to solve role retrieval—and
rewriting to solve conjunctive query answering over Horn-
SHIQ ontologies. A similar method tailored for the DL
Horn-ALCHOIQ is presented by Carral et al. (2018). Re-
cently, Ahmetaj et al. (2016) proposed Datalog rewritings
to perform instance queries over ALCHIO KBs extended
with closed predicates.

State-of-the-art DL reasoners such as Fact++ (Tsarkov
and Horrocks 2006), HermiT (Motik, Shearer, and Horrocks
2009), Pellet (Sirin et al. 2007) and Konclude (Steigmiller,
Liebig, and Glimm 2014) support SROIQ KBs. However,
while the former three do not perform that well on data-
intensive ontologies (Parsia et al. 2017), Konclude does not
support role retrieval as part of its one-pass algorithm. As
our results indicate, Datalog rewritings have the potential to
outperform all these approaches.

Regarding less expressive DLs, despite the fact that there
are theoretical algorithms for EL++ that can deal with role
chains (Krötzsch 2011), leading profile reasoners such as
ELK (Kazakov, Krötzsch, and Simančı́k 2014) do not sup-
port this expressive feature yet.

Preliminaries
We consider logical theories based on finite signatures con-
sisting of mutually disjoint sets Nc of concepts (unary pred-
icates), Nr of roles (binary predicates), Nv of variables, and
Ni of individuals (constants), as well as an unbounded set
N0 of nulls disjoint with all of the above. There is a bijective
and irreflexive function ·− : Nr → Nr with R−− = R for all
R ∈ Nr, and ⊥,> ∈ Nc. For a formula or set thereof ϕ, we
use sig(ϕ) to denote the set of all concepts and roles in ϕ.

∧n

i=1
Ai(x)→B(x)

ln

i=1
Ai vB (u)

A(x) ∧R(x, y)→B(y) Av∀R.B (∀)
A(x)→∃y.R(x, y) ∧B(y) Av∃R.B (∃)
A(x) ∧R(x, y) ∧B(y)
∧R(x, z) ∧B(z)→ y ≈ z Av61R.B (≤)∧n

i=1
Ri(xi−1, xi)→ S(x0, xn) R1 ◦ . . . ◦Rn v S (◦)∧m

i=1
Ri(x, y)→ S(x, y)

lm

i=1
Ri v S (ur)

Figure 1: Horn-SRIQu Axioms, where A(i), B ∈ Nc,
R(i), S ∈ Nr, x(i), y, z ∈ Nv, n ≥ 1, and m > 1

The sets of terms and ground terms are Nt = 2Ni ∪ N0 ∪ Nv

and Ngt = 2Ni ∪ N0, respectively. The use of 2Ni rather than
Ni in the definition of terms is for convenience of the defi-
nition of the chase later in this section. Thus, we henceforth
identify every a ∈ Ni with the singleton set {a}.

Existential Rules We write tuples of terms t1, . . . , tn as ~t,
and treat such tuples as sets when the order is irrelevant. An
atom is a formula of the form C(t) or R(t, u) with C ∈ Nc,
R ∈ Nr, and t, u ∈ Nt. We identify a binary atom R(t, u)
with R−(u, t). A formula or set thereof is ground if it only
contains ground terms. For a formula ϕ, we write ϕ[~x] to
indicate that ~x is the set of all free variables occurring in ϕ.

An (existential) rule is a formula of one of the forms:

∀~x, ~z.
(
B[~x, ~z]→ ∃~y.H[~x, ~y]

)
(→)

∀~x.
(
B[~x]→ x ≈ y

)
(≈)

Where B and H are non-empty, null-free conjunctions of
atoms, and x, y ∈ ~x. A Datalog rule is a rule without ex-
istentially quantified variables. A fact is a ground atom. We
identify facts and sets thereof if they are identical up to bi-
jective renaming of nulls. A knowledge base (KB) is a tuple
〈R,A〉withR a rule set andA an ABox—a set of facts with-
out nulls, i.e., assertions. We treat KBs as first-order theories
and define semantical notions such as entailment and satis-
fiability in the usual way. To axiomatise the semantics of >,
we assume that {A(x) → >(x) | A ∈ Nc} ∪ {R(x, y) →
>(x) ∧ >(y) | R ∈ Nr} ⊆ R for every rule setR.

The DL Horn-SRIQu. Without loss of generality
(Krötzsch, Rudolph, and Hitzler 2013), we define Horn-
SRIQu using a restricted set of normalised axioms, which
we introduce in the right hand side of Figure 1. We iden-
tify each of these axioms with the corresponding rule in the
left hand side of Figure 1, and alternate between these two
syntaxes whenever this is convenient.

For an axiom set R, let ≺+
R be the minimal transitive re-

lation over roles s.t. R ≺+
R S iff R− ≺+

R S; for every axiom
in R of Type (ur), Ri ≺+

R S for all i ∈ J1,mK; and, for
every axiom inR of Type (◦),
• if n = 1 and R1 6= S−, then R1 ≺+

R S, and
• if n > 1 and R1 ◦ . . . ◦Rn 6= S ◦ S, then
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– if Rn = S, then Ri ≺+
R S for all i ∈ {1, . . . , n− 1},

– if R1 = S, then Ri ≺+
R S for all i ∈ {2, . . . , n}, and

– if R1 6= S 6= Rn, then Ri ≺+
R S for all i ∈ {1, . . . , n}.

A role V is complex wrt. R if there is an axiom in R of
Type (◦) with n > 1 and S ≺∗R V with ≺∗R the reflexive
closure of ≺+

R. Otherwise, V is simple.

Definition 1. An axiom set T is a (Horn-SRIQu) TBox
if ≺+

T is irreflexive, and all roles occurring in an axiom of
Type (≤), or in the left hand side of an axiom of Type (ur)
in T are simple. A KB 〈T ,A〉 is Horn-SRIQu if T is a
Horn-SRIQu TBox.

The Chase A well-known way of characterising entail-
ments from KBs is the chase, which we introduce next.

A substitution σ is a partial function over Nt. We use
[t1/u1, . . . , tn/un] to denote the substitution σ s.t. σ(ti) =
ui for all i ∈ J1, nK. For a formula ϕ, we write ϕσ to de-
note the formula obtained by replacing all occurrences of a
term t in ϕ with σ(t) if t is in the domain of σ. For a tuple ~t
of terms, σ~t ⊆ σ is the restriction of σ to the domain ~t.

To handle rules of Type (≈), we represent individuals as
sets, which is why we used 2Ni in the definition of terms.
For a given substitution σ and two variables x, y, we de-
fine σrn

x,y by σrn
x,y(x) = σrn

x,y(y) = σ(x) if σ(x), σ(y) ∈ N0,
and σrn

x,y(x) = σrn
x,y(y) = (σ(x)∪ σ(y))∩Ni otherwise. In-

tuitively, σrn
x,y is the substitution identifying σ(x) and σ(y).

A tuple 〈ρ, σ〉 with ρ = B[~x, ~z] → ∃~y.H[~x, ~y] a rule and
σ a substitution is applicable to a set of facts F if Bσ ⊆ F ,
and Hσ′ 6⊆ F for all σ′ ⊇ σ~x. The application of 〈ρ, σ〉 on
F , written F〈ρ, σ〉, is the set of facts F ∪Hσ′ with σ′ ⊇ σ~x
a substitution mapping every variable in ~y to a fresh null. If
ρ is of the form B[~x] → x ≈ y, then 〈ρ, σ〉 is applicable to
F if Bσ ⊆ F and σ(x) 6= σ(y). In this case, the application
of 〈ρ, σ〉 on F , also denoted by F〈ρ, σ〉, is the set Fσrn

x,y .
We introduce this non-standard approach of rule applica-

tions with equality to ensure that the forest-model property
of Horn-SRIQu ontologies is reflected in the structure of
the chase, which will later be useful to show completeness
of our Datalog rewritings

Definition 2. A chase sequence for a KB K = 〈R,A〉 is a
sequence F0 = A,F1, . . . of sets of facts s.t.

• for all i ≥ 1, F i = F i−1〈ρ, σ〉 for a rule ρ ∈ R and
some substitution σ s.t. 〈ρ, σ〉 is applicable, and

• for all 〈ρ, σ〉 with ρ ∈ R, there is some k ≥ 0 s.t. 〈ρ, σ〉
is not applicable to F i for all i ≥ k (fairness).

The chase ofK, denoted byK∞, is the is the union of all sets
in some (arbitrarily chosen) chase sequence of K.

For the rest of the paper, we fix a Horn-SRIQu KB
O = 〈T ,A〉 and some (possibly infinite) chase sequence
O0,O1, . . . forO. For all i ≥ 1, let ρi ∈ T be an axiom and
σi a substitution s.t. Oi = Oi−1〈ρi, σi〉. By abuse of no-
tation, we write P (a1, . . . , an) ∈ F , with F a set of facts,
P ∈ Nc ∪ Nr, and a1, . . . , an ∈ Ni, if P (b1, . . . , bn) ∈ F
for some b1, . . . , bn ∈ 2Ni with ai ∈ bi for all i ∈ J1, nK.

g ao : R

n : RG

aa : R
C

HC HM
HM

S

HC

Figure 2: Chase of Ox = 〈Tex,Aex〉 from Example 1

Theorem 1. A KB K is satisfiable iff ⊥(t) /∈ K∞ for all
t ∈ Ngt. If K is satisfiable, K |= α iff α ∈ K∞ for every
assertion α.

We later show that the every chase step in a chase se-
quence of a Horn-SRIQu ontology reflects the “forest-
shaped” when we restrict to facts containing at least one null,
which corresponds to the well-known forest-model prop-
erty of Horn-SRIQu. In the presence of complex roles, the
forest-model property is not entirely apparent in the chase
steps of an ontology. To characterise this property, we dis-
tinguish binary facts in the chase that are not produced via
the application of axioms of the Type (◦) with n ≥ 2, or the
propagation of such facts.

All binary facts in O0 are direct. For all i ≥ 1, a binary
fact φ ∈ Oi \ Oi−1 is direct iff ρi is of Type (∃) or (ur); ρi
is of Type (◦) with n = 1 and R1(σi(x0), σi(x1)) ∈ Oi−1
is direct; or ρi is of Type (≤), and there is a direct fact φ′ ∈
Oi−1 s.t. φ′(σi)

rn
x,y = φ. For i ≥ 0, we write D(Oi) to

denote the set of all direct facts in Oi.
Example 2. Consider the TBox Tex and ABox Aex from
Example 1. The chase of Ox = 〈Tex,Aex〉 is depicted in
Figure 2, where direct and not direct facts are represented
using full and dashed arrows, respectively. Note that n is a
null introduced by the chase.

If we consider only the direct facts that occur in the chase
sequence of an ontology, we can establish the “forest model
property” reflected in every chase step of this sequence. For
all i ≥ 0, let F(Oi) be the graph s.t. every a ∈ 2Ni in Oi
is a node in F(Oi), and tn−1 → tn ∈ F(Oi) if there is
a sequence of facts R1(t0, t1), . . . , Rn(tn−1, tn) ∈ D(Oi)
with t0 ∈ 2Ni and ti 6= tj for all 0 ≤ i < j ≤ n.
Lemma 1. For all i ≥ 0,
• all nulls in Oi occur as nodes in F(Oi), and
• F(Oi) is a rooted forest where every individual node is a

root, and every null node is not.

Non-Deterministic Automata In our approach, we need
to trace the paths of complex roles in the chase of a Horn-
SRIQu KB that traverse only direct facts. To do so, we
make use of well-known automata techniques from (Hor-
rocks, Kutz, and Sattler 2006; Kazakov 2010). Here, we use
non-deterministic finite automata (NFAs) in a rather infor-
mal way, and use the notation p →R q ∈ N to denote that,
in the NFAN , there is a transition from a state p to a state q
with the letter R, instead of introducing transition relations
formally.
Definition 3. For a TBox T , let T− ⊇ T be the TBox with
R−n ◦ . . .◦R−1 v S− ∈ T− for every axiom of Type (◦) in T .
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iHC

q1
q2

q3

fHC
HC

C
HM− HM

ε

S− S

iHM fHM
HM

S

Figure 3: The NFA NTex(HC) and NTex(HM)

For every V ∈ Nr, the NFA NT (V ) is the smallest NFA
s.t. iV →V fV ∈ NT (V ) with iV and fV the only initial
and final states; and for every transition q →S q̂ ∈ NT (V )
and every axiom in T− of the form (◦), we have
• if n = 1 and R1 = S−, then q →S− q̂ ∈ NT (V ),
• if n = 2, R1 = S, and R2 = S, then q̂ →ε q ∈ NT (V ),
• Otherwise,

– if R1 6= S = Rn, then q →ε q0 →R1
q1 →R2

q2 →R3

. . .→Rn−1
qn−1 →ε q ∈ NT (V ),

– if R1 = S 6= Rn, then q̂ →ε q1 →R2
q2 →R3

q3 →R4

. . .→Rn
qn →ε q̂ ∈ NT (V ), and

– if R1 6= S 6= Rn, then q →ε q0 →R1 q1 →R2 q2 →R3

. . .→Rn qn →ε q̂ ∈ NT (V ).
In the above, states qi are assumed to be fresh and distinct.

Our definition of NFA coincides with that from (Hor-
rocks, Kutz, and Sattler 2006) in the sense that the result-
ing NFA NT (R) for any R ∈ Nr does recognise the same
language. With analogous arguments to those presented by
Horrocks et al., we can show the following claim.
Lemma 2. For all i ≥ 0, if Oi is closed under the applica-
tion of axioms of Type (ur), there is a binary fact R(t, u) ∈
Oi iff there are some S1(t, t1), . . . , Sn(tn−1, u) ∈ D(Oi)
with S1 · . . . · Sn ∈ NT (R).

Given a P = R1 · . . . ·Rn withR1, . . . , Rn ∈ Nr, we write
q →∗P q̂ ∈ NT (R) (resp. P ∈ NT (R)) to indicate that there
is a path P from q to q̂ (resp. iR to fR) in NT (R).
Example 3. Consider Ox = 〈Tex,Aex〉 with TBox Tex
and ABox Aex from Example 1. The NFA NTex(HC)
and NTex(HM) are depicted in Figure 3 (for the sake
of clarity, we have removed some ε-transitions). As im-
plied by Lemma 2 and since HC(g, aa), we have C(g, ao),
HM−(ao, n), HM(n, ao),S(ao, aa) ∈ D(O∞x ) such that
C · HM− · HM · S ∈ NTex(HC) (see Figure 2).

Datalog Rewritings in Horn-SRIQu
In this section, we define the Datalog AR-rewriting RT for
the TBox T and discuss complexity results.
Definition 4. A rule set R is an AR-rewriting for T iff,
for every ABox A and assertion α over sig(T ), 〈T ,A〉 and
〈R,A〉 are equi-satisfiable and 〈T ,A〉 |= α iff 〈R,A〉 |= α.

LetO = 〈T ,A〉 andKO = 〈RT ,A〉. By Theorem 1,RT
is an AR-rewriting only if the chase of KO coincides with
the chase of O on all assertions over sig(T ). The challenge
in constructing Datalog AR-rewritings is that assertions in
the O∞ might be introduced by rule applications on facts
with nulls, whilst no Datalog rule can introduce such terms.

A v ∃R.(B u C) C v A
A v ∃R.(B u C uA)

(1)

A v ∃(R u S).B S v R
A v ∃(R u S uR).B

(2)

A v ∃R.(B u ⊥)

A v ⊥
(3)

A v ∃(R uR).B A v ∀R.B
A uA v ∃(R uR).(B uB)

(4)

A v ∃(R uR−).(B uA) A v ∀R.B
A v B

(5)

A v ∃(R uR).(B uB) A v 61R.B
C v ∃(S uR).(D uB)

A u C uA v ∃(R u S uR).(B u D uB)
(6)

A v ∃(R uR−).(B u C uA) A v 61R.B
C v ∃(S uR).(D uB u C)

A uB v C
A uB v ∃(R uR− u S−).(B u C uA)

(7)

Figure 4: Derivation Rules where A,B ∈ Nc, R ∈ Nr, and
A,B,C,D and R,S are conjunctions of elements in Nc and
Nr, respectively

Example 4. Let Ox be the ontology from Example 1.
Then, the assertion HC(g, aa) is in O∞x because HC(g, ao),
HM(n, ao),HM(n, aa) ∈ Ox (see Figure 2). Analogously,
R(aa) ∈ O∞x because RG(n),HM(n, aa) ∈ O∞x . Note that
the facts HM(n, ao),HM(n, aa), and RG(n) cannot occur
in the case of a Datalog AR-rewriting, since n ∈ N0.

To replicate assertion entailments in K∞O such as the ones
highlighted in the previous example, we encode information
in K∞O about the null successors of an individual in O∞
using fresh concepts and roles. For all R ∈ Nr and states
q, q̂ ∈ NT (R), we introduce the fresh conceptsAq andRq,q̂ ,
and the fresh role Rq . Intuitively, these are used to encode
the following information about O∞ in K∞O .

1. If Aq(a) ∈ K∞O , then there are some A(t0) ∈ O∞,
and some R1(t0, t1), . . . , Rn(tn−1, a) ∈ D(O∞) with
q →∗R1·...·Rn

q̂ ∈ NT (R).
2. If Rq,q̂(a) ∈ K∞O , then there are some R1(a, t1), . . .,

Rn(tn−1, a) ∈ D(O∞) with t1, . . . , tn−1 ∈ N0 and
q →∗R1·...·Rn

q̂ ∈ NT (R).
3. If Rq(a, b) ∈ K∞O , then S1(a, t1), . . ., Sn(tn−1, b) ∈

D(O∞) with iR →∗S1·...·Sn
q ∈ NT (R).

Note that all terms ti may possibly be nulls that do not ap-
pear in the chase of KO.

To ascertain when information about one of these pred-
icates needs to be used in KO, we make use of a sound
saturation calculus from (Eiter et al. 2012), shown in Fig-
ure 4, which we also use to infer further axioms rele-
vant to our Datalog program. Since this calculus was orig-
inally designed for Horn-SHIQ, we first need to extend
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g ao : R, HCq1,q3 ,RfHM
aa : R, RfHM

C

HCq1 , HCq3 , HCfHC
, HC

S

HCq3 , HCfHC
, HC

Figure 5: Representation of K∞O with O from Example 1

our input TBox T to a TBox T+ in which the behaviour
of axioms of Type (◦) is sufficiently simulated. For in-
stance, if the calculus derives from T+ an axiom of the
form A v Aq , then we can conclude that, for every term t
s.t. B(t) ∈ O∞ for every B ∈ A, there is a set of di-
rect facts A(t0), R1(t0, t1), . . . , Rn(tn−1, a) ∈ O∞ with
a corresponding path in the automata, irrespectively of the
ABox A. We further augment T+ to a TBox T× that allows
us to trace paths in possible chases for T . Using the infer-
ences from this calculus, we then describe the rewritingRT .

Definition 5. Let B(T ) be the set of axioms that, for every
axiom ρ ∈ T of Type (∀), contains A v AiR , AfR v B,
and Aq v ∀S.Aq̂ ∈ B(T ) for every q →∗S q̂ ∈ NT (R) with
S ∈ Nr. Let T+ = T− ∪ B(T ), and T× = T− ∪ B(T ∪⋃
R∈Nr
{X v ∀R.Y }), with X and Y fresh concepts.

Then, RT is the Datalog rule set that contains every ax-
iom in T+ that is not of Type (∃), and every axiom that can
be inferred using the implications described in Table 1.

Theorem 2. The rule setRT is an AR-rewriting of T .

Example 5. Let Ox be the ontology from Example 1. Then,
the Datalog rule set RTex contains (amongst others) all the
rules in Tex that are not of Type (∃), as well as the following.

R(x)→ RfHM
(x) RfHM

(x)→ R(x)

RfHM
(x) ∧ S(x, y)→ RfHM

(y)

C(x, y)→ HCq1(x, y) R(x)→ HCq1,q3(x)

HCq1(x, y) ∧ HCq1,q3(x)→ HCq3(x, y)

HCq3(x, y)→ HCfHC
(x, y) HCfHC

(x, y)→ HC(x, y)

HCfHC
(x, y) ∧ S(y, z)→ HCfHC

(x, z)

The chase of KOx
is depicted in Figure 5. Note that K∞Ox

contains every assertion in O∞.

While we provide for full proofs of Theorem 2 in the ex-
tended version of the paper, we give an overview of some
of the main technical ideas in this section. While showing
soundness of our approach is not as challenging, we focus
on the argument showing completeness of the AR-rewriting
RT . Before discussing this proof, we give an intermediate
result.

Lemma 3. For a TBox T , an ABox A and a fact set F de-
fined over sig(T ), 〈T ,A〉 is satisfiable iff 〈T+,A〉 is, and
〈T ,A〉 |= F iff 〈T+,A〉 |= F .

Since T+ ⊇ T , the “if” direction of this lemma follows
trivially from monotonicity of logical entailment. The “only
if” direction is proven in the extended version of the paper.

By Lemma 3, it suffices to show that our Datalog rewrit-
ings entail the same assertions as T+ in order to show com-
pleteness of our rewriting, which by Theorem 1 is conse-
quence of the following lemma.

Lemma 4. For a TBox T , an ABox A and an assertion α
over sig(T ),

• if ⊥(t) ∈ 〈T+,A〉∞ with t ∈ Ngt, then ⊥(u) ∈
〈RT ,A〉∞ for some u ∈ 2Ni , and

• if α ∈ 〈T+,A〉∞, then α ∈ 〈R,A〉∞.

Let O0
+,O1

+, . . . be a chase sequence for the ontology
O+ = 〈T+,A〉 where axioms of Type (ur) are applied with
the highest priority. For every i ∈ J1, nK, we select an axiom
ρi ∈ T+ and a substitution σi s.t. Oi+ = Oi−1+ 〈ρi, σi〉.

To prove Lemma 4, we show via induction that for every
i ≥ 1 and every assertion α ∈ Oi+, we have α ∈ K∞O .
The base case of this induction is trivial, since O0

+ = A
and A ⊆ K∞O by Definition 2. For the induction step, we
provide a thorough case analysis based on the type of the
axiom ρi, and the type of the elements occurring in the range
of σi. Since α ∈ K∞O for every assertion α ∈ Oi−1 by the
induction hypothesis, many cases follow trivially. The more
challenging cases are the following.

1. ρi is of Type (◦), σi(x0), σi(xn) ∈ 2Ni and σi(xj) ∈ N0

for j ∈ {1, . . . , n− 1}.
2. ρi is of Type (∀), σi(x) ∈ N0 and σi(y) ∈ Ni.
3. ρi is of Type (≤), and a) σi(y) ∈ 2Ni and σi(x), σi(z) ∈

N0, or b) σi(x), σi(y) ∈ 2Ni and σi(z) ∈ N0.

Cases in which ρi is of Type (≤), and either σi(z) ∈ 2Ni and
σi(x), σi(y) ∈ N0, or σi(x), σi(z) ∈ 2Ni and σi(y) ∈ N0,
are also non-trivial, but analogous to Cases 3a) and 3b).

In all of the challenging cases, the occurrence of facts
containing nulls in Oi−1+ results in the introduction of new
assertions in Oi+—a situation previously illustrated in Ex-
ample 4. To illustrate our completeness argument, we give a
brief proof sketch that shows that induction step for Case (1).
First, we introduce a preliminary lemma, which ensures that
an axiom as used for Rule (	) is derived by the calculus if
there is a corresponding cyclic path along nulls in O∞.

Lemma 5. Let i ≥ 1, R1(t0, t1), . . . , Rn(tn−1, tn) ∈
D(Oi+), and q, q̂ ∈ NT (R) with q 6= q̂. If

• q →∗P q̂ ∈ NT (R) with P = R1 · . . . ·Rn, and
• t0 ∈ 2Ni , and t1, . . . , tn−1 ∈ N0;

then there exists A ⊆ {A | A(t0) ∈ Oi+} s.t. A u Xq v
Xq̂ ∈ Γ(T×).

This result can be shown via induction on the depth of the
sequence R1(t0, t1), . . . , Rn(tn−1, tn)—the maximum mi-
nus the mimimum depth of a term in t0, . . . , tn in the rooted
forest F(Oi+). We proceed with the proof for case (1).

Proof (Sketch). Let ρi be an axiom of the form R1 ◦
. . . ◦ Rn v S ∈ T+. Then, R1(σi(x0), σi(x1)), . . .,
Rn(σi(xn−1), σi(xn)) ∈ Oi−1+ .

By Lemma 2 and the fact that Oi+ is closed under
application of rules of Type (ur), there is a sequence
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∧
D∈DD(x)→ A(x) ⇐= D v A ∈ Γ(T×) (u)∧
D∈DD(x)→ Rq,q̂(x) ⇐= R ∈ Nr, q, q̂ ∈ NR(T ), and D uXq v Xq̂ ∈ Γ(T×) (	)

A(x) ∧
∧
D∈D∪AD(x) ∧R(x, y) ∧B(y)→ C(y) ⇐= A v 61R.B,D v ∃(R uR).(A uB u C) ∈ Γ(T×) (^ 1)

A(x) ∧
∧
D∈DD(x) ∧R(x, y) ∧B(y)→ S(x, y) ⇐= A v 61R.B,D v ∃(R uR u S).(A uB) ∈ Γ(T×) (^ 2)

S(x, y)→ Rq(x, y) ⇐= R,S ∈ Nr and iR →∗S q ∈ NT (R) (R 1)
RiR,q(x)→ Rq(x, x) ⇐= R ∈ Nr and RiR,q ∈ RT (R 2)

Rq(x, y) ∧ S(y, z)→ Rq̂(x, z) ⇐= R,S ∈ Nr and q →∗S q̂ ∈ NT (R) (R 3)
Rq(x, y) ∧Rq,q̂(y)→ Rq̂(x, y) ⇐= R ∈ Nr and Rq,q̂ ∈ RT (R 4)

RfR(x, y)→ R(x, y) ⇐= R ∈ Nr (R 5)

Table 1: Rules to construct RT , where Γ(T×) is the saturation of T× by the rules in Figure 4 and all concepts A and B and
those in the conjunctions D and A occur T+.

V1(t0, t1), . . . , Vm(tm−1, tm) ∈ D(Oi−1+ ) with σi(xj−1) =
t0, σi(xj) = tm, and V1 · . . . · Vm ∈ NT (Rj) for ev-
ery j ∈ {1, . . . , n} (note that possibly m = 1). By con-
catenating these sequences, we can construct a sequence
V1(t0, t1), . . . , Vm(tm−1, tm) ∈ D(Oi−1+ ) s.t. σi(x0) = t0,
σi(xn) = tm, and V1 · . . . · Vm ∈ NT (S). Hence, there
are states q0, . . . , qm s.t. q0 = iV , qm = fV , and q0 →W1

q1 →W2 q2 . . . →Wm qm ∈ NT (V ). Let k0, . . . , ko be
the longest sorted sequence of natural numbers with tkj ∈
2Ni for all j ∈ {0, . . . , o}. We show via induction that
Sqkj

(t0, tkj ) ∈ K∞O for all j ∈ {1, . . . , o}. In turn, this im-
plies S(σi(x), σi(y)) ∈ K∞O since SqfS (x, y) → S(x, y) ∈
RT as k0 = t0 = σi(x), tko = tm = σi(y), and qkm = fS .

To show the base case, we check that Sqk1
(t0, tk1) ∈ K∞O .

We consider two possible cases a) and b) depending on
whether k1 = 1. a) Let k1 = 1. Then, W1(t0, t1) ∈ K∞O
by the inductive hypothesis. Since W1(x, y)→ Sq1(x, y) ∈
RT , Sq1(t0, t1) ∈ K∞O . b) Let k1 > 1. By Lemma 1,
tk1 = t0. As shown in the extended version of the pa-
per A u XiS v Xqk1

∈ Γ(T×) with A ⊆ Ni−1c (t0) and
hence, A(x) → SiS ,qk1

(x) ∈ RT . By the inductive hy-
pothesis, A(t0) ∈ K∞O and hence, SiS ,qk1

(t0) ∈ K∞O . Since
SiS ,qk1

(x)→ Sqk1
(x, x) ∈ R∞T , Sqk1

(t0, tk1) ∈ K∞O .
To show the induction step, we verify that, for all

j ∈ {2, . . . , o}, Sqkj
(t0, tkj ) ∈ K∞O provided that

Sqkj−1
(t0, tkj−1

) ∈ K∞O . We consider two possible cases
a) and b) depending on whether k1 = 1. Let kj = kj−1 + 1.
Then, Wkj (tkj−1

, tkj ) ∈ K∞O by the inductive hypothe-
sis. Since Sqkj−1

(x, y) ∧ Wkj (y, z) → Sqkj
(x, z) ∈ RT ,

Sqkj
(t0, tkj ) ∈ K∞O . Let kj > kj−1 + 1. Then, tkj = tkj−1

by Lemma 1. This case is analogous to the second case con-
sidered in the proof of the base case.

In addition to showing correctness, we can show that our
approach is worst-case optimal for Horn-SRIQu and even
for less expressive DLs such as ELH and Horn-SHIQ.

Definition 6. An axiom set is a Horn-SHIQ TBox if, for
every axiom ρ ∈ T of Type (◦), we have that a) n = 1 or b)
n = 2, and R1 = R2 = S.

A ELH TBox T is a set containing axioms of Type (u),
(∃), (◦), and of the form ∃R.A v B with A,B ∈ Nc and

R ∈ Nr s.t. a) n = 1 for every axiom of the form (◦) and b)
for every R ∈ Nr, T uses R or R−, but not both.

Axioms of the form ∃R.A v B are equivalent to A v
∀R−.B, which is why ELH is included in Horn-SRIQu.

Theorem 3. Let O = 〈T ,A〉 be an ontology. If T is Horn-
SRIQu/Horn-SHIQ/ELH, then we can computeRT and
〈RT ,A〉∞ in 2EXPTIME/ EXPTIME/ PTIME, respectively.

Finally, we show that our rewritings can be transformed
into DLP TBoxes. This feature may prove useful for users
that want to produce KBs that are expressible using the
OWL standard.

Definition 7. A DLP TBox is an axiom set that a) does not
contain axioms of Type (∃) and b) may contain axioms of the
form

dn
i=1Ai v ∃R.Self with A ∈ Nc and R ∈ Nr.

Definition 8. Given a TBox T , the DLP-rewriting Tdlp of T
is the TBox containing every DLP axiom inRT which addi-
tionally satisfies all of the following.

1. If
∧
A∈AA(x) ∧ R(x, y) ∧ B(y) → C(y) ∈ RT , then

A v XA, XA v ∀R.XR−,A, XR−,A uB v C ∈ Tdlp.
2. If

∧
A∈AA(x)∧R(x, y)∧B(y)→ S(x, y) ∈ RT , then

A v ∃WA.Self, B v ∃WB .Self, WA ◦ R ◦WB v S ∈
Tdlp.

3. If Rq(x, y) ∧ Rq,q̂(y) → Rq̂(x, y) ∈ RT , then Rq,q̂ v
∃Wq,q̂.Self, Rq ◦Wq,q̂ v Rq̂ ∈ Tdlp.

In the above, allXA andR.XR−,A are fresh concepts unique
for every A ⊆ Nc and R ∈ Nr, and all WA and Wq,q̂ are
fresh roles unique for every W ∈ Nr and the states q and q̂.

The rules introduced in (1)–(3) in Definition 8 correspond
to consequence-preserving transformations from rules to ax-
ioms described in (Krötzsch, Rudolph, and Hitzler 2008).
From this, it follows that Tdlp is an AR-rewriting of T .

Evaluation
We implement our rewriting technique in Java using the
OWL-API (Horridge and Bechhofer 2011) to handle OWL
ontology files, and Clipper (Eiter et al. 2012) to apply the
calculus from Figure 4. We performed two different experi-
ments to validate the practical usefulness of our approach.
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Figure 6: Times in seconds for RDFox (dark) and Konclude
(bright), each over four ABoxes with increasing numbers of
assertions.

AR on Data-Intensive Ontologies We compared the per-
formance of performing AR using our Datalog rewritings
versus using the DL reasoner Konclude. We considered two
real-world, data-intensive ontologies from the biological do-
main, Reactome and Uniprot, which were used in the evalu-
ation of PAGOdA (Zhou et al. 2015). We have normalised
these ontologies and removed axioms not expressible in
Horn-SRIQu. Also, we enriched Reactome and Uniprot
with three and five axioms of Type (◦), respectively, as
neither ontology contained axioms of this form. These ax-
ioms are listed in the last section of the appendix which
is contained in the extended version of this paper (Carral,
González, and Koopmann 2018). The resulting ontologies
contained 485 (Reactome), and 304 (Uniprot) terminologi-
cal axioms, respectively. For each ontology, we considered
ABoxes of various sizes, generated by sampling the real-
world ABoxes using the method by Zhou et al. (2015).

The rewritten Datalog programs for the Reactome and
Uniprot TBoxes contained 539 and 367 rules, and were com-
puted in 221 and 182 seconds, respectively. We used RDFox
(SVN version 2776) as Datalog engine for computing the
chase of our rewritings (Motik et al. 2014), and compared its
performance with that of Konclude v0.6.2. We performed all
experiments and computed both rewritings on a MacBook
Pro with a 2,4 GHz Intel Core i5 and 8GB of RAM. Fig-
ure 6 shows the wall-clock times measured in this experi-
ment, ignoring the time used for parsing and loading, in log-
arithmic scale. While Konclude reports detailed times, for
RDFox we have measured the time from within our proto-
type. For more information, see the logs with the resulting
evaluation can be found online. Konclude timed-out (with a
one hour time limit) for the two largest of the Uniprot sam-
ples. Hence no times are reported there. Note that our im-
plementation is performing full AR, whilst Konclude only
performed class retrieval.

Size of Rewritings Computed To get an idea on how
our approach would perform on other data-intensive real-
world ontologies, we computed rewritings for a selected
set of TBoxes from MOWLCorp (Matentzoglu et al. 2014).
From each ontology in this corpus of DL ontologies, we re-
moved axioms that, after normalisation, were not in Horn-

101

103

105

#A
xi

om
s

Figure 7: Sizes of TBoxes and their rewritings.

SRIQu, and selected from the resulting ontology set those
which contained role chain axioms, and removed TBoxes
with more than 1,000 axioms, since TBoxes with smaller
sizes are more likely to be used on large data sets. Further-
more, we removed all those ontologies which belong to any
of the profiles OWL EL, OWL RL, and OWL QL, since they
admit polynomial reasoning even without a Datalog rewrit-
ing. This resulted in a set of 187 ontologies on which we
applied our implemented rewriting procedure.

For 121 ontologies, rewritings could be computed without
memory errors. Often, memory errors were caused by com-
plex role chains in the TBox which lead to an explosion of
the resulting automata. For instance, we found one degener-
ate ontology in the corpus with only 10 axioms, 4 of which
were role chain axioms with 8 roles each. For this TBox, T×
contained 86,264 axioms, which Clipper could not handle.
We believe that ontologies of this form are unlikely to be
used in practice to reason about large ABoxes.

The sizes of the successful rewritings are shown in Fig-
ure 7, where the red bars correspond to the number of ax-
ioms in the input ontologues, and the blue bars to the num-
ber of rules in the resulting Datalog rewritings. For some
ontologies, the rewritings got substantially larger. This was
expected, and in theory unavoidable, due to the double ex-
ponential time complexity of assertion entailment in Horn-
SRIQu: for Datalog, this complexity is only polynomial,
which is why our rewritings are in the worst case double ex-
ponential in the size of the input. Our evaluation confirms
that these blow-ups are not only of theoretical nature, but do
happen for the considered ontologies. On the other hand, in
a lot of cases, the size of the computed rule sets was still of
similar dimensions: in 59% of cases, the the increase was at
most by 100%, and in 74% of cases, it was at most by 200%.

Conclusions and Future Work
To the best of our knowledge, we present the first data-
independent Datalog transformation for Horn-SRIQu, an
expressive DL that allows for the use of the role chain
constructor. Furthermore, we show that our transformation
is worst-case optimal for ELH, Horn-SHIQ, and Horn-
SRIQu, and that the resulting Datalog programs can be
translated into DLP ontologies. We empirically show that a)
the use of Datalog rewritings can outperform state-of-the-art
reasoners and that b) we can construct rewritings of moder-
ate sizes for many real-world ontologies.
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As for future work, we aim to develop a rewriting tech-
nique for expressive DLs language that allows for the use of
non-deterministic role constructors and role chains based on
the calculi from (Cucala, Cuenca Grau, and Horrocks 2018;
Bate et al. 2016). Also, we intend to further optimise our
prototype implementation, in order to produce even smaller
rewritings and show that these can be efficiently computed.
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Krötzsch, M.; Rudolph, S.; and Hitzler, P. 2008. Description
logic rules. In Proc. ECAI’08, 80–84. IOS Press.
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