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Abstract

Cause-and-effect relations are one of the most valuable types
of knowledge sought after throughout the data-driven sci-
ences since they translate into stable and generalizable expla-
nations as well as efficient and robust decision-making capa-
bilities. Inferring these relations from data, however, is a chal-
lenging task. Two of the most common barriers to this goal
are known as confounding and selection biases. The former
stems from the systematic bias introduced during the treat-
ment assignment, while the latter comes from the systematic
bias during the collection of units into the sample. In this pa-
per, we consider the problem of identifiability of causal ef-
fects when both confounding and selection biases are simul-
taneously present. We first investigate the problem of identi-
fiability when all the available data is biased. We prove that
the algorithm proposed by [Bareinboim and Tian, 2015] is,
in fact, complete, namely, whenever the algorithm returns a
failure condition, no identifiability claim about the causal re-
lation can be made by any other method. We then generalize
this setting to when, in addition to the biased data, another
piece of external data is available, without bias. It may be the
case that a subset of the covariates could be measured without
bias (e.g., from census). We examine the problem of identi-
fiability when a combination of biased and unbiased data is
available. We propose a new algorithm that subsumes the cur-
rent state-of-the-art method based on the back-door criterion.

Introduction
One prominent challenge shared throughout the empirical
disciplines is to infer cause and effect relationships – for
instance, one may need to determine how increasing the
state’s educational budget will bring about change in the
average income of the population, whether exposing sub-
jects to a new advertisement campaign would translate into
additional sales revenue, or how patients will react to the
decrease of the drug’s dosage, would they still recover in
acceptable health conditions? Despite the disparate nature
of these questions in terms of subject matter, they evoke
the same set of principles and formal machinery, which
comes under the rubric of causal inference (Pearl 2000;
Spirtes, Glymour, and Scheines 2001).

Causal inference is concerned with the potential mis-
match between the inferential power of the collected data
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and the target inference. In practice, this is particularly rel-
evant since data is almost invariably plagued with various
biases, most prominently, confounding and selection. The
former refers to the presence of a set of factors that affect
both the action (also known as treatment) and the outcome,
while the latter arises when the action, outcome, and other
factors differentially affect the inclusion of subjects in the
data sample (Bareinboim and Pearl 2016).

The problem of identifiability gives formal dressing to
the issue of confounding (Pearl 2000, Ch. 3). Specifically,
it is concerned with determining the effect of a treatment
(X) on an outcome (Y ), denoted P (y|do(x)) (for short,
Px(y)), based on the observational, non-experimental dis-
tribution P (v) (where V represents observable variables)
and causal assumptions commonly expressed as a directed
acyclic graph. The difference between P (y|do(x)) and its
probabilistic counterpart, P (y|x), is what is called con-
founding bias (Bareinboim and Pearl 2016). This problem
has been extensively studied in the literature. A system-
atic treatment of this problem was given in (Pearl 1995),
which introduced do-calculus. The do-calculus was shown
to be complete for non-parametric identifiability from ob-
servational and experimental data (Tian and Pearl 2002a;
Huang and Valtorta 2006; Shpitser and Pearl 2006; Barein-
boim and Pearl 2012a).

The other source of disparities, selection bias, usually ap-
pears due to the preferential exclusion of units from the sam-
ple. For instance, in a typical study of the effect of grades
on college admissions, subjects with higher achievement
tend to report their scores more frequently than those who
scored lower. In this case, the data-gathering process will
reflect a distortion in the sample’s proportions and, since the
data is no longer a faithful representation of the underly-
ing population, biased estimates will be produced regardless
of the number of samples collected (even when the treat-
ment is controlled). The problem of selection bias can also
be modeled graphically through the explicit articulation of
the sampling mechanism, S. This mechanism can be seen
as a binary indicator of entry into the data pool, such that
S=1 if a unit is included in the sample and S=0 otherwise.
Clearly, when the sampling process is entirely random, S
is independent of all variables in the analysis. When sam-
ples are collected preferentially, the causal effects not only
need to be identified but also recovered from the distribution
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P (v|S=1), instead of P (v) (Bareinboim and Pearl 2012b).
Selection bias has challenged inferences throughout a

wide range of disciplines, including AI (Cooper 1995; Elkan
2001; Zadrozny 2004; Cortes et al. 2008), statistics (Whit-
temore 1978; Little and Rubin 1987; Robinson and Jewell
1991; Kuroki and Cai 2006; Evans and Didelez 2015), and
the empirical sciences (e.g., genetics (Pirinen, Donnelly, and
Spencer 2012; Mefford and Witte 2012), economics (Heck-
man 1979; Angrist 1997), and epidemiology (Robins 2001;
Glymour and Greenland 2008)).

Even though selection and confounding biases appear to-
gether in most of the non-trivial, practical settings, they
have been almost invariably treated independently in the
literature. There are non-trivial interactions between them,
however, which have not been investigated until recently.
(Bareinboim, Tian, and Pearl 2014; Bareinboim and Tian
2015) provided sufficient conditions for the non-parametric
recoverability of the causal effects from selection bias, and
introduced a relaxation of this setting so that external (un-
biased) data could be leveraged. (Evans and Didelez 2015)
developed an approach for discrete models, where assump-
tions on the cardinality of the observable variables allow
the estimation of the distribution over the sampling mech-
anism; in turn recovering the marginal distribution. (Cor-
rea and Bareinboim 2017) introduced a backdoor-like con-
dition that controls for both biases, while (Correa, Tian, and
Bareinboim 2018a) proved completeness for a more general
backdoor criterion that allows for external data.

In this paper, we study the simultaneous effect of con-
founding and selection biases in general non-parametric set-
tings. In particular, our contributions are as follow:
• We prove that the algorithm introduced in (Bareinboim

and Tian 2015) is complete for the task of recoverability
when all data available is biased. In other words, when-
ever the algorithm fails to recover a causal effect, the same
is provable not recoverable by any other procedure.

• We relax the setting above and allow for the use of unbi-
ased data in the form of a joint distribution over a subset
of the observed variables. We develop a new algorithm
for this task and prove that the approach is strictly more
powerful than the current state-of-the-art method (Correa,
Tian, and Bareinboim 2018a).
For the sake of space, the proofs not provided are avail-

able in the Appendix (Correa, Tian, and Bareinboim 2018b).

Structural Models, Causal Effects,
and Recoverability

The systematic analysis of confounding and selection bi-
ases requires a formal language where the characterization
of the underlying data-generating model can be encoded ex-
plicitly. We use the language of Structural Causal Models
(SCMs) (Pearl 2000, pp. 204-207). Formally, a SCM M is
a 4-tuple 〈U,V, F, P (u)〉, where U is a set of exogenous
(latent) variables and V is a set of endogenous (measured)
variables. F represents a collection of functions F = {fi}
such that each endogenous variable Vi ∈ V is determined
by a function fi ∈ F , where fi is a mapping from the re-
spective domain of Ui ∪ Pai to Vi, Ui ⊆ U, Pai ⊆ V\Vi,

and the entire set F forms a mapping from U to V. The un-
certainty is encoded through a probability distribution over
the exogenous variables, P (u). Within the structural seman-
tics, performing an action X=x is represented through the
do-operator, do(X=x), which encodes the operation of re-
placing the original equation of X by the constant x and
induces a submodel Mx. For a detailed discussion of SCMs,
causal inference and fusion, we refer readers to (Pearl 2000;
Bareinboim and Pearl 2016).

Following the conventions in the field, we denote vari-
ables by capital letters and their realized values by small
letters. Sets of variables are denoted in bold. We use
typical graph-theoretic terminology with the abbreviations
Pa(C),Ch(C),De(C), An(C), which stand for the union
of C and respectively the parents, children, descendants, and
ancestors of C. The letter G is used to refer to the causal
graph, in which the unobserved common causes are encoded
implicitly through the dashed bidirected arrows; GXZ denote
the graph resulting from removing all incoming edges to X
and all outgoing edges from Z in G. For C ⊆ V, let GC be
the subgraph of G composed only of variables in C. Next,
we formalize the notion of identifiability.
Definition 1 (Effect Identifiability (Pearl 2000, pp.77)). The
causal effect of an action do(X=x) on a set of variables
Y is said to be identifiable from P in G if P (y|do(x))
(for short, Px(y)) is uniquely computable from P (v) in any
model that induces G. Formally, for every two models M1

and M2 compatible with G, PM1(v)=PM2(v)>0 implies
PM1(y|do(x))=PM2(y|do(x)).

The systematic identification of causal effects calls for the
ability to decompose them into easier-to-characterize quan-
tities. For any set C ⊆ V, we then define Q[C](v), called
c-factor, to denote the following function

Q[C](v)=Pv\c(c)=
∑
U

∏
{i|Vi∈C}

P (vi|pai, ui)P (u), (1)

where pai is the set of observable parents of Vi and ui is
the set of unobserved parents. Of special interest are the c-
factors associated with the elements of a partition on the ob-
servable variables induced by the presence of bidirected ar-
rows, called C-Components (Tian and Pearl 2002a). The set
V is partitioned into c-components by assigning two vari-
ables to the same set if and only if they are connected by a
path composed entirely of bidirected edges in G.

While identification deals with the problem of controlling
for confounding bias, an orthogonal problem arises when the
observations are not a random sample from the population.
This problem is what we referred to as selection bias (also
called sampling selection bias).
Definition 2 (Effect Recoverability (Bareinboim and Tian
2015)). Given a causal graph G augmented with the se-
lection mechanism, represented by the S node, the causal
effect P (y|do(x)) is said to be recoverable from selec-
tion biased data if the assumptions embedded in G ren-
der the effect expressible in terms of the distribution un-
der selection, P (v|S=1). That is, for any models M1 and
M2 compatible with G, PM1(v|S=1)=PM2(v|S=1)>0
implies PM1(y|do(x))=PM2(y|do(x)).
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Figure 1: Subgraphs considered by RC while recovering
Px(y) for the model in (a).

Roughly speaking, the paths between an action X and an
outcome Y in a causal graph can be partitioned into causal
(directed paths) and non-causal (spurious). A path is called
proper if it contains no variables in X except at the start-
ing point. The following construction graphically “disables”
proper causal paths, by cutting the first arrow in such paths,
leaving the spurious paths unperturbed.
Definition 3 (Proper Backdoor Graph (van der Zander,
Liskiewicz, and Textor 2014)). Let G be a causal diagram,
and X,Y be disjoint subsets of variables. The proper back-
door graph, denoted as GpbdXY, is obtained from G by remov-
ing the first edge of every proper causal path from X to Y.

This transformation will allow us to characterize the fail-
ing condition for recoverability in the next section.

Recoverability from Biased Data
In this section, we consider the problem of recovering
the causal distribution when only biased data is avail-
able, namely, evaluating whether Px(y) is computable from
P (v|S=1). First, we consider the state-of-the-art sufficient
procedure available in the literature, and then study the con-
ditions under which it fails.

In order to recover a causal effect of the form Px(y), it is
usually wise to express it as a product of c-factors associated
with the c-components as follows:

Px(y) =
∑
V\Y

Px(v \ x) =
∑
V\Y

Q[V \X]

=
∑
D\Y

Q[D] =
∑
D\Y

l∏
i=1

Q[Di], (2)

where D=An(Y)GV\X , and D1, . . . , Dl are the c-
components of GD.

This factorization was employed as the basis for the algo-
rithm RC (Bareinboim and Tian 2015), shown in Alg. 1. RC
attempts to recover each Q[Di], by Lemma 3 in (Bareinboim
and Tian 2015), every Q[Ci] in line 2 is recoverable, and the
function IDENTIFY(E, Ci, Q[Ci]) (Tian 2002) (line 4) can
be used to determine the identifiability of Q[E] from Q[Ci],
where E ⊆ Ci. If all such factors are successfully recovered,
then the effect Px(y) is recoverable as (2). To understand
the mechanics of the algorithm, we consider the model
in Fig. 1(a) and assume our target distribution is Px(y).
In this graph D={Y } hence Px(y)=Q[Y ], consequently
RC({Y }, P (v|S=1),G) will be invoked. Since all variables
in G are ancestors of Y or S, line 1’s condition does not
apply, and RC iterates over each c-component of G, adding

Algorithm 1 Procedure in (Bareinboim and Tian 2015) for
recovering Q[E]

function RC(E, P,G)
Input E a c-component, P a distribution and G a causal diagram

over variables V and S.
Output Expression for Q[E] in terms of P (v|S=1) or FAIL

1: If V \ (An(E) ∪An(S)) 6= ∅,
return RC

(
E,
∑

V\(An(E)∪An(S)) P,GAn(E)∪An(S)

)
2: Let C1, . . . , Ck be the c-components of G that contains no an-

cestors of S, and let C =
⋃

i Ci

3: If C = ∅, return FAIL
4: If E is a subset of some Ci,

return IDENTIFY(E, Ci, Q[Ci])

5: Return RC
(
E, P∏

i Q[Ci]
,GV\C

)

those with no ancestor of S to the set C. In this example, G
decomposes into three c-components: {X}, {W1,W2, Y },
and {S}, where only {X} satisfies the condition to get
into C and Q[X] is recovered as P (x|w1, w2, S=1).
Since {Y } is not a subset of {X}, line 5 recursively calls
RC({Y }, P (v|S=1)/P (x|w1, w2, S=1),G{W2,W1,Y,S}).
This new graph is shown in Fig.1(b). Now that X is not
in the graph, the variable W1 is no longer an ancestor
of either Y or S, then line 1 performs a recursive call as
RC({Y },

∑
W1

P (v|S=1)/P (x|w1,w2,S=1),G{W2,Y ,S}).
In the graph G{W2,Y,S}, shown in Fig. 1(c), there
are three c-components: {W2}, {Y }, and {S}.
Since Y is not an ancestor of S in this graph,
line 2 will recover Q[C1] where C1={Y } as∑

W1
P (y|x,w1, w2|S=1)P (w1, w2|S=1)/P (w2|S=1)

and make C={Y }. Next, because our target {Y } is a subset
of C1={Y }, line 4 recovers Q[Y ] = Q[C1] and returns it,
which, as noted before, corresponds to Px(y).

While RC was shown to be sound, it was not shown to
be complete, that is, whether a FAIL triggered by line 3 im-
plies that the target causal effect is not recoverable, or if the
algorithm is not powerful enough to recover the expression.

In the following, we first present a necessary condition for
the causal effect to be recoverable and then use it to show the
completeness of the procedure RC.
Theorem 1. Let X,Y ⊂ V be two disjoint sets of variables
and G a causal diagram over V and S. If (Y⊥6⊥S)Gpbd

XY
, then

Px(y) is not recoverable from P (v | S=1) in G.
The necessary condition in Thm. 1 helps us to show that

when RC fails, Px(y) is not recoverable.
Theorem 2. Let X and Y be two disjoint sets of variables
and G a causal diagram over V and S. Let D=An(Y)GV\X
and D1, . . . , D` be the c-components of GD. Then, the effect
Px(y) is recoverable from P (v|S=1) if and only if each
Di, i = 1, . . . , ` is recoverable by the function RC.

Thm. 2 implies that the strategy employed by RC covers
all recoverability scenarios, and all other algorithms con-
cerned with this setting will be in some form or shape, at
most, equivalent to it. In other words, the recoverability al-
gorithm in (Bareinboim and Tian 2015) is complete.
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Recoverability with External Data
Whenever the conditions of Thm. 2 are not satisfied, the tar-
get effect is provably not inferable from P (v|S=1). One
common strategy to circumvent this challenging situation is
to try to find and leverage alternative sources of data. Pop-
ular baseline covariates such as age, sex, and ethnicity can
be obtained without bias in many cases, for instance, using
data from the census or smaller pilot studies.

We supplement Def. 2 to formally account for the avail-
ability of a new source of data, i.e.,

Definition 4 (Recoverability from Selection Bias with Ex-
ternal Data). Given a causal graph G augmented with the
selection mechanism, represented by the S node, the causal
effect Px(y) is said to be recoverable from selection bias
with external data P (t) if for any two models M1 and M2

compatible with G, PM1(v|S=1) = PM2(v|S=1) > 0 and
PM1(t) = PM2(t) > 0 implies PM1

x (y) = PM2
x (y).

In other words, Def. 4 requires the causal effect to be
uniquely computable from the available data (under selec-
tion bias and from the external source) and the assumptions
embodied in the causal model.

We consider unbiased external data in the form of a distri-
bution P (t0), where T0 ⊂ V is a set of variables measured
(jointly) without bias. As shown in the next lemma, addi-
tional information can be inferred from the external data and
model assumptions.

Lemma 1. Given P (t0), let T′ be a set of variables such
that (S ⊥⊥ T′ | T0), and let T = T0 ∪ T′, then P (t) is
recoverable.

Proof. P (t) = P (t′ | t0, S=1)P (t0).

From this point on, we will use T to denote a set of vari-
ables such that P (t) is available (following from P (t0)),
and let R = V\T be the rest of the variables. Let PJ(G,T)
denote the graph derived from the original graph G by repre-
senting the variables in R as unobservables (with bidirected
edges), known as the projection of G on the set T (Verma
1993) (see also Def. 1 in (Tian and Pearl 2002b)). Accord-
ingly, we can define c-factors QR[.] in this projection, de-
noting the following function

QR[C] = Pt\c(c) = Pv\(c∪r)(c)

=
∑
U,R

∏
{i|Vi∈C∪R}

P (vi | pai, ui)P (u). (3)

In other words, the function QR[.] represents a c-factor in G
when the variables in R are treated as latent variables 1.

The next result delineates the new c-factors that can be
recovered from P (t):

Lemma 2. Let T ⊆ V, R = V \T, and T1, . . . , Tm be the
c-components of PJ(G,T), then all QR[Tk] are recoverable
from P (t).

1C-components with arbitrary variables as latent variables are
defined in (Tian and Pearl 2002b).

Proof. We have that

P (t) =
∑
R

P (v) =

m∏
k=1

QR[Tk]. (4)

By (Tian and Pearl 2002b, Lemma 2), all QR[Tk] are recov-
erable from P (t).

Building on Lemmas 1 and 2, we now state the main result
of this section:
Theorem 3. Let H ⊆ V ∪ {S}, such that H is parti-
tioned into c-components H1, . . . ,Hl, Hs in the subgraph
GH, where S ∈ Hs. Assume

f(P (v | S=1)) =
Q[Hs](v, S=1)

P (S=1)

∏
i

Q[Hi], (5)

where f(P (v|S=1)) is some recoverable quantity, and
P (t) is available. Let T0

H = T \ De(V\H)G and T′ be
the set of all variables in H such that (T′ ⊥⊥ S | T0

H)GH .
Also, let TH = T0

H ∪ T′ and let RH = H \ TH. Then,
for j=1, . . . , l, Q[Hj ] is recoverable if Hj contains no vari-
ables that are both ancestors of Hs and belong to RH or its
children (i.e. Hj ∩An(Hs) ∩ Ch(RH) = ∅) in GH.

Proof. (sketch, see Appendix C for details) Let a topological
order of the variables in H be Vh1

< · · · < Vhk
in GH. Let

H≤i = {Vh1
, . . . , Vhi

} be the set of variables in H ordered
before Vhi

(including Vhi
), and H>i = H \ H≤i for i =

1, . . . , k, and H≤0 = ∅. The assumptions of the theorem
allow us to recover Pv\h(tH) from f(P (v|S=1)) and P (t).
For any Hj that satisfies the condition of the theorem, the
associated c-factor can be recovered as:

Q[Hj ] =
∏

{i|Vhi
∈Hj∩An(Hs)}

∑
h>i∩TH

Pv\h(tH)∑
h>i−1∩TH

Pv\h(tH)
×

∏
{i|Vhi

∈Hj\An(Hs)}

∑
h>i f(P (v|S=1))∑

h>i,Vhi
f(P (v|S=1))

. (6)

Thm. 3 will be the main driving force for recovering
causal effects from combined biased data P (v|S=1) and
unbiased data P (t). To give an example of how this result
can be used, consider the model in Fig 2(a) and assume we
have external data over T0={Z}. Then, T={Z,X, Y } be-
cause (S⊥⊥X,Y |Z), R=V\T={R,W}, and Hs={S,Z}
which is the c-component that contains S. Also, the biased
distribution factorizes as follows:

P (v | S=1) =
Q[S,Z]

P (S=1)
Q[W ]Q[R]Q[X]Q[Y ]. (7)

Thm. 3 would allow us to recover Q[X] and Q[Y ] since
they do not contain any ancestor of HS .

Recovering Causal Effects Systematically
In order to recover the causal distribution Px(y) systemati-
cally, (Bareinboim and Tian 2015) proposed a strategy that
recovers each Q[Di] in Eq. (2) one by one. It turns out that
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when external data P (t) is available, each Q[Di] being re-
coverable is no longer necessary for the overall recoverabil-
ity of Px(y). To witness, let us follow up on the example
from Fig 2(a), introduced at the end of the last section. Fol-
lowing the strategy dictated by Eq. (2), we note that

Px(y) =
∑
Z,R

Q[Y, Z,R] =
∑
Z,R

Q[Y ]Q[Z]Q[R]. (8)

Thm. 3 licenses the recoverability of Q[Y ], but it is not
difficult to shown that neither Q[R] nor Q[Z] is recoverable.
Perhaps surprisingly, however, Px(y) can be recovered as∑

Z

Q[Y ]
∑
R

Q[R]Q[Z]=
∑
Z

P (y|x, z, S=1)P (z). (9)

The key observation here is that while Q[R] and Q[Z] are
not recoverable individually,

∑
R Q[R]Q[Z] is, in fact, a

function of Z and equal to QR[Z] (see Eq. 3), which can
be recovered from P (t) = P (z, x, y) as P (z) via Lemma 2.

To formally account for this situation, we re-write the
causal effect in Eq. (2) by splitting D \ Y into two parts:
A = (D\Y)∩T and B = (D\Y)∩R where R = V\T,
and then we treat elements in B as latent variables while
defining c-factors QB [.] in the resulting projected graph
PJ (GD,D \B), as follows:

Px(y) =
∑
D\Y

l∏
i=1

Q[Di] =
∑
A

∏̀
j=1

QB [Cj ], (10)

where D=An(Y)GV\X , D1, . . . , Dl are the c-components
of GD, C1, . . . , C` are the c-components of PJ (GD,D\B),
and c-factors QB [Cj ] are defined as

QB [Cj ] =
∑
U∪B

∏
{i|Vi∈Cj∪B}

P (vi|pai, ui)P (u). (11)

QB [Cj ] could also be expressed in terms of Q[Di] in the
following form:

QB [Cj ] =
∑
Bj

∏
{i|Di∈Fj}

Q[Di], (12)

where Bj are disjoint and possibly empty sets such
that ∪`j=1Bj=B, and F1, . . . , F` form a partition of
{D1, . . . , Dl}.

Under certain conditions, a c-factor QB [Cj ] may be equal
to the c-factor QR[Cj ], defined in PJ (G,T), which is poten-
tially recoverable in terms of the unbiased distribution P (t).

Lemma 3. Let Cj be a c-component of PJ (GD,D \B). If
B ∩ Pa(Cj) = R ∩ Pa(Cj), then
(i) QB [Cj ] = QR[Cj ], where QR[Cj ] is a c-factor in

PJ (G,T) as defined in Eq. (3); and
(ii) Let T1, . . . , Tm be the c-components of PJ (G,T), then

Cj must be a subset of some Tk.

Proof. (i) Let B̂j = B ∩ Pa(Cj). Any variable in B that is
not in B̂j does not appear in the expression in (11), and can
be summed out, leading to

QB [Cj ] =
∑

U∪B̂j

∏
{i|Vi∈Cj∪B̂j}

P (vi|pai, ui)P (u). (13)

X Y

Z

R

W

S

(a) T0 = {Z}

X Y

W1

W2

S

(b) T0 = {W2}

Figure 2: Examples of recoverability tasks for the effect
Px(y). Model in (a) can be recovered with external data on
Z. Model in (b) is recoverable with external data on W2 or
W1.

Similarly, from (3) we have:

QR[Cj ] =
∑
U∪R

∏
{i|Vi∈Cj∪R}

P (vi|pai, ui)P (u).

Let R̂j = R ∩ Pa(Cj). Then any variable in R that is not
in R̂j can be summed out, leading to

QR[Cj ] =
∑

U∪R̂j

∏
{i|Vi∈Cj∪R̂j}

P (vi|pai, ui)P (u). (14)

It is clear that if R̂j = B̂j , then (14) is equal to (13).
(ii) Since D ⊆ V and B ⊆ R, a c-component of

PJ (GD,D \ B) must be a subset of a c-component of
PJ (G,T).

The importance of Lemma 3 stems from the fact that
QR[Cj ] is potentially identifiable in PJ (G,T) from the un-
biased distribution P (t) based on Lemma 2. Specifically,
we can use IDENTIFY(Cj , Tk, QR[Tk]) to try to recover
QB [Cj ] = QR[Cj ]. If QR[Cj ] is not identifiable from P (t),
then we further attempt to recover QB [Cj ] by recovering
each Q[Di] in Eq. (12) factor by factor.

To recover an individual Q[Di], it turns out the RC algo-
rithm (Alg. 1) is not complete anymore in our setting (even
if line 2 of RC is enhanced with Thm. 3). Extending RC,
we develop a new algorithm called RCE (Alg. 2) to recover
any target c-component Q[E]. RCE attempts to systemat-
ically recover Q[E] by recovering, using Thm. 3 (line 2),
the c-component Q[Ci] of G that contains E, and then call
the function IDENTIFY to recover Q[E] from Q[Ci] (line
3a). To facilitate this, RCE reduces the problem to simpler
subgraphs, by removing irrelevant non-ancestors (line 1) or
other recoverable c-components (line 3b and line 4) from
the current graph. These other c-components are recovered
either by Thm. 3 (line 2) or by recursively calling RCE (line
4). Due to the recursive nature of the process, RCE may try
to compute a c-component more than once, which can be
avoided by keeping track of the previous queries. For sim-
plicity we omit these practical details.

Putting these results together, we develop a general, sys-
tematic procedure for recovering causal effects called IDSB.
The function IDSB in Alg. 3 accepts as input two disjoint
sets X,Y, distributions P (v|S=1), P (t0), and a causal di-
agram G; it outputs an expression for Px(y) in terms of the
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Algorithm 2 Recursive function used to recover an arbitrary
c-component
function RCE(E,P,G)
Input E a set of variables such that E is a c-component, P a dis-

tribution over V , G a causal diagram over variables V and S.
P ∗(t) a distribution over T and G∗ the original graph over vari-
ables V∗ and S are defined globally.

Output Expression for Q[E] or FAIL

1: Let W = An(E) ∪An(S). If V\W 6= ∅,
return RCE

(
E,
∑

V\W P,GW
)

2: Let C1, . . . , Ck be the c-components of G that are recoverable
by Thm. 3 (with f(P (v|S=1)) = P and P (t) = P ∗(t)).
Let C =

⋃
i Ci

3: If C 6= ∅,
(a) If E is a subset of some Ci,

then return IDENTIFY(E, Ci, Q[Ci])

(b) Return RCE
(
E, P∏

i Q[Ci]
,G(V∪{S})\C

)
4: For each c-component Bi of G that does not contain E such that

Z = V \ (An(S) ∪An(Bi)) 6= ∅:
Q[Bi] = RCE(Bi,

∑
Z P,G(V∪{S})\Z)

If Q[Bi] 6= FAIL, return RCE
(
E, P

Q[Bi]
,G(V∪{S})\Bi

)
5: Return FAIL

input distributions or FAIL. IDSB starts by simplifying the
model via removing irrelevant non-ancestors (line 1) and re-
covering P (t) using Lemma 1 (lines 2, 3). IDSB then re-
covers Px(y) using Eq. (10) by recovering each QB [Cj ]
(line 5). For each QB [Cj ], IDSB first attempts to recover it
from P (t) based on Lemma 2 by calling the function IDEN-
TIFY if the condition in Lemma 3 is satisfied. If this fails,
IDSB tries to recover QB [Cj ] using (12) by calling RCE
for each Q[Di]. The next theorem states that IDSB is sound.

Theorem 4. The procedure IDSB is sound.

Due to page limits, we provide the proof of Thm. 4
in the Appendix D. Nevertheless, we will illustrate its
mechanics using the example from Fig. 3(a) where
we assume P (v|S=1) and P (t0) are given, with
T0={V2, V3, V6}, and the goal is to recover Px(y). Initially,
in line 1 W = V. Line 2 finds that (S⊥⊥X,V1|T0),
hence T={X,V1, V2, V3, V6} and line 3 recovers
P (t)=P (x, v1|v2, v3, v6, S=1)P (v2, v3, v6). At line 4,
we have D={V5, V6, Y }, R={V4,V5,Y }, A={V6}, and
B={V5}. The graphs GD,PJ (G,T), and PJ (GD,D\B)
(Fig. 3(b), (c), and (d) respectively) are derived from G
(Fig. 3(a)). The table in Fig. 3(i) summarizes the decompo-
sition of these graphs and recalls how each c-component
and c-factor are denoted by IDSB in line 4. At this point, we
know from Eq. (10) that Px(y)=

∑
V6

QB [Y ]QB [V6]. Also,
QB [Y ]=Q[Y ], QB [V6]=

∑
V5

Q[V5, V6], corresponding to
B1=∅, B2={V5}, F1={{Y }} and F2={{V5, V6}}. Clearly
B=B1∪B2 and F1, F2 constitute a partition over {D1, D2}.

Continuing with line 5, the algorithm considers the
first c-component C1={Y }, and since B∩Pa(Y )=∅ 6=
R∩Pa(Y )={Y }, it calls RCE to try to recover Q[Y ]

Algorithm 3 Algorithm capable of recovering Px(y) from
selection bias with external data
function IDSB

(
X,Y, P, P (t0),G

)
Input X,Y disjoint sets of variables, P (v|S=1) a distribution,

P (t0) distribution over a set of variables T0, and G a causal
diagram over variables V and S

Output Expression for Px(y) in terms of P (v|S=1) and P (t0)
or FAIL

1: Let W = An(Y) ∪An(S), G ← GW, P ←
∑

V\W P

2: Let T′ ⊂ W be the set of all the variables such that
(S⊥⊥T′|T0∩W)G , and T=T′∪(T0∩W)

3: Recover P (t) by Lemma 1
4: Let D = An(Y)GW\X ,

Let D1, . . . , Dl be the c-components of GD,
Let T1, . . . , Tm be the c-components of PJ (G,T),
R = W \T, A = (D \Y) ∩T, B = (D \Y) ∩R,
Let C1, . . . , C` be the c-components of PJ (GD,D \B), such
that QB [Cj ] is given by Eq. (12).

5: For each Cj

If B ∩ Pa(Cj) = R ∩ Pa(Cj) then
Assume Cj is a subset of Tk

QB [Cj ] = IDENTIFY(Cj , Tk, QR[Tk])
If B ∩ Pa(Cj) 6= R ∩ Pa(Cj) or QB [Cj ] = FAIL, then

QB [Cj ] =
∑

Bj

∏
i,Di∈Fj

RCE (Di, P,G)
If QB [Cj ] = FAIL, then return FAIL

6: Return
∑

A

∏`
j=1 QB [Cj ]

(which is equal to QB [Y ]) in the graph G. The recursion in-
duced by this call to RCE is depicted in Fig. 4, where each
edge is annotated with the line number (in RCE) that initi-
ates the call and Fig. 3(e)-(h) contain the relevant subgraphs.
Each P(i), i=0, . . . , 4 stands for the distributions associated
with the corresponding subgraph, obtained as follows

P(0) = P (v|S=1), (15)

P(1) = P(0)
/
Q[V2] ,where (16)

Q[V2] =
∑

X,V3,V6

P (t)
/∑

X,V3,V6,V2

P (t) , (17)

P(2) =
∑

V1

P(1), (18)

P(3) = P(2)
/
Q[X] , where (19)

Q[X] =
∑

V4,V5,Y
P(2)

/∑
V4,V5,X,Y

P(2) , and

(20)

P(4) =
∑

V3,V4

P(3). (21)

Finally, the result returned by RCE is:

Q[Y ] = P(4)
/∑

Y
P(4). (22)

After Q[Y ] is computed, IDSB moves on to C2={V6}.
Since B∩Pa(V6)={V5}=R∩Pa(V6), we have that QB [V6]
is equal to QR[V6] which is potentially identifiable from
QR[T2] where T2={V3, V6}. Next, IDSB calls IDEN-
TIFY({V6},{V3,V6},QR[T2]) to obtain QB [V6]=P (v6).
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Y

V6

(d) PJ (GD,D\B)

X Y

V1
V3

V4

V5

V6

S

(e) GV∪{S}\{V2}

X Y

V3

V4

V5

V6

S

(f) GV∪{S}\{V2,V1}

Y

V3

V4

V5

V6

S

(g) GV∪{S}\{V2,V1,X}

Y

V5

V6

S

(h) G{Y ,V5,V6,S}

Graph C-Components Notation C-factor
GD {Y },{V5,V6} Di,i=1,2 Q[.]

PJ (GD,D\B) {Y },{V6} Cj ,j=1,2 QB [.]
PJ (G,T) {X,V1},{V3,V6},{V2} Tk,k=1,2,3 QR[.]

(i) C-components of the graphs in (b), (c), and (d)

Figure 3: Example of a model and the transformations involved in recovering the target causal effect. We assume P (v|S=1)
and P (v2, v3, v6) are given.

RCE({Y },P(0),G)

RCE({Y },P(1),GV∪{S}\{V2})

RCE({Y },P(2),GV∪{S}\{V2,V1})

RCE({Y },P(3),GV∪{S}\{V2,V1,X})

RCE({Y },P(4),G{Y,V5,V6,S})

IDENTIFY({Y }, {Y }, Q[Y ])

3a

1

3b

1

3b

Figure 4: Recursion of RCE when used to recover Q[Y ] in
the model in Fig. 3(a).

Despite IDSB’s generality, it is not clear at this point
whether there are positive cases not covered by the algo-
rithm – i.e., cases computable from P (t0) and P (v|S=1),
but where IDSB returns “FAIL”. Still, the current state-of-
the-art procedure that accepts external data, called General-
ized Adjustment Criterion (GAC) (Correa, Tian, and Barein-
boim 2018a), is constrained to backdoor-like expressions.
The next proposition compares the power of the two ap-
proaches.

Theorem 5. IDSB is strictly more powerful than the Gen-
eralized Adjustment Criterion for the task of recovering a
causal effect Px(y) from a combination of biased distribu-
tion P (v|S=1) and unbiased distribution P (t0) in G.

We outline how this statement can be proved (see Ap-
pendix D for the formal proof). We first show that whenever
IDSB fails to recover Px(y), then GAC is also unable to
recover the effect. Then, to show that IDSB is strictly more
general, we present an example where IDSB recovers Px(y)
but GAC fails. Consider the problem of recovering Px(y) in
the model in Fig. 2(b) with external data over T0 = {W2}.

GAC asks for the following three conditions:
• Condition (iii) requires a set ZT to be available from ex-

ternal data such that the independence (S⊥⊥Y |ZT)Gpbd
XY

holds. For this model ZT={W2} suffices.
• Condition (i) requires that no covariate should be a de-

scendant of a variable in a proper causal path from X to
Y, which is also satisfied by Z={W2}.

• However, condition (ii) requires the independence
(X⊥⊥Y |Z,S)Gpbd

XY
to hold, which cannot be satisfied in

this model by Z={W2}, or Z={W1,W2}, or any other
Z.

Since not all conditions are satisfiable, GAC fails. Nev-
ertheless, IDSB is able to recover Px(y). To witness,
note that D=An(Y)GV\X={Y }, hence Px(y)=Q[Y ]. Also
T={W1,W2,X,Y }, R=∅, The set {Y } is a subset of c-
component T1={W1,X,Y } in PJ (G,T). IDSB will call
IDENTIFY({Y }, T1, QR[T1]), where QR[T1] is recoverable
from P (t)=P (y,x,w1,w2)=P (y,x,w1|w2,S=1)P (w2) by
Lemma 2, and obtain

Px(y) =

∑
W1

P (y, x | w1, w2)P (w1)∑
W1

P (x | w1, w2, )P (w1)
. (23)

Conclusions
We investigated the challenges arising due to confounding
and selection biases, which come under the rubric of recov-
erability of causal effects. We first studied the algorithm RC
(Alg.1) (Bareinboim and Tian 2015), which takes as input a
causal diagram and a biased distribution. We supplemented
the algorithm with a necessary condition for recoverabil-
ity (Thm. 1), and proved that RC is complete for this task,
namely, it recovers all effects that are indeed recoverable
(Thm. 2). We then relaxed the setting to allow the incorpora-
tion of unbiased data (Def. 4). We developed the algorithm
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IDSB (Alg. 3), which takes as input a combination of biased
and unbiased data. We proved that IDSB is strictly more
powerful than the current state-of-the-art method available
(Thm. 5). Since confounding and selection biases are prob-
lems pervasive across disciplines, we hope that the methods
developed here should help to understand and alleviate this
problem in a broad range of data-intensive applications.
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