
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Argumentation for Explainable Scheduling

Kristijonas Čyras, Dimitrios Letsios, Ruth Misener, Francesca Toni
Imperial College London, London, UK

Abstract

Mathematical optimization offers highly-effective tools for
finding solutions for problems with well-defined goals, no-
tably scheduling. However, optimization solvers are often
unexplainable black boxes whose solutions are inaccessible
to users and which users cannot interact with. We define a
novel paradigm using argumentation to empower the inter-
action between optimization solvers and users, supported by
tractable explanations which certify or refute solutions. A so-
lution can be from a solver or of interest to a user (in the
context of ’what-if’ scenarios). Specifically, we define argu-
mentative and natural language explanations for why a sched-
ule is (not) feasible, (not) efficient or (not) satisfying fixed
user decisions, based on models of the fundamental makespan
scheduling problem in terms of abstract argumentation frame-
works (AFs). We define three types of AFs, whose stable
extensions are in one-to-one correspondence with schedules
that are feasible, efficient and satisfying fixed decisions, re-
spectively. We extract the argumentative explanations from
these AFs and the natural language explanations from the ar-
gumentative ones.

1 Introduction
Computational optimization empowers effective decision
making. Given a mathematical optimization model with
well-defined numerical variables, objective function(s), and
constraints, a solver generates an efficient and ideally opti-
mal solution. If the model and solver are correct, then imple-
menting the optimal solution can have major benefits. But
how can we explain the optimal solutions to a user? Cur-
rently, solvers express necessary and sufficient optimality
conditions with formal mathematics, so users often consider
the optimization solver as an unexplainable black box.

Explainable scheduling is a critical application (Sacchi
et al. 2015) and our test bed for explainable optimization.
Consider the fundamental makespan scheduling problem, a
discrete optimization problem for effective resource allo-
cation (Graham 1969). This problem arises in for example
nurse rostering where staff of different skill qualification cat-
egories, e.g. Registered Nurse, Nurse’s Aide, need to be as-
signed to shifts (Warner and Prawda 1972). In the planning
period, staff are scheduled, e.g. for the next 4 weeks (Burke

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ArgOpt: Explainable Scheduling Layers

Optimization Solver Solution Argumentation User

Queries

Explanations

Figure 1: ArgOpt produces explanations about solutions
generated by an optimization solver to the makespan
scheduling problem. Argumentation is an intermediate layer
between the optimization solver and the user. The optimiza-
tion solver passes the computed solution to the argumenta-
tion layer. The user interacts with the argumentation layer to
obtain argumentative and natural language explanations.

et al. 2004). But nursing personnel, hospital managers, or
patients may inquire about the fairness or optimality of the
schedule and possible changes. Further, when unexpected
events occur, e.g. staff illness or an unusually high influx
of patients, feasible schedules must be recovered (Moz and
Vaz Pato 2007). We take the first steps towards enabling
users to interact with, and obtain explanations from, optimal
scheduling in general and nurse rostering in particular.

This paper proposes a novel paradigm (that we call Ar-
gOpt) for explaining why a solution is (not) good by lever-
aging abstract argumentation (AA) as an intermediate layer
between the user and optimization software. Argumenta-
tion is highly suitable for explaining reasoning and deci-
sions (Moulin et al. 2002; Atkinson et al. 2017) with ar-
gumentative explanations proposed in various settings, see
e.g. (Garcı́a et al. 2013; Fan and Toni 2015; Čyras et al.
2018; Zeng et al. 2018). We show how AA offers compu-
tational optimization an accessible knowledge representa-
tion tool, namely AA frameworks (AFs), for modeling op-
timization problems. These AFs are constructed automati-
cally given a scheduling problem instance and possibly fixed
user decisions, allow formal explanation definitions and en-
able efficient generation of natural language explanations.
Figure 1 illustrates ArgOpt.

What makes an optimization solution good? A good solu-
tion should (i) be feasible, (ii) be efficient (ideally optimal),
and (iii) satisfy fixed (user) decisions. ArgOpt introduces a
toolkit realizing these needs and dealing with a number of
the relevant challenges. A good explanation should be effi-
ciently attainable, combine few causal relationships and ad-

2752

mit simple natural language interpretations. To build trust,
explanations should be associated with a formal representa-
tion providing interpretable certificates on why the explana-
tion is valid and how it is generated. For tractability, we im-
plement polynomial explainability and thereby achieve both
computational tractability, i.e. quick generation of results,
and cognitive tractability, i.e. clear user explanations. Our
explanation-generating engine has a modular structure for
generating different types of explanations.

Given a problem instance, we construct AFs to explain
problem instance solutions. We map decisions (schedule as-
signments) to arguments and capture feasibility and optimal-
ity conditions via attacks. We then extract from AFs argu-
mentative explanations pertaining to the decisions and the
related conditions, which can in turn be rendered in natural
language. ArgOpt comprising an optimization solver and an
argumentation layer can thereby justify its solutions against
human-proposed solutions and effectively perform human-
AI interaction for efficient decision making. We may de-
rive explanations on potential infeasibilities and weak so-
lutions. Overall, explainability enables the decision maker
to (i) check feasibility of possible solutions, (ii) perform
what-if analysis for scenarios, and (iii) recover feasible so-
lutions after various disturbances.

2 Background
2.1 Makespan Scheduling

An instance I of the makespan scheduling problem, e.g.
(Graham 1969; Leung 2004; Brucker 2007), is a pair
(M,J), where J = {1, . . . ,n} is a set of n independent jobs
with a vector ~p = {p1, . . . , pn} of processing times which
have to be executed by a setM = {1, . . . ,m} of m parallel
identical machines. Job j ∈ J must be processed by exactly
one machine i ∈M for p j units of time non-preemptively,
i.e. in a single continuous interval without interruptions.
Each machine may process at most one job per time. The
objective is to find a minimum makespan schedule, i.e. to
minimize the last machine completion time. In the nurse
rostering example, each task (or job) needs to be assigned
a specific nurse (or machine). In this simple setting, each
task is assigned to just one nurse and we aim for all staff to
complete as soon as possible.

In a standard mixed integer linear programming formula-
tion, binary decision variable xi, j is 1 if job j ∈ J is exe-
cuted by machine i ∈M and 0 otherwise. Thus, a schedule
of (M,J) can be seen as an m× n matrix S ∈ {0,1}m×n

with entries xi, j ∈ {0,1} representing job assignments to ma-
chines, for i ∈M and j ∈ J .

Given a schedule S, let Ci be the completion time of
machine i ∈M in S and let Cmax = max16i6m{Ci} be the
makespan. The problem is formally described by Equa-
tions (1a)–(1e) (next column). Expression (1a) minimizes
makespan. Constraints (1b) are the makespan definition.
Constraints (1c) allow a machine to execute at most one
job per time. Constraints (1d) assign each job to exactly one
machine. An optimal schedule satisfies all Constraints (1b)–
(1d) and minimizes makespan objective Expression (1a).

min
Cmax,Ci,xi, j

Cmax (1a)

Cmax >Ci i ∈M (1b)

Ci =
n

∑
j=1

xi, j · p j i ∈M (1c)

m

∑
i=1

xi, j = 1 j ∈ J (1d)

xi, j ∈ {0,1} j ∈ J , i ∈M (1e)

In the nurse rostering example, this formulation allows to
deal with skill qualifications, e.g. to limit tasks assigned to
nurses. More elaborate nurse rostering incorporates contrac-
tual obligations, e.g. assigning a nurse the correct number of
shifts per week, and allows holiday, e.g. avoiding jobs for a
nurse in a given week.

This paper assumes an instance I = (M,J) of a
makespan scheduling problem with M = {1, . . . ,m} and
J = {1, . . . ,n}, for m,n> 1, unless stated otherwise.

2.2 Abstract Argumentation (AA)
We give essential background on Abstract Argumentation
(AA) following its original definition in (Dung 1995).

An AA framework (AF) is a directed graph (Args,) with
• a set Args of arguments, and
• a binary attack relation over Args.
For a,b ∈ Args, a b means that a attacks b, and a 6 b
means that a does not attack b. With an abuse of notation,
we extend the attack notation to sets of arguments as follows.
For A⊆ Args and b ∈ Args:
• A b iff ∃a ∈ A with a b;
• b A iff ∃a ∈ A with b a.

A set E ⊆ Args of arguments, also called an extension, is
• conflict-free iff E 6 E;
• stable iff E is conflict-free and ∀b ∈ Args\E, E b.

While finding stable extensions of a given AF is NP-hard,
verifying if a given extension is stable is polynomial (in the
number of arguments) (Dunne and Wooldridge 2009).

3 Setting the Ground for ArgOpt
Within the makespan scheduling problem, we identify three
dimensions, namely schedule feasibility, schedule effi-
ciency and accommodating fixed user decisions within
schedules, formally defined below. Our novel paradigm Ar-
gOpt focuses on explaining why a given schedule:
• is feasible or not,
• is efficient or not,
• satisfies fixed user decisions or not.

Feasibility simply amounts to dropping the makespan
minimization objective:
Definition 3.1. A schedule is feasible iff it meets constraints
(1b) – (1d).

It can be shown that this notion of feasibility amounts to
assigning each job to exactly one machine:
Lemma 3.1. A schedule is feasible iff it meets constraint
(1d), i.e. ∑

m
i=1 xi, j = 1 ∀ j ∈ J .

2753

(Full version of the paper with proofs can be found at http:
//arxiv.org/abs/1811.05437.)

Feasibility is polynomial, whereas finding optimal solu-
tions for the makespan scheduling problem is strongly NP-
hard (Garey and Johnson 1979). A standard, less drastic ap-
proach in optimization to deal with intractability is approxi-
mation algorithms, e.g. the common longest processing time
first heuristic (Graham 1969) produces a 4/3-approximate
schedule, namely attaining makespan a constant factor far
from the optimal. In this vein, we define efficiency as fea-
sibility and satisfaction of the single and pairwise exchange
properties that guarantee approximately optimal schedules.
Definition 3.2. Schedule S satisfies the single and pairwise
exchange properties iff for every critical job j ∈J such that
xi, j = 1 and Ci =Cmax, it respectively holds that, for i′ 6= i,
• Single Exchange Property (SEP): Ci−Ci′ 6 p j;
• Pairwise Exchange Property (PEP): for any job j′ 6= j

with xi′, j′ = 1, if p j > p j′ , then Ci + p j′ 6Ci′ + p j.
S is efficient iff S is feasible and satisfies both SEP and PEP.

SEP concerns improving a schedule by a single exchange
of any critical job between machines. PEP concerns pairwise
exchanges of critical jobs with other jobs on other machines.
SEP and PEP are necessary optimality conditions (but not
sufficient; see e.g. the list-scheduling algorithm tightness
analysis in (Williamson and Shmoys 2011)).
Lemma 3.2. Every optimal schedule satisfies SEP and PEP.

The overall setting for explanation is as follows. An op-
timization solver recommends an optimal schedule S∗ for
the given instance I of the makespan scheduling problem.
The user inquires whether another schedule S could be used
instead. S expresses changes to S∗ within ‘what-if’ scenar-
ios (e.g. ‘what if this job were assigned to that machine in-
stead’?) If S is also optimal, then the answer is positive and
a certifiable explanation as to why this is so may be pro-
vided. Else, if S is (provably) not optimal, then the answer is
negative and an explanation is generated as to why.

In addition, we envisage that a user may fix some deci-
sions, i.e. (non-)assignments of jobs to machines originally
unbeknownst to the scheduler, e.g. that a nurse is absent or
lacks necessary skills for a task, or that a nurse volunteers for
a task, and may want to find out whether and why S satisfies
or violates these decisions.
Definition 3.3. Let
• negative fixed decisions be D− =M−×J − ⊆M×J ;
• positive fixed decisions be D+ =M+×J + ⊆M×J ;
• fixed decisions be D = (D−,D+) such that D− ∩D+ = /0

and @(i, j),(k, j) ∈ D+ with i 6= k.
We say that schedule S satisfies
• D− iff (i, j) ∈ D− implies xi, j = 0;
• D+ iff (i, j) ∈ D+ implies xi, j = 1;
• D = (D−,D+) iff S satisfies both D− and D+.
S violates D−, D+, D iff it does not satisfy D−, D+, D, resp.

Negative (resp. positive) fixed decisions insist on which
jobs cannot (resp. must) be done on which machines. Fixed
decisions consist of compatible negative and positive fixed
decisions, where the positive fixed decisions, if any, are fea-
sible in that no two machines are asked to do the same job.

Note that capturing fixed decisions allows us to capture
various phenomena, such as (in the running example):
• nurse i falling ill, with D−i = {(i, j) : j ∈ J };
• cancelled job j, with D−j = {(i, j) : i ∈M}.

These may be particularly useful in a dynamic setting,
where fixed decisions need to be taken into account after
having executed some part of the schedule.

In summary, feasibility is a basic constraint; efficiency
concerns schedule-specific optimality conditions; fixed user
decisions pertain to schedule-specific feasibility while dis-
regarding optimality.

Our paradigm ArgOpt is driven by the following desider-
ata (where ‘good’ stands for any amongst feasible, efficient
or satisfying fixed decisions):
• soundness and completeness of explanations, in the

sense that, given schedule S, there exists an explanation
as to why S is (not) ‘good’ iff S is (not) ‘good’;

• computational tractability, in the sense that explaining
whether and why schedule S is (not) ‘good’ can be per-
formed in polynomial time in the size of the makespan
scheduling problem instance I;

• cognitive tractability, in the sense that each explanation
pertaining to schedule S and presented to the user should
be polynomial in the size of S.
Tractability is crucial to ensure that explaining results in

a low construction overhead, an essential property of expla-
nations (Sørmo, Cassens, and Aamodt 2005). We have re-
stricted attention to feasible and efficient (rather than op-
timal) solutions because answering and explaining why an
arbitrary schedule is optimal in polynomial time is ruled out
due to NP-hardness of makespan scheduling, unless P=NP.

We choose argumentation as the underlying technology
for ArgOpt as it serves us well to fulfil the above desiderata:
• argumentation affords knowledge representation tools,

such as AFs, for providing sound and complete counter-
parts for a diverse range of problems, e.g. games (Dung
1995), and it has long been identified as suitable for ex-
plaining, see e.g. (Moulin et al. 2002; Atkinson et al.
2017); we define counterparts for determining ‘good’
schedules (see Section 4) and build upon these for defin-
ing sound and complete explanations (see Section 5);

• argumentation enables tractable specifications of the op-
timization problems we consider and tractable generation
of explanations (see Section 5);

• cognitively tractable explanations can be extracted from
AFs, acting as certificates as to why a schedule is (not)
‘good’ (see Section 5).

4 Argumentation for Optimization
We approach the issue of explaining, using AA, whether and
why the solutions to the makespan scheduling problem are
‘good’ in three steps, as illustrated in Figure 2.

First, we capture schedule feasibility in the sense of map-
ping an instance of the makespan scheduling problem into
an AF by identifying assignments with arguments, so that
the feasible schedules are in one-to-one correspondence with
the stable extensions. We then capture optimality conditions
in the sense of mapping the properties of a given schedule

2754

Instance I
Schedule S

from the optimizer or the user
Fixed Decisions D

from the user

Argumentation Layer Components

Feasibility AF Optimality AF Fixed Decision AF

Explanations

to the user

Figure 2: Argumentation layer components in ArgOpt:
(i) the feasibility AF (ArgsF , F) takes an instance I and ex-
plains whether a given schedule for I is feasible; (ii) the op-
timality AF (ArgsS, S) takes the instance I represented via
(ArgsF , F) and a schedule S for I, and explains whether
S is efficient; (iii) the fixed decision AF (ArgsD, D) takes
either (ArgsF , F) with a schedule or (ArgsS, S), some
fixed decisions D and explains whether the schedule satis-
fies these decisions.

into a schedule-specific AF by modifying the attack rela-
tion, so that the schedule satisfying optimality conditions
equates to the corresponding extension being stable. Lastly,
we capture fixed decisions for a specific schedule in the ab-
sence of optimality considerations, in the sense of mapping
the fixed decisions into an AF by modifying the attacks, so
that the schedule satisfying fixed decisions equates to the
corresponding extension being stable.

The design of the proposed AFs incorporates tractabil-
ity. First, the mappings from the makespan scheduling prob-
lem to AA are polynomial. Second, explaining whether and
why a given schedule is feasible and/or efficient (optimality)
and/or satisfies fixed user decisions amounts to verifying if
the corresponding stable extension is stable in the relevant
AF; this problem is also polynomial.

We chose stable extensions as the underlying seman-
tics for the following reasons. 1. The makespan schedul-
ing problem requires all jobs to be assigned, so we need
a “global” semantics (Dung 1995) and stable semantics is
one such. 2. Verification of stable extensions is polynomial,
allowing us to meet the computational tractability desider-
atum. 3. Other semantics are either non-global (e.g. the
grounded extension) or have non-polynomial verification
(e.g. coNP-complete for preferred extensions).

4.1 Feasibility
We model the feasibility space of makespan scheduling in
AA to be able to explain why a user’s proposed schedule
is or not feasible. We do this by mapping assignment vari-
ables (binary decisions) to arguments and capturing feasibil-
ity constraints via attacks. Specifically, argument ai, j stands
for an assignment of job j ∈ J to machine i ∈M. Attacks
among arguments model pairwise incompatible decisions:
ai, j and ak,l attacking each other models the incompatibil-
ity of assignments ai, j and ak,l . Intuitively, the attack rela-
tion encodes different machines competing for the same job.
Formally:

Definition 4.1. The feasibility AF (ArgsF , F) is given by
• ArgsF = {ai, j : i ∈M, j ∈ J },
• ai, j F ak,l iff i 6= k and j = l.

The following definition formalizes a natural bijective
mapping between schedules and extensions.
Definition 4.2. Let (ArgsF , F) be the feasibility AF. A
schedule S and an extension E ⊆ ArgsF are corresponding,
denoted S≈ E, when the following invariant holds:

xi, j = 1 iff ai, j ∈ E.

With this correspondence, the feasibility AF encodes ex-
actly the feasibility of the makespan scheduling problem, in
that feasible schedules coincide with stable extensions:
Theorem 4.1. Let (ArgsF , F) be the feasibility AF. For
any S≈ E, S is feasible iff E is stable.

Proof. Let E be a stable extension of (ArgsF , F). To prove
that the corresponding schedule S is feasible, we need to
show that Equation 1d holds: ∑

m
i=1 xi, j = 1 for any j ∈ J .

As xi, j ∈ {0,1} ∀i, j, we have ∑
m
i=1 xi, j ∈N∪{0}. Suppose

for a contradiction that for some j∈J we have ∑
m
i=1 xi, j 6= 1.

a) First assume ∑
m
i=1 xi, j > 1. Then ai, j,ak, j ∈ E for some

i 6= k. But then ai, j F ak, j, whence E is not conflict-
free. This contradicts E being stable.

b) Now assume ∑
m
i=1 xi, j = 0. Then ai, j 6∈ E ∀i ∈ M. By

definition of F , we then have E 6 F ai, j for any i∈M.
In particular, E 6 F a1, j. This contradicts E being stable.

We next prove that if S is a feasible schedule, then the
corresponding extension E is stable in (ArgsF , F).

We have ∑
m
i=1 xi, j = 1 for any j ∈ J because S is feasible.

This means that for every j ∈ J , E contains one and only
one ai, j for some i ∈M. Thus, by definition of F , E is
conflict-free. Moreover, for any j ∈J , ai, j ∈ E attacks every
other ak, j with k 6= i. Hence, E is stable in (ArgsF , F).

Example 4.3. LetM= {1,2}, J = {1,2}, e.g. 2 nurses for
2 tasks. Figure 3a) depicts the feasibility AF (ArgsF , F). It
has 4 stable extensions: {a1,1,a1,2}, {a1,1,a2,2}, {a2,1,a1,2},
{a2,1,a2,2}. They correspond to the 4 feasible (M,J) ros-
tering schedules where each task is completed by 1 nurse.

Finally, note that constructing the feasibility AF, as well
as verifying if a given schedule is feasible, is polynomial:
Lemma 4.2. The feasibility AF (ArgsF , F) can be con-
structed in O(nm2) time. Verifying whether an extension
E ⊆ ArgsF is stable can be done in O(n2m2) time.

4.2 Optimality Conditions
We model optimality conditions in AA to be able to explain
why a user’s proposed schedule is or not efficient. Lemma
3.2 implies that if a feasible schedule S can be improved
by making a single exchange, i.e. S violates SEP, then S is
not optimal. Likewise, Lemma 3.2 implies that if a feasible
schedule S can be improved by making a pairwise exchange,
i.e. S violates PEP, then S is not optimal.

We model both SEP and PEP in a single schedule-specific
AF by modifying the feasibility AF as follows. Given S,
we know Cmax, and so all the critical machines i (such that

2755

a) a1,1 a1,2

a2,1 a2,2

b) a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

c) a1,1 a1,2

a2,1 a2,2

d) a1,1 a1,2

a2,1 a2,2

e) a1,1 a1,2

a2,1 a2,2

Figure 3: In all graphs depicting AFs, nodes hold arguments and edges hold attacks and (dashed) non-attacks. a) Feasibility
AF of Example 4.3. b) Optimality AF of Example 4.5; (dashed) box highlights the extension (and the corresponding schedule)
in question; in Example 5.7, the non-attack (dashed) explains why the schedule is not near-optimal, particularly violates SEP.
c) Fixed decision AF of Example 4.7; the box indicates the unique stable extension. d) Feasibility AF with non-attacks (dashed)
explaining why the schedule of Example 5.6 (the corresponding extension of which is highlighted in the (dotted) box) is not
feasible. e) Fixed decision AF with the non-attack (dashed) explaining why the schedule of Example 5.8 (the corresponding
extension of which is highlighted in the (dotted) box) violates fixed decisions.

Ci = Cmax) and all the associated critical jobs j (such that
xi, j = 1). Then, for any (critical) pair (i, j) and any other
machine i′ 6= i, if Ci >Ci′ + p j, then S violates SEP and can
be improved by making the single exchange of moving job
j from machine i to machine i′. We model this by removing
the attack ai, j F ai′, j from (ArgsF , F), and this repre-
sents that machine i should not be competing for job j with
machine i′. Similarly, for any (critical) pair (i, j) and any
other machine i′ 6= i assigned some other job j′ 6= j with
p j > p j′ , if Ci + p j′ >Ci′ + p j, then S violates PEP and can
be improved by a pairwise exchange of j and j′ from i to
i′. We model this by adding an attack from ai′, j′ to ai, j in
(ArgsF , F), and this represents that assigning j′ to i′ con-
flicts with assigning j to i because the latter is less efficient.

Definition 4.4. Let (ArgsF , F) be the feasibility AF and S
a schedule. The optimality AF (ArgsS, S) is given by
• ArgsS = ArgsF ,
• S=(
 F \{(ai, j,ai′, j) : Ci =Cmax,xi, j = 1,Ci >Ci′ + p j}

)
∪

{(ai′, j′ ,ai, j) : Ci =Cmax,xi, j = 1,xi′, j′ = 1, i′ 6= i, j′ 6= j,
p j > p j′ ,Ci + p j′ >Ci′ + p j}.

We say that (ArgsF , F) is underlying (ArgsS, S).

To determine whether the user’s proposed schedule is ef-
ficient we just need to check if the corresponding extension
is stable in the optimality AF:

Theorem 4.3. Let (ArgsF , F) be the feasibility AF, S a
schedule and S ≈ E. Let (ArgsS, S) be the optimality AF.
Then E is stable in (ArgsS, S) iff S is feasible and satisfies
both SEP and PEP.

Proof. Let E be stable in (ArgsS, S). Then E is conflict-
free in (ArgsF , F), because the attacks removed to capture
SEP only make asymmetric attacks symmetric, and the at-
tacks added to capture PEP are among arguments not at-
tacking each other in (ArgsF , F). For the same reason
E is also stable in (ArgsF , F). Hence, S is feasible, by
Theorem 4.1. Moreover, as E is stable, ∀ j ∈ J we find
ai, j ∈ E with ai, j S ai′, j ∀i′ 6= i. This means no attacks
were removed from F to obtain S, so, in particular,
Ci =Cmax, xi, j = 1, Ci >Ci′+ p j cannot hold for any (i, i′, j).
Hence, S satisfies SEP. Similarly, as E is conflict-free, we
have that Ci = Cmax,xi, j = 1,xi′, j′ = 1, i′ 6= i, j′ 6= j, p j >

p j′ ,Ci + p j′ > Ci′ + p j cannot all hold for any (i, i′, j, j′).
Hence, S satisfies PEP.

If S is feasible, then E is stable in (ArgsF , F). If S satis-
fies SEP and PEP, then S= F . So if S is feasible and sat-
isfies SEP and PEP, then E is stable in (ArgsS, S) too.

Example 4.5. LetM= {1,2}, J = {1,2,3} and p1 = p3 =
1, p2 = 2. Let schedule S be given by x1,1 = x1,2 = x2,3 = 1
and x2,1 = x2,2 = x1,3 = 0, e.g. nurse 1 completes jobs 1 and
2, and nurse 2 does job 3. S is feasible with C1 = x1,1 p1 +
x1,2 p2 + x1,3 p3 = 3 and C2 = 1. So nurse 1 is critical, i.e.
serves the longest shift, and both jobs 1 and 2 are critical.
Since C1 = 3 > 2 = 1+1 =C2 + p1 and C1 + p3 = 4 > 3 =
C2 + p2, schedule S violates SEP and PEP.

So, given the feasibility AF (ArgsF , F), construct the
optimality AF (ArgsS, S) specific to S with:
• ArgsS = ArgsF = {ai, j : i ∈ {1,2}, j ∈ {1,2,3}},
• S= {(ai, j,ai,l) : j 6= l}\{(a1,1,a2,1)}∪{(a2,3,a1,2)}.
Figure 3b) depicts the resulting (ArgsS, S). The extension
{a1,1,a1,2,a2,3} ≈ S is not stable in (ArgsS, S) because (i)
it has conflict a2,3 S a1,2 and (ii) it does not attack a2,1.

As for feasibility, constructing the optimality AF, as well
as verifying if a given schedule is efficient, is polynomial:
Lemma 4.4. Given a schedule S, the optimality AF
(ArgsS, S) can be constructed in O(nm2) time. Verifying
whether an extension E ⊆ ArgsS, such that E ≈ S, is stable
can be done in O(n2m2) time.

4.3 Fixed User Decisions
We model fixed user decisions to be able to explain why a
given schedule satisfies or violates the given fixed decisions.
We do this, given either a feasibility or an optimality AF,
by modifying the attacks in the (underlying) feasibility AF.
Specifically, a negative decision induces a self-attack on the
respective argument, whereas a positive decision results in
removal of all the attacks on the respective argument.
Definition 4.6. Let (ArgsF , F) be the feasibility AF, pos-
sibly underlying a given optimality AF (ArgsS, S), and let
D = (D−,D+) be fixed decisions. The fixed decision AF
(ArgsD, D) is given by
• ArgsD = ArgsF ,
• D= (F ∪{(ai, j,ai, j) : (i, j) ∈ D−})\

{(ak,l ,ai, j) : (i, j) ∈ D+,(k, l) ∈M×J}.

2756

Fixed decisions thus result in the respective arguments be-
ing self-attacked or unattacked. This yields the following.

Theorem 4.5. Let S be a schedule, (ArgsF , F) the fea-
sibility AF, possibly underlying a given optimality AF
(ArgsS, S), E ≈ S, D a fixed decision, (ArgsD, D) the
fixed decision AF. Then S is feasible and satisfies D iff E
is stable in (ArgsD, D).

Example 4.7. In Example 4.3, let D− = {(2,2)} and D+ =
{(1,1)}, e.g. nurse 2 cannot do job 2 and nurse 1 must do job
1. Then D = (D−,D+). The fixed decision AF (ArgsD, D)
is depicted in Figure 3c). It has a unique stable extension
{a1,1,a1,2}, which corresponds to the unique feasible sched-
ule satisfying D, in which nurse 1 is assigned both jobs.

Clearly, modeling fixed decisions is polynomial:

Lemma 4.6. Given a schedule S, the fixed decision AF
(ArgsD, D) can be constructed in O(n2m2) time. Verifying
whether the extension E ⊆ ArgsD, such that E ≈ S, is stable
can be done in O(n2m2) time.

Efficiently capturing feasibility constraints, optimality
conditions and fixed decisions in AA allows us to provide
tractable explanations refuting or certifying ‘goodness’ of
the schedules generated by the optimization solver or else
proposed by the user. We do this next.

5 Explanations
We here formally define argumentative explanations as to
why a given schedule is not ‘good’. We define two types of
explanations: in terms of attacks and non-attacks in AFs.

At a high-level, if a given schedule S is not feasible, ef-
ficient or violates fixed decisions, the formal argumenta-
tive explanations allow to identify which assignments, rep-
resented by arguments, are responsible. In addition, exis-
tence or non-existence of attacks with respect to the iden-
tified arguments determines the reasons as represented by
the attack relationships of different AFs: feasibility, opti-
mality and fixed decisions. Thus identified assignments and
reasons allow to instantiate argumentative explanations with
templated natural language generated (NLG) explanations to
be given to the user, e.g. as in (Zhong et al. 2019). Further,
if S is ‘good’ as far as AFs can model, an NLG explanation
can be given relating to the properties satisfied by S.

5.1 Explanations via Attacks
Explanations via attacks concern schedule feasibility, pair-
wise exchanges and negative fixed decisions. We focus on
attacks among arguments in the extension E corresponding
to a given schedule S. These attacks make E non-conflict-
free and hence not stable, and arise whenever S is not feasi-
ble due to some job assigned to more than one machine, or
violates either PEP or negative fixed decisions. We exploit
this to define argumentative explanations for why S is not
feasible, not efficient or violates fixed decisions.

Definition 5.1. Let S be a schedule, E ≈ S and (Args,) ∈
{(ArgsF , F),(ArgsS, S),(ArgsD, D)}. We say that an
attack a b with a,b ∈ E explains why S:
• is not feasible, when (a,b) ∈ F ;

• is not efficient, when (a,b) ∈ S \ F ;
• violates fixed decisions, when (a,b) ∈ D \ F .

So, if a given schedule S (i) is either not feasible due to
some job assigned to more than one machine (F), (ii) or
is not efficient due to some improving pairwise exchange
(S \ F), (iii) or assigns some job contrary to a nega-
tive fixed decision (D \ F), then the particular reason
together with the relevant assignments is indicated. This al-
lows to give an NLG explanation via template

S { • is not feasible; • is not efficient; • violates fixed
decisions} because attack ai, j ak,l shows that { • two
machines i and k are assigned the same job j = l; • S
can be improved by swapping jobs j and l on machines
i and k; • job i= k is assigned to machine j = l contrary
to the negative fixed decision (i, j)}

with cases chosen and indices i, j,k, l instantiated accord-
ingly. We exemplify this in the three settings next.
Example 5.2. In Example 4.3, let schedule S be given by
x1,1 = x2,1 = 1 and x1,2 = x2,2 = 0. S is not feasible, because
job 1 is assigned to 2 machines (e.g. nurses). We have S ≈
E = {a1,1,a2,1}. Any of the attacks a1,1 a2,1 and a2,1
a1,1 in the feasibility AF (ArgsF , F) = (Args,) explains
why S is not feasible: see Figure 3a). One NLG explanation
is: S is not feasible because attack a1,1 a2,1 shows that two
machines (e.g. nurses) 1 and 2 are assigned the same job 1.
Example 5.3. In Example 4.5, the attack a2,3 a1,2 in
the optimality AF (ArgsS, S) = (Args,) explains why
S≈{a1,1,a1,2,a2,3} is not efficient, particularly as it violates
PEP: see Figure 3b). The NLG explanation: S is not efficient
because attack a2,3 a1,1 shows that S can be improved by
swapping jobs 3 and 2 between machines 2 and 1.
Example 5.4. In Example 4.7, the self-attack a2,2 a2,2
in the fixed decision AF (ArgsD, D) = (Args,) explains
why S ≈ {a1,1,a2,2} violates the negative fixed decision D−
represented by the self-attack: see Figure 3c). The NLG ex-
planation is: S violates fixed decisions because attack a2,2
a2,2 shows that job 2 is assigned to machine (e.g. nurse) 2
contrary to the negative fixed decision (2,2).

5.2 Explanations via Non-Attacks
Explanations via non-attacks concern schedule feasibility,
single exchanges and positive fixed decisions. We here fo-
cus on arguments outside the extension which are not at-
tacked by the extension E corresponding to a given schedule
S. Such non-attacks result in E being not stable, and arise
whenever S is not feasible due to some unassigned job, or vi-
olates either SEP or positive fixed decisions. As in the case
of explanations via attacks, we exploit this to define argu-
mentative explanations for why S is not feasible, not efficient
or violates fixed decisions.
Definition 5.5. Let S be a schedule, E ≈ S and (Args,) ∈
{(ArgsF , F),(ArgsS, S),(ArgsD, D)}. We say that a
non-attack E 6 b with b 6∈ E explains why S:
• is not feasible, when = F ;
• is not efficient, when = S and b S E;
• violates fixed decisions, when = D and b is

unattacked.

2757

As with explanations via attacks, if a given schedule is
not ‘good’, then the particular reason together with the rel-
evant assignments is indicated. This allows to give an NLG
explanation via template

S { • is not feasible; • is not efficient; • violates fixed
decisions} because non-attack E 6 ak,l shows that {
• job l is not scheduled; • S can be improved by moving
job l to machine k; • job l is not assigned to machine k
contrary to the positive fixed decision (k, l)}

with cases chosen and indices i, j,k, l instantiated accord-
ingly. We exemplify this in the three settings next.
Example 5.6. In Example 4.3, let schedule S be given by
x1,1 = 1 and x1,2 = x2,1 = x2,2 = 0. We have S≈ E = {a1,1}.
Both non-attacks E 6 a1,2 and E 6 a2,2 in the feasibility
AF (ArgsF , F) = (Args,) explain why S is not feasible:
see Figure 3d). One NLG explanation is: S is not feasible be-
cause non-attack E 6 a1,2 shows that job 2 is not scheduled.
Example 5.7. In Example 4.5, the non-attack E 6 a2,1 in
the optimality AF (ArgsS, S) = (Args,) explains why S
is not efficient, as it violates SEP: see Figure 3b). The NLG
explanation is: S is not efficient because non-attack E 6 a2,1
shows that the longest completion (e.g. shift) time can be
reduced by moving job 1 to machine (e.g. nurse) 2.
Example 5.8. In Example 4.7, let schedule S be given by
x1,2 = x2,1 = 1, x1,1 = x2,2 = 0. Then {a1,2,a2,1} = E ≈ S.
In the fixed decision AF (ArgsD, D) = (Args,), the non-
attack E 6 a1,1 explains why S violates the positive fixed
decision D+ represented by the unattacked argument a1,1:
see Figure 3e). The NLG explanation is: S violates fixed de-
cisions because non-attack E 6 a1,1 shows that job 1 is not
assigned to machine (e.g. nurse) 1 contrary to the positive
fixed decision (1,1).

5.3 Desiderata for ArgOpt
We now show that our argumentative explanations meet the
desiderata stated in Section 3.
Theorem 5.1. Let S be a schedule, E ≈ S and (Args,) ∈
{(ArgsF , F),(ArgsS, S),(ArgsD, D)}.
• S is not feasible / is not efficient / violates fixed deci-

sions, respectively, iff: either there is an attack a b with
a,b ∈ E or there is a non-attack E 6 b with b 6∈ E, ex-
plaining why S is not feasible / is not efficient / violates
fixed decisions, respectively.

• Explaining why S is not feasible / is not efficient / violates
fixed decisions can be done in O(n2m2) time.

• Each explanation is polynomial in the size of S.
This result shows that ArgOpt meets the desiderata of

soundness and completeness, computational and cognitive
tractability. Theorem 5.1 also implies that we can provide
explanations if and when the given schedule S is ‘good’. In-
deed, if S is feasible / efficient / satisfies fixed decisions, then
the corresponding extension E is a certificate in the feasibil-
ity / optimality / fixed decision AF to the ‘goodness’ of S.
This certificate can help the user understand the accompa-
nying NLG explanations as to why the schedule is ‘good’.

For instance, consider the fixed decision AF and its unique
stable extension E = {a1,1,a1,2} as in Figure 3c). E certifies

that schedule S ≈ E where nurse 1 does both jobs 1 and 2
is feasible and meets the fixed decisions: nurse 1 is assigned
job 1 because of e.g. a manager request, as per the positive
fixed decision (1,1) represented by the unattacked argument
a1,1; similarly, nurse 1 is assigned job 2 because e.g. nurse 2
is unqualified, as per the negative fixed decision (2,2) rep-
resented by the self-attacking argument a2,2.

6 Related Work
To the best of our knowledge, there are no works concern-
ing either explainable scheduling or integrating argumenta-
tion and optimization to explain the latter. Some preliminary
works consider explainable planning, e.g. (Fox, Long, and
Magazzeni 2017), which is generally different from schedul-
ing. Argumentation can also be used for making and ex-
plaining decisions, e.g. (Amgoud and Prade 2009; Zeng et
al. 2018), but mainly in multicriteria decision making which
is a different setting from ours. Integration-wise, abduction
is used for scheduling, as in e.g. (Kakas and Michael 2001;
Bernard, Borillo, and Gaume 1991), but not for the purpose
of explaining. Optimization can be used to implement argu-
mentation solvers, e.g. by mapping AFs to constraint satis-
faction problems (Bistarelli and Santini 2010), which is op-
posite to using argumentation to supplement optimization.

Argumentation-based explanations in the literature are by
and large formalized as (sub-)graphs/trees within AFs, see
e.g. (Garcı́a et al. 2013; Fan and Toni 2015; Čyras et al.
2018; Rago, Cocarascu, and Toni 2018; Zeng et al. 2018).
There the user needs to follow the reasoning chains repre-
sented by the graphs to deduce the reasons for why a particu-
lar argument (representing e.g. a statement, a decision, a rec-
ommendation) is acceptable. In contrast, our argumentative
explanations consist of at most two decision points (argu-
ments) and the associated relationship ((non-)attack). They
can thus be seen as paths of length 1 that pinpoint exactly
which decisions violate which properties for a given sched-
ule and optimization considerations, without the need to fol-
low possibly lengthy chains of arguments. Our explanations
are thus cognitively tractable. They can also be efficiently
generated and afford natural language interpretations.

Other graph-based models could be used to explain deci-
sions of, in particular, machine learning classifiers, e.g. or-
dered decision diagrams as in (Shih, Choi, and Darwiche
2018) and decision trees as in (Frosst and Hinton 2017).
Moreover, natural language explanations could also be used
for explanations, e.g. via counterfactual statements for ma-
chine learning predictions (Sokol and Flach 2018). We leave
the study of relationships and formal comparison to such ap-
proaches for future work.

7 Conclusions and Future Work
This paper introduces a paradigm for clearly explaining to
a user why a proposed schedule is ‘good’ or not. We pro-
pose abstract argumentation as an intermediate layer be-
tween the user and the optimization solver for defining and
extracting explanations. In the makespan scheduling prob-
lem, we capture three essential dimensions—feasibility, ef-
ficiency, fixed decisions—and capture them with argumen-

2758

tation frameworks. These proposed argumentative explana-
tions justify whether and why a given schedule is ‘good’ in
those dimensions. We also establish the soundness and com-
pleteness of argumentative explanations, prove that they can
be efficiently extracted and show how argumentative expla-
nations can give rise to natural language explanations.

This work explicitly incorporates an example that assigns
jobs to specific nurses. Each job is completed exactly once
and the goal is that everyone gets to leave work as quickly
as possible. Our fixed decision setting also recognizes that
some nurses have (or lack) particular skills and therefore cer-
tain nurses cannot be assigned certain jobs. But we could in-
corporate more modeling requirements into this framework,
e.g. introduce constraints incorporating contractual obliga-
tions such as a number of shifts per week or design the so-
lution so that it is more robust to uncertainty (Letsios and
Misener 2018). Moreover, we have shown how to incorpo-
rate explanations for some necessary optimality conditions,
but we could also develop intuitive explanations for other
optimality concepts such as fractional relaxations or cutting
planes. We leave these extensions for future work.

Acknowledgements The authors were funded by the EP-
SRC project EP/P029558/1 ROAD2H, except for Dim-
itrios Letsios who was funded by the EPSRC project
EP/M028240/1 Uncertainty-Aware Planning and Schedul-
ing in the Process Industries.
Data access statement: No new data was collected in the
course of this research.

References
Amgoud, L., and Prade, H. 2009. Using Arguments for Making
and Explaining Decisions. Artif. Intell. (3-4):413–436.
Atkinson, K.; Baroni, P.; Giacomin, M.; Hunter, A.; Prakken, H.;
Reed, C.; Simari, G. R.; Thimm, M.; and Villata, S. 2017. Towards
Artificial Argumentation. AI Mag. 38(3):25–36.
Bernard, D.; Borillo, M.; and Gaume, B. 1991. From event cal-
culus to the scheduling problem. semantics of action and temporal
reasoning in aircraft maintenance. Appl. Intell. 1(3):195–221.
Bistarelli, S., and Santini, F. 2010. A Common Computational
Framework for Semiring-based Argumentation System. In Coelho,
H.; Studer, R.; and Wooldridge, M., eds., 19th European Confer-
ence on Artificial Intelligence, 131–136.
Brucker, P. 2007. Scheduling Algorithms (5th Ed.). Springer.
Burke, E. K.; De Causmaecker, P.; Berghe, G. V.; and Van Lan-
deghem, H. 2004. The state of the art of nurse rostering. J.
Scheduling 7(6):441–499.
Čyras, K.; Fan, X.; Schulz, C.; and Toni, F. 2018. Assumption-
Based Argumentation: Disputes, Explanations, Preferences. In Ba-
roni, P.; Gabbay, D. M.; Giacomin, M.; and van der Torre, L., eds.,
Handbook Of Formal Argumentation. College Publications.
Dung, P. M. 1995. On the Acceptability of Arguments and its Fun-
damental Role in Nonmonotonic Reasoning, Logic Programming
and n-person Games. Artif. Intell. 77:321–357.
Dunne, P. E., and Wooldridge, M. 2009. Complexity of Abstract
Argumentation. In Simari, G. R., and Rahwan, I., eds., Argumen-
tation in Artificial Intelligence. Springer. 85–104.
Fan, X., and Toni, F. 2015. On Computing Explanations in Argu-
mentation. In Bonet, B., and Koenig, S., eds., 29th AAAI Confer-
ence on Artificial Intelligence, 1496–1502.

Fox, M.; Long, D.; and Magazzeni, D. 2017. Explainable Planning.
In Aha, D. W.; Darrell, T.; Pazzani, M.; Reid, D.; Sammut, C.; and
Stone, P., eds., 1st Workshop on Explainable Artificial Intelligence.
Frosst, N., and Hinton, G. E. 2017. Distilling a neural network into
a soft decision tree. In 1st International Workshop on Comprehen-
sibility and Explanation in AI and ML.
Garcı́a, A. J.; Chesñevar, C.; Rotstein, N.; and Simari, G. R. 2013.
Formalizing Dialectical Explanation Support for Argument-Based
Reasoning in Knowledge-Based Systems. J. Exp. Syst. Appl.
40:3233–3247.
Garey, M. R., and Johnson, D. S. 1979. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W. H. Freeman.
Graham, R. L. 1969. Bounds on multiprocessing timing anomalies.
SIAM J. Appl. Math. 17(2):416–429.
Kakas, A. C., and Michael, A. 2001. An abductive-based scheduler
for air-crew assignment. Appl. Artif. Intell. 15(3):333–360.
Letsios, D., and Misener, R. 2018. Exact lexicographic scheduling
and approximate rescheduling. arXiv preprint arXiv:1805.03437.
Leung, J. Y., ed. 2004. Handbook of Scheduling - Algorithms,
Models, and Performance Analysis. Chapman and Hall - CRC.
Moulin, B.; Irandoust, H.; Bélanger, M.; and Desbordes, G. 2002.
Explanation and Argumentation Capabilities: Towards the Creation
of More Persuasive Agents. Artif. Intell. Rev. 17(3):169–222.
Moz, M., and Vaz Pato, M. 2007. A genetic algorithm approach to
a nurse rerostering problem. Comput. Oper. Res. 34(3):667–691.
Logistics of Health Care Management.
Rago, A.; Cocarascu, O.; and Toni, F. 2018. Argumentation-Based
Recommendations: Fantastic Explanations and How to Find Them.
In 27th International Joint Conference on Artificial Intelligence,
1949–1955.
Sacchi, L.; Rubrichi, S.; Rognoni, C.; Panzarasa, S.; Parimbelli,
E.; Mazzanti, A.; Napolitano, C.; Priori, S. G.; and Quaglini, S.
2015. From Decision to Shared-decision: Introducing Patients’
Preferences Into Clinical Decision Analysis. Artif. Intell. in Med.
65(1):19–28.
Shih, A.; Choi, A.; and Darwiche, A. 2018. A Symbolic Approach
to Explaining Bayesian Network Classifiers. In 27th International
Joint Conference on Artificial Intelligence, 5103–5111.
Sokol, K., and Flach, P. 2018. Conversational Explanations of
Machine Learning Predictions Through Class-contrastive Counter-
factual Statements. In 27th International Joint Conference on Ar-
tificial Intelligence, 5785–5786.
Sørmo, F.; Cassens, J.; and Aamodt, A. 2005. Explanation in
Case-Based Reasoning–Perspectives and Goals. Artif. Intell. Rev.
24(2):109–143.
Warner, D. M., and Prawda, J. 1972. A mathematical programming
model for scheduling nursing personnel in a hospital. Manag. Sci.
19:411–422.
Williamson, D. P., and Shmoys, D. B. 2011. The Design of Ap-
proximation Algorithms. Cambridge University Press.
Zeng, Z.; Fan, X.; Miao, C.; Leung, C.; Jing Jih, C.; and Yew Soon,
O. 2018. Context-based and Explainable Decision Making with
Argumentation. In 17th International Conference on Autonomous
Agents and MultiAgent Systems, 1114–1122.
Zhong, Q.; Fan, X.; Luo, X.; and Toni, F. 2019. An Explainable
Multi-Attribute Decision Model Based on Argumentation. J. Exp.
Syst. Appl. 117:42–61.

2759

