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Abstract

Abductive reasoning generates explanatory hypotheses for
new observations using prior knowledge. This paper investi-
gates the use of forgetting, also known as uniform interpola-
tion, to perform ABox abduction in description logic (ALC)
ontologies. Non-abducibles are specified by a forgetting sig-
nature which can contain concept, but not role, symbols. The
resulting hypotheses are semantically minimal and consist of
a disjunction of ABox axioms. These disjuncts are each inde-
pendent explanations, and are not redundant with respect to
the background ontology or the other disjuncts, representing
a form of hypothesis space. The observations and hypothe-
ses handled by the method can contain both atomic or com-
plexALC concepts, excluding role assertions, and are not re-
stricted to Horn clauses. Two approaches to redundancy elim-
ination are explored in practice: full and approximate. Using a
prototype implementation, experiments were performed over
a corpus of real world ontologies to investigate the practical-
ity of both approaches across several settings.

Introduction
The aim of abductive reasoning is to generate explanatory
hypotheses for new observations, enabling the discovery of
new knowledge. Abduction was identified as a form of rea-
soning by (Peirce 1878). It has also become a recurring
topic of interest in the field of AI, leading to work such as
abductive extensions of Prolog for natural language inter-
pretation (Stickel 1991; Hobbs et al. 1993), the integration
of abduction with induction in machine learning (Mooney
2000) including work in the fields of inductive (Muggleton
and Bryant 2000) and abductive logic programming (Kakas,
Kowalski, and Toni 1992; Ray 2009) and statistical rela-
tional AI (Raghavan and Mooney 2010).

This paper focuses on abduction in description logic
(DL) ontologies. These consist of a TBox of information
about general entities known as concepts and roles and an
ABox of assertions over instances of these concepts known
as individuals. DL ontologies are widely used to express
background knowledge and as alternative data models for
knowledge management. They are commonly used in fields
such as AI, computational linguistics, bio-informatics and
robotics. The need for abductive reasoning in ontologies
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was highlighted by (Elsenbroich, Kutz, and Sattler 2006).
Use cases include hypothesis generation, diagnostics and
belief expansion for which most current reasoning methods
for ontologies are not suitable. This has led to work on ab-
duction in DLs, including studies in EL (Bienvenu 2008)
and applications such as ontology repair (Lambrix, Drag-
isic, and Ivanova 2012; Wei-Kleiner, Dragisic, and Lam-
brix 2014) and query explanation (Calvanese et al. 2013).
For ABox abduction, methods in more expressive logics
such as ALC and its extensions have been proposed (Klar-
man, Endriss, and Schlobach 2011; Halland and Britz 2012;
Pukancová and Homola 2017). Similarly, work exists on
TBox abduction (Wei-Kleiner, Dragisic, and Lambrix 2014;
Halland, Britz, and Klarman 2014). However, few imple-
mentations and evaluations are available for abductive rea-
soning. Exceptions include the ABox abduction method of
(Du, Wang, and Shen 2014) in Datalog rewritable ontologies
and a TBox abduction method using justification patterns
(Du, Wan, and Ma 2017).

The aim of this paper is to investigate the use of forget-
ting for ABox abduction in DL ontologies. Forgetting is a
non-standard reasoning method that restricts ontologies to a
specified set of symbols, retaining all entailments preserv-
able in the restricted signature. It is also referred to as uni-
form interpolation or second-order quantifier elimination,
and has been proposed as a method for abduction in dif-
ferent contexts (Doherty, Łukaszewicz, and Szałas 2001;
Gabbay, Schmidt, and Szałas 2008; Wernhard 2013; Koop-
mann and Schmidt 2015b). However, so far the forgetting-
based approach has been insufficiently studied or applied,
particularly in terms of preferred characteristics of abduc-
tive hypotheses and in the setting of large DL ontologies.

This work investigates hypotheses obtained using
forgetting-based abductive reasoning. These hypotheses are
weakest sufficient conditions (Lin 2001), related to the DL
literature notion of semantic minimality (Halland, Britz, and
Klarman 2014), meaning that they make the fewest assump-
tions necessary to explain an observation given the back-
ground knowledge. However, without additional steps, these
hypotheses are not guaranteed to be consistent and are likely
to be mostly redundant when the forgetting based approach
is applied to large ontologies. In this work, additional con-
straints are investigated to capture these redundancies and
practical methods for their removal are presented.
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The main contributions of this paper are: (1) Forgetting-
based ABox abduction in DL ontologies is explored and
formalised. The aim is to compute hypotheses that do not
contain unnecessary assumptions nor misleading, i.e. redun-
dant, explanations. The need to eliminate redundancies from
uniform interpolants is motivated and solved. (2) A prac-
tical method for this task is presented for ALC. It com-
putes hypotheses containing only abducible symbols. Non-
abducibles are specified by a forgetting signature consisting
of any set of concept, but not role, symbols. Both the obser-
vations and hypotheses may contain any atomic or complex
ALC (or ALCµ) concepts, but cannot contain role asser-
tions. An efficient annotation-based filtering method is pro-
posed to eliminate redundancies from uniform interpolants.
The method uses the forgetting tool LETHE which is shown
to be applicable to ABox abduction, thereby answering an
open question in (Koopmann and Schmidt 2015b). However,
the general framework could use any forgetting method de-
signed for ALC. (3) The method is evaluated empirically
over a corpus of real-world ontologies. An approximate and
a full approach to redundancy elimination are compared.

Proofs and additional examples are in the long version of
this paper https://arxiv.org/abs/1811.05420.

Problem Definition
Concepts in the description logic ALC have the following
forms:> |A | ¬C |CtD |CuD | ∀r.C | ∃r.D, whereA de-
notes a concept name, C and D are arbitrary ALC concepts
and r is a role name. Atomic concepts are concept names,
while concepts such as ∀r.(AuB) are said to be complex. A
knowledge base or ontology O in ALC consists of a TBox
and an ABox. The TBox consists of a set of general con-
cept inclusions of the form C v D, where C and D are any
ALC concept. The ABox contains axioms C(a) and role as-
sertions of the form r(a, b), where C is any ALC concept
and a and b are individuals. The signature of X , denoted as
sig(X), is the set of all concept and role names occurring
in X , where X can be any ontology or axiom.

The aim of abduction is to compute a hypothesis to ex-
plain a new observation. Our focus is on this problem:

Definition 1. Abduction in Ontologies. LetO be an ontol-
ogy and ψ a set of ABox axioms, where ψ does not contain
role assertions, such that O 6|= ⊥, O, ψ 6|= ⊥ and O 6|= ψ.
Let SA be a set of symbols called abducibles which contains
all role symbols in (O, ψ). The abduction problem is to find
a hypothesisH as a disjunction of ABox axioms, without role
assertions, that contains only those symbols specified in SA
such that: (i) O,H 6|= ⊥, (ii) O,H |= ψ, (iii) H does not
contain inter-disjunct redundancy i.e., there is no disjunct
αi inH such that O, αi |= α1 t ...tαi−1 tαi+1 t ...tαn

and (iv) for any H′ satisfying conditions (i)–(iii) where
sig(H′) ⊆ SA, if O,H |= O,H′ then O,H′ |= O,H.

The set of abducibles SA defines the subset of symbols in
the ontology that may appear in the hypothesisH. Here, SA
must contain all role symbols in (O, ψ) and both the ob-
servation ψ and H may not contain role assertions. For our
approach, the language ofALC must be extended to include
disjunctive ABox assertions over multiple individuals, and

in some specific cases fixpoints (Calvanese, De Giacomo,
and Lenzerini 1999) to represent cyclic results. These will
be discussed alongside the proposed method.

The rationale for the problem conditions is to focus ef-
forts on computing informative hypotheses. Otherwise, the
search space for hypotheses would be too large. Defining the
set of abducibles SA allows a user to focus on explanations
containing specific information represented as symbols, util-
ising their own knowledge of the problem domain. Condi-
tions (i) and (ii) are standard requirements in most abductive
reasoning tasks. Condition (i) requires that all generated hy-
pothesesH are consistent with the background knowledge in
the ontology O. Otherwise ⊥ would be entailed from which
everything follows. Condition (ii) ensures that H explains
the observation ψ when added to the background knowledge
in O. Conditions (iii) and (iv) capture two distinct notions.
Condition (iii) ensures that each of the disjuncts in the hy-
pothesis H are independent explanations (Konolige 1992)
for the observation ψ. That is, there are no disjuncts in H
that express information that is the same or more specific
than that which is already expressed by the other disjuncts
in H. This also excludes disjuncts that are simply inconsis-
tent with the background knowledge as a special case, since
if for a disjunct α in H we have O, α |=⊥ then everything
follows. Condition (iii) is referred to as inter-disjunct redun-
dancy. The following example illustrates this, where Brain
Drain (BD) is a disease, “BDV1” and “BDV2” are viruses,
p1 is a patient and the acronyms hD, hS and cO stand for
“hasDisease”, “hasSymptom” and “carrierOf” respectively:

Example 1. LetO = {∃hD.BDv ∃hS.Headache, TiredSci-
entist v ∃hS.Headache, ∃cO.(BDV1 t BDV2) v ∃hD.BD,
TiredAccountantv ∃hS.Headache, ¬TiredAccountant(p1)},
ψ = {∃hS.Headache(p1)} and let SA include all symbols in
O except Headache. Consider the hypothesisH′ =(∃hD.BD
t TiredScientist t ∃cO.(BDV1 t BDV2) t TiredAccoun-
tant)(p1). This satisfies conditions (i), (ii) and (iv). However,
there are two redundant disjuncts: TiredAccountant(p1) and
∃cO.(BDV1 t BDV2 )(p1). The first is inconsistent with the
ontology O. The second is not independent: it is simply
stronger than the disjunct ∃hD.BD(p1) in H′. A user may
mistakenly believe that these two redundancies are valid,
independent explanations for the symptom. Thus, condition
(iii) excludes these redundancies, resulting in the preferred
hypothesisH =(∃hD.BD t TiredScientist)(p1).

As condition (iii) requires that each disjunct be consis-
tent with the ontologyO, condition (i) is not strictly needed.
However, as consistency is a key condition in most abduc-
tion contexts it is useful to emphasise it separately.

Condition (iv) captures the notion of semantic minimality
(Halland, Britz, and Klarman 2014) under the background
knowledge O. It restricts hypotheses to those that make the
fewest assumptions necessary to explain the observation ψ
given O. This is shown in the example below.

Example 2. Let O = {AvB,B vC}, ψ = {C(a)} and
SA = {A,B}. Consider the hypotheses H1 = B(a) and
H2 = A(a). Both satisfy the conditions in Definition 1(i)
and (ii). However, hypothesis H2 does not satisfy (iv), since
O,H2 |= O,H1, but the reverse does not hold. Thus, H2 is
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a stronger or “less minimal” hypothesis thanH1.

From this, it can be seen that condition (iv) rejects seman-
tically stronger hypotheses. It should be noted that, unlike
some other settings such as (Halland, Britz, and Klarman
2014), hereH can contain disjunction. Thus, redundant dis-
juncts must be considered separately, as in condition (iii),
since condition (iv) does not account for these.

With these conditions, the aim of this work is to compute
a semantically minimal hypothesis consisting of all disjuncts
that each represent an independent explanation of the obser-
vation ψ, none of which overlaps with either the background
knowledge or the other disjuncts.

Definition 1 does not remove all choices between or re-
dundancies in the forms taken by each disjunct in H if they
are equivalent under O. For example, condition (iv) does
not account for conjunctively joined redundancies that fol-
low directly from O. If Example 2 is extended so that the
axiom C v D is in O and the signature of abducibles SA
also contains D, then H3 = (B uD)(a) is also a valid hy-
pothesis under conditions (i), (ii) and (iv). While H3 is not
stronger thanH1, it contains a form of redundancy: D(a).

To eliminate these redundancies and simplify the dis-
juncts themselves may require the use of preference criteria
over the disjuncts inH. As there are a variety of methods for
defining and realising preference handling (Cialdea Mayer
and Pirri 1996; Pino-Peréz and Uzcátegui 2003; Delgrande
et al. 2004) we do not discuss this aspect. Here, the focus is
on computing the space of independent explanations, rather
than ensuring each takes the simplest form.

Forgetting and Uniform Interpolation
Forgetting is a process of finding a compact representation
of an ontology by hiding or removing subsets of symbols
within it. Here, the term symbols refers to concept and role
names present in the ontology. The symbols to be hidden
are specified in the forgetting signature F , which is a subset
of symbols in the ontology O. The symbols in F should be
removed from O, while preserving all entailments of O that
can be represented using the signature sig(O) without F .
The result is a new ontology, which is a uniform interpolant:
Definition 2. Uniform Interpolation in ALC (Lutz and
Wolter 2011). Let O be an ALC ontology and F a set of
symbols to be forgotten from O. Let SA = sig(O) \ F be
the complement of F . The uniform interpolation problem is
the task of finding an ontology V such that the following con-
ditions hold: (i) sig(V) ⊆ SA, (ii) for any axiom β: O |= β
iff V |= β provided that sig(β) ⊆ SA. The ontology V is a
uniform interpolant of O for the signature SA. We also say
that V is the result of forgetting F from O.

Uniform interpolants are strongest necessary entailments,
in general, it holds that:
Theorem 1. V is a uniform interpolant of ontology O for
SA iff V is a strongest necessary entailment of O in SA.

This means that for any ontology V ′, if sig(V ′) ⊆ SA
and V ′ |= V , then V |= V ′. Of the methods for uni-
form interpolation in ALC, e.g., (Ludwig and Konev 2014;
Koopmann and Schmidt 2015a), our abduction method uses

the resolution-based method developed by Koopmann and
Schmidt [2013; 2015a; 2015b].

Here, this method is referred to as IntALC . Motivations
for utilising IntALC include the fact that it can perform
forgetting for ALC with ABoxes (Koopmann and Schmidt
2015a), making it suitable for the setting in this paper. Fur-
thermore, in theory the result of forgetting (and abduction)
can involve an infinite chain of axioms. Using IntALC , such
chains can be finitely represented using fixpoint operators.
In practice, these are rarely required: in previous work only
7.2% of uniform interpolants contained cycles (Koopmann
and Schmidt 2013). IntALC can also handle disjunctive
ABox assertions which are not representable in pure ALC.
These will be needed for some abduction cases involving
multiple individuals. In terms of efficiency, the size of the
forgetting result is constrained to at most a double exponen-
tial bound with respect to the input ontology and IntALC is
guaranteed to terminate (Koopmann and Schmidt 2015a).

The method IntALC has two properties that are also es-
sential to the proposed abduction method. (i) Soundness: any
ontology O′ returned by applying IntALC to an ontologyO
is a uniform interpolant. (ii) Interpolation Completeness: if
there exists a uniform interpolantO′ of ontologyO, then the
result of IntALC is an ontology V such that V ≡ O′. Thus,
for any ALC ontology O and any forgetting signature F ,
IntALC always returns a finite uniform interpolant.

Resolution: C1 ∨A(t1) C2 ∨ ¬A(t2)
(C1 ∨ C2)(σ)

Role Propagation: C1 ∨ (∀r.D1)(t1) C2 ∨Qr.D2(t2)

(C1 ∨ C2)σ ∨Qr.D12(t1σ)

∃-Role Restriction Elimination: C ∨ (∃r.D)(t) ¬D(x)

C

Role Instantiation: C1 ∨ (∀r.D)(t1) r(t2, b)

C1σ ∨D(b)
D1 and D2 are definer symbols, Q ∈ {∀,∃}, σ is the unifier of
t1 and t2 if it exists, D12 is a new definer symbol for D1 uD2

and no clause contains more than one negative definer literal of
the form ¬D(x), and none of the form ¬D(a).

Figure 1: IntALC rules utilised in our abduction method.

The method IntALC relies on the transformation of the
ontology to a normal form given by a set of clauses of con-
cept literals. The inference rules of the forgetting calculus
utilised in IntALC are shown in Figure 1. Definer symbols
are introduced to represent concepts that fall under the scope
of a quantifier. Resolution inferences are restricted to con-
cepts in F or definer symbols. Once all possible inferences
have been made, any clauses containing symbols in F are
removed and the definer symbols are eliminated resulting in
an ontologyO′ that is free of all symbols in F . A discussion
of this calculus and the associated method, including proofs,
can be found in (Koopmann and Schmidt 2015a).

We will also need the following notions. Each premise
in an application of an inference rule in IntALC is referred
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to as a parent of the conclusion of the rule. The ances-
tor relation is defined as the reflexive, transitive closure
of the parent relation. For example, the premises {A v
B,C v A,¬B(a)} are expressed as the clauses: {¬A(x) ∨
B(x),¬C(x) ∨ A(x),¬B(a)}. For a forgetting signature
F = {B,A}, resolution between ¬A(x)∨B(x) and ¬B(a)
gives ¬A(a). Resolution between ¬A(a) and ¬C(x)∨A(x)
gives ¬C(a). The axiomsA v B and ¬B(a) are the parents
of the axiom ¬A(a) and the ancestors of ¬C(a).

In this paper, we focus on ABox abduction where the set
of abducibles includes all role symbols. Non-abducibles are
specified by the forgetting signature F which contains only
concept symbols occurring in the ontologyO or observation
ψ. The proposed method utilises IntALC to compute seman-
tically minimal hypotheses via forgetting and contrapositive
reasoning, exploiting: O,H |= ψ iff O,¬ψ |= ¬H where O
is an ontology and ψ,H are (ABox) axioms.

A Forgetting-Based Abduction Method
The abduction algorithm takes as input anALC ontologyO,
an observation ψ as a set of ABox axioms and a forgetting
signatureF . Several assumptions are made regarding this in-
put. The method IntALC does not cater for negated role as-
sertions as can be seen in Figure 1, and the form of role for-
getting in IntALC is not complete for abduction. As a result,
ψ cannot contain role assertions and F is restricted to con-
cept symbols in sig(O ∪ψ). Correspondingly, the signature
of abducibles SA must contain all role symbols occurring in
sig(O ∪ ψ). Also, if F does not contain at least one symbol
in the observation ψ, the semantically minimal hypothesis
will simply be ψ itself, i.e., H = ψ. This is reflected in the
fact that no inferences would occur between O and ¬ψ un-
der IntALC . To avoid this trivial hypothesis, F should con-
tain at least one concept symbol in the signature of ψ. In the
event that F contains concepts that occur within a cycle in
O, the forgetting result obtained using IntALC may contain
greatest fixpoints (Koopmann and Schmidt 2013) to finitely
represent infinite forgetting solutions. For our method, this
means that the abduction result may contain least fixpoints
due to the negation of greatest fixpoints under contraposi-
tion. In these cases, the output language would be ALCµ.

The output is a hypothesis H = α1(a1) t ... t αn(an)
containing only the abducible symbols SA = sig(O∪ψ)\F ,
that satisfies the conditions (i)–(iv) in Definition 1. Note that
H may be a disjunctive assertion over several individuals,
motivating the need to extend ALC with these.

The algorithm reduces the task of computing abductive
hypotheses for the observation ψ to the task of forgetting,
using the following steps:

(1) Compute the uniform interpolant V = {β1, ..., βn} of
(O,¬ψ) with respect to the forgetting signature F .

(2) Extract the set V∗ ⊆ V by omitting axioms βi ∈ V
such that O, β1, ..., βi−1, βi+1, ..., βn |= βi.

(3) Obtain the hypothesisH by negating the set V∗.
In more detail, the observation ψ takes the form of a set

of ABox axioms: ψ = {C1(a1), ..., Ck(ak)} where the Ci

are ALC concepts and the ai are individuals. The negation

takes the form ¬ψ = ¬C1(a1) t ... t ¬Ck(ak). The forget-
ting method IntALC is used to compute the uniform inter-
polant V of (O,¬ψ) by forgetting the concept names in F ,
i.e., V = (O,¬ψ)−F .

If forgetting was used in isolation, the negation of V
would be the hypothesis for ψ under contraposition. How-
ever, this is only guaranteed to satisfy conditions (ii) and (iv)
of Definition 1: since V is the strongest necessary en-
tailment of (O,¬ψ) in SA as in Theorem 1, its nega-
tion would be the weakest sufficient condition (Lin 2001;
Doherty, Łukaszewicz, and Szałas 2001). Thus the hypothe-
sis would be semantically minimal in SA, but would not nec-
essarily satisfy condition (i), consistency, nor condition (iii),
absence of inter-disjunct redundancy. In practice most of the
disjuncts will be redundant, as the experimental results show
(Table 2). In the case that there is no suitable hypothesis, an
inconsistent or “false” hypothesis will be returned since all
of the axioms in V would follow directly from O.

Step (2) therefore omits information in V that follows
from the background knowledge O together with other ax-
ioms in V itself. This check is the dual of Definition 1(iii),
and therefore eliminates inter-disjunct redundancies such as
those in Example 1. The result is a reduced uniform inter-
polant V∗ which takes the form V∗ = {β1(a1), ..., βk(ak)}
where each βi is an ALC(µ) concept.

If an axiom βi is redundant, it is removed from V imme-
diately. For the following disjuncts, the check is performed
against the remaining axioms in V . This avoids discarding
too many axioms: if multiple axioms express the same in-
formation, i.e. are equivalent under O, one of them should
be retained in the final hypothesisH. The order in which the
axioms are checked can be random, or can be based on some
preference relation (Cialdea Mayer and Pirri 1996).

In Step (3) the reduced uniform interpolant V∗ is negated,
resulting in the hypothesisH. Thus, each disjunct αi inH is
the negation of an axiom βi in V∗, i.e., αi ≡ ¬βi.

The described method is sound and complete.

Theorem 2. Let O be an ALC ontology, ψ an observation
as a set of ABox axioms, excluding role assertions, and SA a
set of abducible symbols containing all role symbols inO, ψ
and SA ⊆ sig(O,ψ). (i) Soundness: The hypothesisH
returned by the method is a disjunction of ABox axioms
such that sig(H) ⊆ SA and H satisfies Definition 1(i)-(iv).
(ii) Completeness: If there exists a hypothesis H′ such that
sig(H′) ⊆ SA andH′ satisfies Definition 1(i)–(iv), then the
method returns a hypothesisH such that O,H ≡ O,H′.
Theorem 3. In the worst case, computing a hypothesis H
using our method has 3EXPTIME upper bound complexity
for running time and the size ofH can be double exponential
in the size of (O, ψ).

Practical Realisation
For redundancy elimination, Step (2) requires checking the
relationO,V\βi 6|= βi for every axiom βi in V . Since entail-
ment checking in ALC has exponential complexity and V is
in the worst case double exponential in the size of (O,¬ψ),
this step has a 3EXPTIME upper bound which is very expen-
sive particularly for large ontologies. Regardless, Step (2) is
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essential; without it there will be a large number of inter-
disjunct redundancies (Definition 1(iii)) in the hypotheses
obtained. This is reflected in the experiments (Table 2).

To obtain a computationally feasible implementation of
Step (2), the number of entailment checks performed must
be reduced. Our implementation of this step begins by trac-
ing the dependency of axioms in V on the negated observa-
tion ¬ψ. An axiom β is defined as dependent upon ¬ψ if
in the derivation using IntALC it has at least one ancestor
axiom in ¬ψ. The set of axioms dependent on ¬ψ is in gen-
eral a superset of the reduced uniform interpolant V∗ and is
referred to as V∗app, i.e., an approximation of V∗.

In this paper, dependency tracing is achieved by us-
ing annotations, similar to (Kazakov and Skoc̆ovský 2017;
Koopmann and Chen 2017; Penaloza et al. 2017). These take
the form of fresh concept names that do not occur in the sig-
nature of the ontology nor the observation. Annotations act
as labels that are disjunctively appended to existing axioms.
They are then used to trace which axioms are the ancestors
of inferred axioms. This relies on the fact that the annotation
concept is not included in the forgetting signatureF . Thus, it
will carry over from the parent to the result of any inference
in IntALC , as formalised in the following property:

Theorem 4. LetO be an ontology, ψ an observation as a set
of ABox axioms, F a forgetting signature and ` an annota-
tor concept added as an extra disjunct to each clause in the
clausal form of ¬ψ where ` 6∈ sig(O ∪ ψ) and ` 6∈ F . For
every axiom β in the uniform interpolant V = (O,¬ψ)−F ,
β is dependent on ¬ψ iff ` ∈ sig(β).

Therefore, the presence of the annotation concept in the
signature of an inferred axiom indicates that the axiom has
at least one ancestor in ¬ψ. Since the aim is to trace depen-
dency specifically on ¬ψ, only clauses that are part of ¬ψ
need to be annotated. As it is not important which specific
clauses in ¬ψ were used in the derivation of dependent ax-
ioms, only one annotation concept name is required. This
will be referred to as `. Using this technique, the process of
extracting V∗app from the uniform interpolant V is a matter of
removing all axioms in V that do not contain `. Then, ` can
be replaced with ⊥ to obtain the annotation-free set V∗app.

Since this annotation based filtering is sound, i.e., it only
removes axioms that are not dependent on ψ, as these are di-
rectly derivable fromO and are thus guaranteed to be redun-
dant, it can be used at the start of Step (2) to compute V∗app.
To guarantee the computation of the reduced uniform inter-
polant V∗, the entailment check in Step (2) must then be
performed for each axiom β ∈ V∗app to eliminate any re-
dundancies not captured by the annotation-based filtering.
Since some axioms may have multiple derivations, they can
contain the annotation concept but still be redundant with
respect to Definition 1. For example:

Example 3. Let O = {A v C,B v C,A u D v
⊥, D(a)} and ψ = C(a). The annotated form of ¬ψ is
¬ψ = ` t ¬C(a). Using F = {C}, the result of Step (1)
is V = {A u D v ⊥, D(a), (` t ¬A)(a), (` t ¬B)(a)}.
Note: no inference is made with D(a), since D 6∈ F . In Step
(2) extracting all axioms with annotations and setting ` = ⊥
gives the set {¬A(a),¬B(a)}. Despite ¬A(a) being deriv-

able using ¬ψ, it follows from the original ontology O and
is therefore redundant with respect to Definition 1(iii). This
can now be removed via the entailment check in Step (2).

This method of filtering out redundancies has several ad-
vantages. First, it is not specific to ALC and can be applied
if the abduction method is later extended to more expressive
logics. Second, by removing axioms that are not dependent
on ψ, the method reduces the cost of Step (2) as checking the
signature of each axiom for the presence of ` is linear in the
size of V . In the worst case V∗app could be equal to V and a
double exponential number of entailment checks would still
be required. In practice, this is unlikely as V∗app is usually a
small fraction of V as shown by the experiments (Table 2).
In these cases, each redundancy eliminated from V to V∗app
replaces an exponential check with a linear one.

The entailment checks that must be performed on V∗app
to compute V∗ may still be costly in the event that many
axioms are dependent on ψ in V . Therefore, we propose
that in some cases it may be pragmatic to relax the allowed
hypotheses by negating V∗app instead of the reduced uni-
form interpolant V∗ itself. In this case, an additional check,
O,H 6|=⊥, is required to rule out inconsistent hypotheses if
all of the axioms in V∗app are redundant. This approximate
approach results in a hypothesisHapp which satisfies condi-
tions (i), (ii) and (iv) in Definition 1, but not condition (iii).
The results in Table 2 illustrate the effect in practice.

To summarise, we suggest two realisations of Step (2) of
the proposed abduction method: (a) approximate filtering,
which computes an approximation of the hypothesisHapp

by negating V∗app, (b) full filtering, which performs the
entailment check in Step (2) for each axiom in V∗app to
obtain V∗ and thus H which is guaranteed to fully satisfy
Definition 1. Note that for setting (b), the approximation step
is still used to reduce the overall cost of Step (2).

Experimental Evaluation

Ontology DL TBox ABox Num. Num.
Name Size Size Concepts Roles
BFO EL 52 0 35 0
LUBM EL 87 0 44 24
HOM EL 83 0 66 0
DOID EL 7892 0 11663 15
SYN EL 15352 0 14462 0
ICF ALC 1910 6597 1597 41
Semintec ALC 199 65189 61 16
OBI ALC 28888 196 3691 67
NATPRO ALC 68565 42763 9464 12

Table 1: Characteristics of the experimental corpus.

A Java prototype was implemented using the OWL-
API1 and the forgetting tool LETHE which implements the
IntALC method.2 Using this, two experiments were car-
ried out over a corpus of real world ontologies, which were
preprocessed into their ALC fragments. Axioms not repre-
sentable in ALC, such as number restrictions of the form

1http://owlapi.sourceforge.net/
2http://www.cs.man.ac.uk/ koopmanp/lethe/index.html
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Ont. Mean Time Taken /s Max Time Taken /s Mean Redund. Removed SizeH /disjuncts Mean % of
Name V∗

app V∗ V∗ no app. V∗
app V∗ V∗ no app. V → V∗

app V∗
app → V∗ Mean Max Happ Redund.

BFO 0.01 0.01 0.09 0.01 0.07 0.14 52 0 1.97 4 0
LUBM 0.02 0.03 0.30 0.11 0.16 1.21 90 0.80 2.73 11 29.30
HOM 0.03 0.05 0.18 0.40 0.54 0.86 82 0.03 2.07 13 1.45
DOID 0.44 1.09 1071.35 1.11 6.98 1095.07 7891 0 7.23 104 0
SYN 0.95 3.92 2421.96 2.33 61.52 2593.13 15351 0.03 20.63 457 0.15
ICF 0.30 0.56 t.o. 0.52 1.58 t.o. 8505 0 2.30 7 0

Semin. 3.13 5.12 t.o. 9.29 15.36 t.o. 72827 0.03 3.60 10 0.83
OBI* 3.82 32.17 t.o. 25.18 95.37 t.o. 29191 6.48 52.48 161 12.35
NATP. 26.54 179.70 t.o. 39.51 544.50 t.o. 111318 0.03 48.70 204 0.06

Table 2: Results for 30 observations using a forgetting signature size of 1. * indicates that LETHE did not terminate within the
300s time limit in at least one case, “t.o.” indicates that the experiment was terminated after several days runtime. The size of
H reported is that obtained via full computation of V∗. Times shown are the total times taken to returnH (orHapp).

≤ nr.C where r is a role symbol and C is a concept sym-
bol, were removed. Others were represented using appro-
priate ALC axioms where possible. For example, a range
restriction ∃r−.> v C is converted to > v ∀r.C, where
r− is the inverse role of r. The choice of ontologies was
based on several factors. They must be consistent, parsable
using LETHE and the OWL API and must vary in size to
determine how this impacts performance. Since many real-
world ontologies are encoded in less expressive DLs such as
EL, the corpus was also split between EL and ALC to de-
termine if the performance over EL suffers as a result of the
additional capabilities of the method forALC. The final cor-
pus contains ontologies from the NCBO Bioportal and OBO
repositories,34 and the LUBM (Guo, Pan, and Heflin 2005)
and Semintec ontologies.5 The corpus is summarised in Ta-
ble 1. The experiments were performed on a machine using
a 4.00GHz Intel Core i7-6700K CPU and 16GB RAM.

For each ontology, 30 consistent, non-entailed observa-
tions were randomly generated using any ALC concepts
from the associated ontology, some of which were combined
using ALC operators to encourage variety. The aim was to
emulate the information that may be observed in practice
for each ontology, while adhering to the requirements for
ψ expressed in Definition 1. As the current prototype uses
the OWL-API, which does not allow disjunctive assertions
over multiple individuals, the experiments here are limited
to observations involving one individual. For the filtering in
Step (2), the preference relation used in these experiments
was simply based on order of appearance of each disjunct.

For the first experiment, F was set to one random concept
symbol from sig(ψ). The assumption was that users may
first seek the most general hypothesis, i.e., the semantically
minimal hypothesis for the largest set of abducibles. This al-
lows the user to pursue stronger hypotheses subsequently by
forgetting further symbols from the initial hypothesis. This
experiment is therefore also representative of incremental
abduction steps using a smallF . The second experiment was
performed over the DOID, ICF and SYN ontologies to eval-
uate the performance as the size of F increases. These on-

3https://bioportal.bioontology.org/
4http://www.obofoundry.org/
5http://www.cs.put.poznan.pl/alawrynowicz/semintec.htm

tologies were used as they have a sufficiently large signature
of concepts and LETHE did not time out when forgetting
in any case. In all cases, at least one symbol from ψ was
present in F to avoid trivial hypotheses.

In both experiments, the approaches based on (a) approxi-
mate and (b) full filtering were compared for the same obser-
vations and same random selection of F . Thus, the tradeoff
between the additional time for entailment checking and re-
dundancy in the final hypothesis is evaluated. In all cases,
LETHE was subject to a 300 second time limit.

Table 2 shows the results for the first experiment. For the
smaller ontologies, the difference in time taken between the
approximate and full filtering was small. For the larger on-
tologies the cost of the full filtering was more pronounced,
taking 313%, 742% and 577% longer across the SYN, OBI
and NATPRO ontologies respectively. In all cases, it can be
seen that the annotation-based filtering eliminated the major-
ity of redundancies. In three cases (BFO, DOID, ICF), for all
30 observations the result of the approximation, V∗app, con-
tained no redundancies and thus Happ = H. For the other
ontologies, in most cases V∗app contained few redundancies
in both absolute terms and relative to the size of the final hy-
pothesis. For the LUBM and OBI ontologies, however, these
redundancies made up a more significant portion of V∗app.

The full filtering setting still uses the annotation-based
method as a preprocessing step. To assess the benefit of this
preprocessing, results for applying the entailment check in
Step (2) directly to V instead of V∗app were collected and are
shown in the “V∗ no app.” columns. For the largest EL on-
tologies, the time taken increased significantly, e.g., taking
almost 1000 times longer for the DOID ontology. For all of
the ALC ontologies the experiments were terminated after
several days runtime, i.e., it took at least several hours to
compute a single hypothesis on average. This indicates that
the annotation-based filtering significantly reduces the time
taken, particularly over large or more expressive ontologies.

Figure 2 shows the results of the second experiment. The
time taken for the forgetting step, Step (1), increased al-
most linearly with the size of F . This was expected due to
a higher number of inferences needed to compute V . The
time taken for filtering, Step (2), did not increase with the
size of F . However, for each ontology, maxima were ob-
served for different sizes of F . This implies that including
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Figure 2: Mean forgetting and filtering times with varyingF
signature sizes for the ICF, DOID and SYN ontologies.

certain symbols in F increases the filtering time. Forgetting
commonly used concepts results in more inferences and a
larger V , which may explain the maxima as the annotation-
based filtering depends solely on the number of axioms in
V . The size of V∗app will also increase in these cases, lead-
ing to more exponential entailment checks for full filtering.
The full filtering took an average of 27, 11 and 70 times
longer than the approximate case for the DOID, ICF and
SYN ontologies respectively. This indicates that the cost of
the full entailment check increased with the size of the on-
tology, particularly the size of the TBox, not the size of F .

In 100% of cases for both experiments the hypotheses
were represented without fixpoints, indicating that cyclic,
semantically minimal hypotheses seem rare in practice.

Discussion
The use of forgetting for abduction has been suggested in
classical logics (Doherty, Łukaszewicz, and Szałas 2001;
Gabbay, Schmidt, and Szałas 2008; Wernhard 2013), and a
form of TBox abduction (Koopmann and Schmidt 2015b).
Our work extends on these suggestions in several ways. As
the focus is on large DL ontologies, and not small theories
in classical logics, an interpretable hypothesis cannot be ob-
tained by negating the forgetting result V as most of it will
be redundant (Table 2). Thus, we gain insight into the redun-
dancies in V in terms of abductive notions, such as (Kono-
lige 1992; Halland, Britz, and Klarman 2014), resulting in
Definition 1(iii) and (iv). Efficient redundancy removal is
achieved via the annotation-based filtering. The overall ap-
proach, including two options emphasising (a) practicality
and (b) full redundancy removal, is then evaluated over a
corpus of real-world ontologies. This gives us the first re-
alisation and evaluation of a practical forgetting-based ap-
proach to ABox abduction in DL ontologies.

Restricting inferences in IntALC to axioms dependent on
¬ψ, rather than filtering the output, was considered. How-
ever, this would not circumvent the need to perform entail-
ment checking, as illustrated in Example 3. Second, com-
puting the full uniform interpolant V has an interesting use
case: iterative abduction. For example:
Example 4. Let O = {A v C,B v C,C v D} and
ψ = D(a∗). In Step (1), using F={D} results in V={A v
C,B v C,¬C(a∗)}. Steps (2)–(3) result in H = C(a∗).

Now, forgetting F2 = {C} from V of the previous iteration
results in V2 = {¬A(a∗),¬B(a∗)}. Repeating Steps (2) and
(3) givesH2 = (AtB)(a∗), which is stronger thanH and is
the same as the result of computing the uniform interpolant
of (O,¬ψ) using F = {D,C}, but will be more efficient.

This iterative process enables hypothesis refinement, and
has potential synergy with induction. Data could inform the
selection of new forgetting signatures to find stronger hy-
potheses following from prior likely hypotheses: a cycle of
abduction, deduction and induction.

Limitations include the lack of role assertions in the ob-
servations and hypotheses, due to the inability of IntALC
to handle negated role assertions, and the incompleteness of
role forgetting for abduction, as illustrated by the following:
Example 5. Let O = {C v ∃r.D} and ψ = ∃r.D(a).
Using F = {r} the result of Step (1) is V = ∅. This is
due to the fact that no inferences are possible on the symbol
D, since resolution is restricted to F . Thus, the hypothesis
obtained isH = ∅, while the expected result isH = C(a).

With the use of nominals, this limitation can be overcome.
Options include the use of other forgetting approaches (Zhao
and Schmidt 2015; 2016) or the extension of IntALC .

It should be noted that methods such as (Klarman, En-
driss, and Schlobach 2011; Pukancová and Homola 2017)
can already handle role assertions. The former is a purely
theoretical work, which restricts the abductive observations
and solutions to ALE : the fragment of ALC without dis-
junctions of concepts and allowing only atomic negation.
The method of (Pukancová and Homola 2017) performs ab-
ductive reasoning up to ALCHO, restricting observations
and hypotheses to atomic and negated atomic concept and
role assertions. This method considers syntactic, but not se-
mantic, minimality, though the authors note the importance
of semantic minimality in practical applications.

Conclusion and Future Work
In this paper, a practical method for ABox abduction in
ALC ontologies was presented. The method computes se-
mantically minimal hypotheses with independent disjuncts
to explain observations, where both may contain complex
ALC concepts but not role assertions, and the set of ab-
ducibles must contain all role symbols. The practicality of
the method, including the proposed annotation-based filter-
ing, was evaluated over a corpus of real-world ontologies.
To the best of our knowledge, this is the first method that
computes such hypotheses efficiently in large ontologies.
The ability to produce a semantically minimal space of inde-
pendent explanations will likely be beneficial in real-world
applications as it can, e.g., provide engineers with multi-
ple, non-redundant suggestions for fixing errors in an on-
tology or explaining negative query results, even over large
knowledge bases. For scientific investigation using ontolo-
gies, the ability to produce independent avenues of explana-
tion starting with the least assumptions necessary captures
the essence of scientific hypothesis formation. The ability
to refine these hypotheses via repeated forgetting also pro-
vides a goal-oriented, potentially data driven, way to derive
stronger insights from the hypotheses produced.
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Future work will include removing the restriction on role
assertions. Also, though forgetting in DLs can be applied to
a form of TBox abduction (Koopmann and Schmidt 2015b),
the hypotheses take the form > v α1 t ... t αn where each
α is an ALC concept. Thus, the problem of determining
inter-disjunct redundancy and the proposed approach differ
in several aspects. This will be investigated, as will the iter-
ative abduction use case.
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