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Abstract
This paper proposes a validation mechanism for newly added
triples in a growing knowledge graph. Given a logical the-
ory, a knowledge graph, a text corpus, and a new triple to
be validated, this mechanism computes a sorted list of ex-
planations for the new triple to facilitate the validation of it,
where an explanation, called an abductive text evidence, is
a set of pairs of the form (triple, window) where appending
the set of triples on the left to the knowledge graph enforces
entailment of the new triple under the logical theory, while
every sentence window on the right which is contained in the
text corpus explains to some degree why the triple on the left
is true. From the angle of practice, a special class of abduc-
tive text evidences called TEP-based abductive text evidence
is proposed, which is constructed from explanation patterns
seen before in the knowledge graph. Accordingly, a method
for computing the complete set of TEP-based abductive text
evidences is proposed. Moreover, a method for sorting ab-
ductive text evidences based on distantly supervised learning
is proposed. To evaluate the proposed validation mechanism,
four knowledge graphs with logical theories are constructed
from the four great classical masterpieces of Chinese litera-
ture. Experimental results on these datasets demonstrate the
efficiency and effectiveness of the proposed mechanism.

Introduction
Knowledge graphs have been widely used in many applica-
tions recently. A knowledge graph is a directed graph with
vertices labeled by entities and edges labeled by relations. It
can be treated as a set of triples of the form 〈h, r, t〉, where
h is the head entity (simply head), r the relation and t the
tail entity (simply tail). In order to widen the applicabil-
ity, knowledge graphs need to grow with the increasing data
nowadays. There exist some common approaches to enlarg-
ing knowledge graphs such as knowledge graph completion.
Knowledge graph completion aims to enlarge a knowledge
graph with those new triples that are predicted by a learnt
model and pass the manual validation. However, manual val-
idation of triples is laborious and error prone. Thus it calls
for automatic methods for explaining the existence of new
triples to assist the validation of new triples.

There are two categories of traditional explanations that
can be used to prove the existence of new triples.
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One is the logic-based category. Given a logical theory
formalizing the schema of the knowledge graph, a new triple
can be naturally explained by a set of triples that are al-
ready in the knowledge graph under the logical theory. But
the coverage of this mechanism is limited. To explain more
triples, we can employ logic-based abduction (Eiter and Got-
tlob 1995), i.e. explain a new triple by a set of triples that are
possibly not in the knowledge graph. However, in this mech-
anism we need to prove the existence of the absent triples.
For example, given a logical theory made up of a single rule
∀x, y, z : Father(x, y)∧Father(y, z)→ Grandfather(x, z),
the new triple 〈Tom,Grandfather,Tim〉 can be explained by
{〈Tom,Father, e〉, 〈e,Father,Tim〉} for some entity e un-
der the logical theory. But to get a complete proof, we need
to explain why 〈Tom,Father, e〉 and 〈e,Father,Tim〉 exist.
It shows that logic-based abduction improves the coverage
for new triples but may require extra validations.

The other category of explanations, called text evidences,
are text-based. A text evidence for a triple 〈h, r, t〉 is a sen-
tence window composed by several consecutive sentences
that explain why h and t have the directed relation r. How-
ever, this explanation mechanism is only applied to new
triples explainable by consecutive sentences. Consider the
aforementioned example. If there is no sentence window
mentioning both Tom and Tim, 〈Tom,Grandfather,Tim〉
cannot be explained. It shows that purely text-based expla-
nations have a rather low coverage for new triples.

We consider combining the above two categories to re-
solve limitations therein. There are two research problems
about this combination — one on the way to combine log-
ical information and text information, and the other on the
way to present the explanations.

For the first problem, we propose a new category of
explanations, called abductive text evidences, to combine
logical information and text information. Given a logical
theory, a knowledge graph and a text corpus, an abduc-
tive text evidence for a new triple τ is a set of pairs
{(τi, wi)}1≤i≤n for τi a triple and wi a sentence window
in the text corpus, such that appending {τi}1≤i≤n to the
knowledge graph makes τ entailed under the logical the-
ory, while wi explains to some degree the existence of τi
for all 1 ≤ i ≤ n. The set {τi}1≤i≤n is actually an ab-
ductive explanation for τ under the logical theory in logic-
based abduction (Eiter and Gottlob 1995). The usage of ab-
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ductive text evidences gives more chances to explain a new
triple. Consider the aforementioned example again. Even
when none of the sentence windows mentions both Tom
and Tim, 〈Tom,Grandfather,Tim〉 can still be explained
by an abductive text evidence {(〈Tom,Father, e〉, w1),
(〈e,Father,Tim〉, w2)} for e an entity, and w1 and w2 sen-
tence windows respectively explaining to some degree why
〈Tom,Father, e〉 and 〈e,Father,Tim〉 exist.

To make explanations as concise as possible, we consider
only subset-minimal abductive explanations, simply called
mina-explanations. Computing the complete set of mina-
explanations is still impractical because the number of mina-
explanations can be easily exponential in the number of en-
tities. Take for example a knowledge graph with N entities
{vi}1≤i≤N but without triples of the form edge(vi, vj), a
new triple path(v1, vN ), and a logical theory composed by
two rules ∀x, y, z : path(x, y) ∧ path(y, z) → path(x, z)
and ∀x, y : edge(x, y) → path(x, y), then there will be
(N − 2)! mina-explanations of the form {edge(v1, vk1), . . . ,
edge(vki , vki+1), . . . , edge(vkN−2

, vN )} for path(v1, vN ),
where (k1, . . . , kN−2) is a permutation of (2, . . . , N − 1).

To reduce the number of mina-explanations to be com-
puted, we assume that a pragmatic explanation should be
instantiated from an explanation pattern seen before and be
supported by the text corpus. An explanation pattern P is a
set of lifted triples which are almost the same as triples ex-
cept that all entities therein are replaced with variables. P is
said to be seen before in a knowledge graph for a lifted triple
〈x, r, y〉 if there is a differentiated substitution θ for P mak-
ing Pθ a minimal subset of the knowledge graph that entails
〈xθ, r, yθ〉 under the logical theory, where a differentiated
substitution for P replaces different variables in P with dif-
ferent entities. Moreover, given a text corpus composed of
sentence windows, an explanation is required to consist of
only triples 〈h, r, t〉 such that a mention of h and a mention
of t co-occur in at least one sentence window, since this kind
of explanations can directly be extended to abductive text
evidences. Roughly speaking, a mina-explanation for a new
triple is called a text and explanation pattern based expla-
nation (simply TEP-based explanation) if it is derived from
an explanation pattern seen before in the given knowledge
graph and consists of only triples 〈h, r, t〉 such that a men-
tion of h and a mention of t co-occur in a sentence window
in the given text corpus. Accordingly, we call an abductive
text evidence extended from a TEP-based explanation under
the same text corpus a TEP-based abductive text evidence.
We then propose a method for computing the complete set
of TEP-based abductive text evidences.

For the second problem, we aim to present TEP-based ab-
ductive text evidences in an order that prefers more explica-
ble sentence windows so that anyone who wants to validate
a new triple can merely focus on high-rank explanations. To
avoid laborious annotation, we adapt a distantly supervised
method for relation extraction (Lin et al. 2016) to estimate,
for every pair (τ, w) in an abductive text evidence, to what
degree the sentence window w explains the existence of the
triple τ . We then propose a total order for sorting all TEP-
based abductive text evidences that are extended from the
same TEP-based explanation.

To evaluate the proposed mechanism for validating new
triples, we construct four knowledge graphs and their corre-
sponding logical theories from the text corpora that we are
familiar with, which are the four great classical masterpieces
of Chinese literature. We divide each knowledge graph into
a training set and a test set, where triples in the test set are
all treated as new triples. To validate every triple in the test
set, we compute all TEP-based abductive text evidences for
it and sort them in a variant of the proposed total order. Ex-
perimental results show that the computation of TEP-based
abductive text evidences is efficient while the proposed to-
tal order is more effective than other variants (including the
random order) in ranking true explanations at top places.

Preliminaries
This work considers only logical theories that are expressed
in first-order logic. Such a logical theory is a set of rules
R of the form ∀~x : φ(~x) → ∃~y ϕ(~x, ~y), where φ(~x) is a
conjunction of atoms on the universally quantified variables
~x, and ϕ(~x, ~y) is a disjunction of atoms on both ~x and the
existentially quantified variables ~y. The part of R at the left
(resp. right) of → is called the body (resp. head) of R. By
body(R) (resp. head(R)) we denote the set of atoms in the
body (resp. head) of R. If the head of R has no atoms, R
is also called a constraint while the empty head is written
as ⊥. If the head of R has a single atom without existen-
tially quantified variables, R is also called a datalog rule.
For brevity, in this paper we present our work with the Horn
fragment of first-order logic, although the proposed methods
can be applied to other fragments such as description logics
(DLs) (Baader et al. 2003). We simply call a set of datalog
rules and constraints a Horn theory, which may contain con-
stants. A knowledge graph can be treated as a set of ground
rules with empty bodies, or simply a set of ground atoms,
by rewriting triples 〈h, r, t〉 to ground atoms r(h, t), where
entity-type triples of the form 〈e, type, t〉 (meaning e has a
type t) are also rewritten to type(e, t) as other triples.

A model of a Horn theory T is a set S of ground atoms
such that (1) body(R) θ ⊆ S implies head(R) θ∩S 6= ∅ for
any datalog rule R ∈ T and any ground substitution θ for
var(R), and (2) body(R) θ 6⊆ S for any constraint R ∈ T
and any ground substitution θ for var(R), where a ground
substitution for a symbol maps all variables in the symbol to
constants, and var(R) denotes the set of variables in R. A
model of the union K of a knowledge graph G and a Horn
theory T is a model of T that includes G. The union K is
said to be consistent if it has a model, which means that K
has a unique least model since T is Horn. We say a triple
is entailed by a knowledge graph G under a Horn theory
T , or entailed by G ∪ T , if the triple is in the unique least
model of G ∪ T . Given an observation which is a triple τ , a
knowledge graph G and a Horn theory T such that G ∪ T is
consistent, an abductive explanation E for τ in G under T is
a set of triples constructed from entities in G such that (1) τ
is entailed by G∪E under T , and (2) G∪E ∪T is consistent.
E is further called a subset-minimal abductive explanation
(simply mina-explanation) for τ in G under T if there is no
proper subset of E that is also an abductive explanation for
τ in G under T .
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A Validation Mechanism for New Triples
To maintain high quality for a growing knowledge graph,
it is crucial to find explanations to prove the existence of
any new triple to be added. As discussed in Introduction, al-
though abductive explanations can be used to prove a large
number of new triples through a background logical theory,
the absent triples in an abductive explanation need to be fur-
ther validated. Fortunately, text-based explanations can be
used to prove these absent triples. Thus we propose below a
new kind of explanations which integrates text-based expla-
nations into abductive explanations, where a sentence win-
dow is a text composed by several consecutive sentences.
Definition 1 (abductive text evidence) Given a triple τ , a
knowledge graph G, a Horn theory T and a text corpus C
composed of sentence windows, such that G ∪ {τ} ∪ T is
consistent, an abductive text evidence for τ is a set of pairs
{(τi, wi)}1≤i≤n such that {τi}1≤i≤n is an abductive expla-
nation for τ in G under T , while for all 1 ≤ i ≤ n, τi 6∈ G,
wi ∈ C and wi explains to some degree the existence of τi.

The above definition is not given rigorously as “to some
degree” is not well-defined. More importantly, computing
all abductive text evidences for a triple is often impracti-
cal since it requires to compute all abductive explanations.
It has been shown in Introduction that the number of mina-
explanations can be up to exponential in the number of enti-
ties that appear in the knowledge graph. Hence, we need to
introduce a special class of abductive text evidences which
is defined rigorously and is easy to compute.

By observing that practical logical reasoning often fol-
lows fixed patterns, we assume that practical abduction can
be a mimic of deductive reasoning in the same knowledge
graph; i.e., every explanation-observation pair used in prac-
tice, say (E , τ), is copied from some (E ′, τ ′) by substituting
entities and removing entailed triples, where τ ′ is a triple and
E ′ is a minimal subset of the knowledge graph that entails τ ′.
To define such mina-explanations, we introduce a notion of
pattern defined below, where a differentiated substitution is
a ground substitution that maps different variables to differ-
ent entities, and a lifted triple is a triple whose head and tail
are both variables.
Definition 2 (SBE-pattern) Given a knowledge graph G, a
Horn theory T and a lifted triple %, a set P of lifted triples
is called an explanation pattern seen before (simply SBE-
pattern) in G for % under T if there exists a differentiated
substitution θ for P such that Pθ is a minimal subset of G
that entails %θ under T .

Example 1 Let lt be short for less then. Consider a knowl-
edge graph G = {〈a, lt, b〉, 〈a, lt, c〉, 〈b, lt, d〉, 〈c, lt, e〉, 〈d, lt,
f〉} and a Horn theory T consisting of two rules ∀x, y, z :
lt(x, y)∧ lt(y, z)→ lt(x, z) and ∀x, y : lt(x, y)∧ lt(y, x)→
⊥. There are exactly three SBE-patterns in G for 〈x, lt, y〉
under T . They are P1 = {〈x, lt, y〉}, P2 = {〈x, lt, v1〉,
〈v1, lt, y〉} and P3 = {〈x, lt, v1〉, 〈v1, lt, v2〉, 〈v2, lt, y〉}.

Under our assumption, every desirable mina-explanation
should be obtained by applying a differentiated substitution
to an SBE-pattern and removing entailed triples from the
substituted result. Moreover, every triple τ in a desirable

mina-explanation should be explained to some degree by
a sentence window. A condition probably fulfilling this re-
quirement is that a mention of the head of τ and a mention
of the tail of τ co-occur in a sentence window. This condi-
tion may not work well for entity-type triples of the form
〈e, type, t〉 since a sentence window explaining 〈e, type, t〉
may often not mention any surface names about t. We will
leave this problem in our future work. In the current work we
introduce a class of desirable mina-explanations defined be-
low according to the above condition, where lift(τ) denotes
a lifted triple obtained from a triple τ by replacing different
entities with different variables, and h(τ) and t(τ) respec-
tively denote the head and tail of τ .

Definition 3 (TEP-based explanation) Given a triple τ , a
knowledge graph G, a Horn theory T , a set C of sentence
windows, and a function f mapping entities in G to mention
sets, such that G ∪{τ}∪T is consistent, a mina-explanation
E for τ in G under T is called a text and explanation pattern
based explanation (simply TEP-based explanation) for τ
wrt (G, T , C, f) if there is an SBE-pattern P in G for lift(τ)
under T and a differentiated substitution θ for P such that
E ⊆ Pθ and every triple in Pθ\E is entailed by G∪T , while
for every triple τ ′ ∈ E , there is a mention mh ∈ f(h(τ ′)), a
mention mt ∈ f(t(τ ′)) and a sentence window w ∈ C such
that mh and mt co-occur in w.

Example 2 Continue with Example 1. Let C = {“c and
d are comparable”, “e is smaller than f”} be a text cor-
pus, and f(x) = {x} be a mapping function from enti-
ties to mention sets. For the observation 〈c, lt, f〉 there are
exactly two TEP-based explanations wrt (G, T , C, f). They
are E1 = {〈c, lt, d〉} and E2 = {〈e, lt, f〉}. Both of them
can be derived from P2. In fact, there are also other three
mina-explanations derivable from the SBE-patterns, namely
E3 = {〈c, lt, f〉}, E4 = {〈c, lt, b〉} and E5 = {〈e, lt, d〉}. But
they are not supported by sentence windows in C.

Based on Definition 3, we accordingly define a special
class of abductive text evidences below.

Definition 4 (TEP-based abductive text evidence) Given
a triple τ , a knowledge graph G, a Horn theory T , a set C
of sentence windows, and a function f mapping entities in
G to mention sets, such that G ∪ {τ} ∪ T is consistent, a
TEP-based abductive text evidence for τ wrt (G, T , C, f)
is a set of pairs {(τi, wi)}1≤i≤n such that {τi}1≤i≤n is a
TEP-based explanation for τ wrt (G, T , C, f), while for
all 1 ≤ i ≤ n, wi ∈ C and there is mh ∈ f(h(τi)) and
mt ∈ f(t(τi)) such that mh and mt co-occur in wi.

TEP-based abductive text evidence can be treated as a
special class of abductive text evidences, because a sentence
window mentioning both the head and the tail of a triple ex-
plains to some degree the existence of the triple. This special
class is defined rigorously and can be computed in a practi-
cal way described by the algorithm in Figure 1.

The undefined notations in Figure 1 are explained as fol-
lows. ComputeEntailments(G, T ) returns the set of
triples entailed by G under T , which can be rewritten from
the unique least modelM of G∪T by treating ground atoms
as triples since T is Horn, where M is the least fix-point of
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Algorithm. ComputeExplanations(〈h, r, t〉, G, T , C, f )
Input: An observation 〈h, r, t〉, a knowledge graph G, a Horn the-

ory T , a set C of sentence windows, and a function f mapping
entities in G to mention sets.

Output: The complete set of TEP-based abductive text evidences
for 〈h, r, t〉 wrt (G, T , C, f).

1: G+ ← ComputeEntailments(G, T );
2: if 〈h, r, t〉 ∈ G+ then return {∅};
3: Ξ← ∅; ∆← ∅;
4: for each 〈h′, r, t′〉 ∈ G+ and each minimal subset S of G that

entails 〈h′, r, t′〉 under T do Ξ← Ξ∪{lift(S, h′ 7→ x, t′ 7→ y)};
5: for each P ∈ Ξ, each bipartition (P1, P2) of P s.t. P2 6= ∅,

each {x 7→ h, y 7→ t}-compatible differentiated substitution θ
for P1 s.t. P1θ ⊆ G+, and each θ-compatible differentiated sub-
stitution σ for P2 s.t. P2σ ∩ G+ = ∅ do

6: if G ∪ P2σ ∪ T is consistent
and 〈h, r, t〉 ∈ ComputeEntailments(G ∪ P2σ, T )
and 〈h, r, t〉 6∈ ComputeEntailments(G ∪ S, T ) for all

S ∈ sub1(P2σ) then
7: ∆← ∆∪{{(τ1, w1), . . . , (τn, wn)} | {τ1, . . . , τn} =
P2σ,w1 ∈ C, . . . , wn ∈ C,∀1 ≤ i ≤ n ∃mh ∈ f(h(τi)),
mt ∈ f(t(τi)) : mh and mt co-occur in wi};

8: return ∆;

Figure 1: Computing all TEP-based abductive text evidences

M (t) defined by M (0) = G and for t > 0,

M (t) = M (t−1) ∪
⋃

R∈T ,body(R)θ⊆M(t−1)

head(R)θ.

For a set S of triples, lift(S, h′ 7→ x, t′ 7→ y) returns a set
of lifted triples obtained from S by replacing h′ with x, t′
with y, and other different entities with different variables,
whereas sub1(S) returns the set of all subsets of S that are
obtained from S by removing one triple. Given a differen-
tiated substitution θ, a θ-compatible differentiated substitu-
tion is a differentiated substitution extended from θ; i.e., it is
a superset of θ when θ is treated as a set of replacements. A
pair (P1, P2) of sets of lifted triples is called a bipartition of
a set P of lifted triples if P1 ∪ P2 = P and P1 ∩ P2 = ∅.

The algorithm in Figure 1 works as follows. If 〈h, r, t〉 is
entailed by G under T , there is only an empty TEP-based
abductive text evidence for 〈h, r, t〉 (line 2). Otherwise, the
set Ξ of SBE-patterns in G for 〈x, r, y〉 under T is computed
(line 4). The SBE-patterns are derived from all minimal sub-
sets of G entailing 〈h′, r, t′〉 under T (simply called justifi-
cations for 〈h′, r, t′〉) for every triple 〈h′, r, t′〉 entailed by G
under T , according to Definition 2. The set of justifications
for an entailment can be efficiently computed by the method
proposed in (Kalyanpur et al. 2007) and can be further op-
timized by justification-preserving module extraction (Du,
Qi, and Ji 2009) or by the MapReduce technology (Wu, Qi,
and Du 2011). Afterwards, the set of TEP-based abductive
text evidences for 〈h, r, t〉wrt (G, T , C, f) is computed from
the set of SBE-patterns according to Definition 3 and Defi-
nition 4 (lines 5–7), where the consistency checking in line
6 can also be done by least fix-point computation. The fol-
lowing theorem shows the correctness of the algorithm. Due
to the space limitation, the proof of this theorem is moved to

Figure 2: The neural model for relation extraction

our technical report (Du et al. 2018).

Theorem 1 ComputeExplanations(〈h, r, t〉, G, T , C,
f ) computes the complete set of TEP-based abductive text
evidences for 〈h, r, t〉 wrt (G, T , C, f).

All TEP-based abductive text evidences can be grouped
by the TEP-based explanations that they are extended from.
We can present all the TEP-based abductive text evidences
group by group, where TEP-based abductive text evidences
in the same group are sorted in an order preferring more ex-
plicable sentence windows. To do this, we rank all sentence
windows that explain the same triple and extend this rank-
ing to sort TEP-based abductive text evidences in the same
group. The problem to be solved is: given a triple 〈h, r, t〉
and a set C of sentence windows in each of which both a
mention of h and a mention of t are marked, how to rank
sentence windows in C by support degrees for 〈h, r, t〉?

We consider the probability P (r|〈h, r, t〉, w) as an esti-
mation of the support degree of a sentence window w for
〈h, r, t〉, and adapt a distantly supervised method for relation
extraction (Lin et al. 2016) to compute it. Without annota-
tion on whether a sentence window truly prove the existence
of 〈h, r, t〉, this method creates training data under the as-
sumption that all sentence windows mentioning both h and
t contribute to the proof of 〈h, r, t〉 more or less. Then the
method builds a neural model shown in Figure 2 to compute
P (r|〈h, r, t〉, w). It treats all sentence windows mentioning
both h and t as a bag for every training triple 〈h, r, t〉.

The model consists of three layers. The first layer, called
sentence encoder, builds an embedding (i.e. a real-value vec-
tor) for every sentence window. It concatenates the word
embedding and position embedding for every word in the
given sentence window, where the position embedding has
two parts — one corresponds to the distance to the marked
mention of h and the other corresponds to the distance to the
marked mention of t, and then aggregates all concatenated
embeddings to form a sentence embedding with a fixed di-
mension d through a convolutional neural network (CNN)
or a piecewise convolutional neural network (PCNN). From
now on, let−−−→sh,t,w ∈ Rd denote the sentence embedding con-
structed from a sentence window w wrt h and t. We refer
the interested reader to (Lin et al. 2016) for more details on
computing −−−→sh,t,w. The second layer, called attention layer,
aggregates all sentence embeddings in the same bag to form
a bag embedding by applying an attention mechanism. Let−→ar ∈ Rd denote the attention vector for relation r, which
needs to be learnt also. The bag embedding ~b for a bag of
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sentence windows w1, . . . , wn can be defined as

~b =

n∑
i=1

αi
−−−→sh,t,wi

, (1)

αi = exp(ci)/

n∑
j=1

exp(cj), (2)

ci = −−−→sh,t,wi · −→ar , (3)
where ~x · ~y is the dot product of two vectors ~x and ~y. The
last layer, called classification layer, converts a bag embed-
ding into a probability distribution on all relations through a
dense sublayer and a softmax sublayer. Formally, by intro-
ducing a matrix W ∈ Rm×d and a vector ~v ∈ Rm for m
the number of different relations, the probability for the ith
relation ri, written P (ri|h, t, w1, . . . , wn), can be defined as

P (ri|h, t, w1, . . . , wn) = exp([~u]i)/

m∑
j=1

exp([~u]j), (4)

~u = W~b+ ~v. (5)
In the training phase, all training triples 〈hi, ri, ti〉 (1 ≤

i ≤ N) are organized as N bags {(〈hi, ri, ti〉, w1, . . . ,
wni)}1≤i≤N , where w1, . . . , wni are all sentence windows
mentioning both hi and ti, and then the target function∑N
i=1 P (ri|hi, ti, w1, . . . , wni

) is maximized. In the predic-
tion phase, given a test triple 〈h, r, t〉 and a sentence win-
dow w in which both a mention of h and a mention of t are
marked, the probability P (r|〈h, r, t〉, w) is computed from
the learnt model by ignoring the attention layer; i.e.,

P (r|〈h, r, t〉, w) = exp([
−→
u′ ]ir )/

m∑
j=1

exp([
−→
u′ ]j), (6)

−→
u′ = W−−−→sh,t,w + ~v, (7)

where ir denotes the index of r among all relations.
It is inappropriate to rank sentence windows for 〈h, r, t〉

directly by P (r|〈h, r, t〉, w), because P (r|〈h, r, t〉, w) has
been normalized without considering other sentence win-
dows. Instead, the support degree of a sentence window w
for 〈h, r, t〉 can be better estimated by its contribution to the
proof of 〈h, r, t〉 (i.e. −−−→sh,t,w · −→ar) as defined by Formula (3).

Let γ(〈h, r, t〉, w, C) denote the position ofw in the sorted
list of all sentence windows in C mentioning both h and t,
which is sorted in the descending order of−−−→sh,t,w ·−→ar . We de-
fine a precedence order �TEP on two TEP-based abductive
text evidences {(τi, wi)}1≤i≤n and {(τi, w′i)}1≤i≤n as

{(τi, wi)}1≤i≤n �TEP {(τi, w′i)}1≤i≤n

⇐⇒
n∑
i=1

γ(τi, wi, C) <
n∑
i=1

γ(τi, w
′
i, C) or

(

n∑
i=1

γ(τi, wi, C) =

n∑
i=1

γ(τi, w
′
i, C) and

n∑
i=1

P (ri|τi, wi) ≥
n∑
i=1

P (ri|τi, w′i)),

(8)

where ri is the relation of τi. Since �TEP is antisymmetric,
transitive and has the connex property, it is a total order.

Experimental Evaluation
We implemented the proposed methods for computing and
ranking TEP-based abductive text evidences in Java, where
the implementation of the method proposed in Figure 1 was
optimized by module extraction (Du, Qi, and Ji 2009) and by
caching sentence windows for every head-tail pair handled
in line 7. There are two proposed ranking methods based on
the neural model shown in Figure 2, where one (denoted CN-
NRP) uses CNN to encode sentence windows and the other
uses PCNN (denoted PCNNRP) to encode sentence win-
dows. Both ranking methods employ Adam (Kingma and Ba
2014) as the stochastic optimization algorithm in the train-
ing course. To compare different ranking strategies, we also
implemented three other ranking methods. The first two use
only probability information to rank TEP-based abductive
text evidences; i.e., in contrast to Formula (8) they define

{(τi, wi)}1≤i≤n �TEP {(τi, w′i)}1≤i≤n

⇐⇒
n∑
i=1

P (ri|τi, wi) ≥
n∑
i=1

P (ri|τi, w′i)).
(9)

Among these two methods, one (denoted CNNP) uses CNN
to encode sentence windows and the other uses PCNN (de-
noted PCNNP). The last method (denoted Rand) simply
ranks TEP-based abductive text evidences in a random order.

Data Construction
Existing benchmark knowledge graphs do not have corre-
sponding logical theories or text corpora from which they
are extracted. It is hard to add adequate rules to these
datasets and seek related text corpora for them. Thus we
constructed new knowledge graphs and the corresponding
logical theories from existing text corpora in a domain that
we are familiar with. The domain is about character rela-
tionships in the four great classical masterpieces of Chinese
literature, namely Dream of the Red Chamber (DRC), Jour-
ney to the West (JW), Outlaws of the Marsh (OM), and Ro-
mance of the Three Kingdoms (RTK). We collected triples
on character relationships from e-books for these master-
pieces, yielding four knowledge graphs each of which corre-
sponds to one masterpiece. For every knowledge graph, we
collected all human entities in it and sought surface names
for every entity by checking the Web page of that entity in
Baidu Wikipedia1. Thus we got a set of mentions (i.e. sur-
face names) for every entity in the knowledge graphs. For
each e-book, we separated it into sentences and composed a
sentence window for every three consecutive sentences since
we statistically found that most collected triples can be ex-
plained by consecutive three sentences. Finally, we manu-
ally built a logical theory for modeling character relation-
ships in one masterpiece by Protege2, a well-known ontol-
ogy editor. Every logical theory is originally expressed in
OWL 2 RL (Grau et al. 2008), a tractable profile of OWL 2
for modeling ontologies, and then translated to a Horn the-
ory by standard transformation. Every constructed OWL 2

1https://baike.baidu.com/
2https://protege.stanford.edu/
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RL ontology is rather complex. It contains transitivity ax-
ioms, such as one axiom declaring that relatives are transi-
tive, as well as property chain axioms, such as another axiom
declaring that daughters in law are wives of sons.

We divided each knowledge graph into a training set and
a test set, where every triple in the test set is treated as an ob-
servation whose TEP-based abductive text evidences are to
be computed. Initially the training set is the complete knowl-
edge graph and the test set is empty. Afterwards the test set
is enlarged by randomly picking out triples from the training
set in turn, until the cardinality of the test set reaches one-
tenth of the cardinality of the knowledge graph or there is no
triple that can be picked out, where a triple picked out should
be constructed from entities and relations in the remainder of
the training set and cannot be entailed by the remainder of
the training set under the corresponding logical theory.

To evaluate ranking methods, the training set of a knowl-
edge graph was extended by joining sentence windows that
contain a mention of the head and a mention of the tail for
every triple in it. Afterwards the training set was modified
by deleting records in which the relations are not used in the
test set, and then by adding records with unknown relations
for every head-tail pair that has no relation in the training
set and every sentence window containing a mention of the
head and a mention of the tail. We call the resulting set the
TE-training set, where TE is short for “text enhanced”. We
treated the training set as the input knowledge graph and
computed the complete set of TEP-based abductive text ev-
idences for every triple in the test set. We call the set of
triple-window pairs each of which is contained in at least
one computed TEP-based abductive text evidence the TW-
test set. We carefully checked every triple-window pair in
the TW-test set and marked it with a Boolean flag to indicate
if the sentence window on the right truly explains the exis-
tence of the triple on the left. Then a computed TEP-based
abductive text evidence is defined as true if all triple-window
pairs in it are marked true in the TW-test set. Table 1 reports
the statistics about all of our constructed datasets.3

Experimental Results
The computation of TEP-based abductive text evidences was
conducted in a laptop with 8GB memory and 2-core 2.5GHz
CPU. The execution time for computing all TEP-based ab-
ductive text evidences for all observations ranges from 4 sec-
onds (for JW) to 28 seconds (for OM). It can be seen from
Table 1 that, for all datasets, the set of TEP-based explana-
tions contains nontrivial ones that are not the given obser-
vation itself, while for all datasets but JW, there exist true
TEP-based abductive text evidences that are extended from
nontrivial TEP-based explanations. This means that the pro-
posed mechanism is able to find true explanations combing
both logical information and text information as expected.

The ranking of TEP-based abductive text evidences by
our proposed method (CNNRP/PCNNRP) or a variant
(CNNP/PCNNP) needs to learn a neural model in Figure 2

3All datasets mentioned in Table 1 and our constructed OWL 2
RL ontologies are available at http://dataminingcenter.net/papers/
AAAI-19-data.zip.

Table 1: The statistics about the constructed datasets
Dataset #rel #ent #train #test #win #TE-train
DRC 45 388 333 38 34,530 211,169
JW 21 104 106 3 27,670 19,006
OM 38 156 178 19 34,010 298,403
RTK 30 123 132 14 29,817 77,876

Dataset #dlog #cons #expl #ATE #true(nt) #TW-test
DRC 110 107 63 3,140 57(15) 1,343
JW 94 30 15 1,809 59(0) 1,245
OM 111 47 122 6,989 49(4) 2,200
RTK 142 63 97 25,973 184(55) 4,013

Note: #rel/#ent are respectively the number of
relations/entities in the knowledge graph, #train/#test are
respectively the number of triples in the training/test set,
#win is the number of sentence windows, #TE-train/
#TW-test are respectively the number of records in the
TE-training/TW-test set, #dlog/#const are respectively the
number of datalog rules/constraints in the Horn theory,
#expl/#ATE/#true(nt) are respectively the number of
TEP-based explanations/TEP-based abductive text
evidences/true TEP-based abductive text evidences (true
ones extended from nontrivial TEP-based explanations).

from the TE-training set and then apply the learnt model to
compute certain values used in Formula (8) or Formula (9).
These experiments were conducted in a workstation with
64GB memory and 28-core 2.2GHz CPU. In order to learn
and apply a neural model, we split a sentence window into
a set of mentions of human entities and singleton charac-
ters in the remaining part. We did not split a sentence win-
dow into words because existing word segmentation tools
do not work well for ancient Chinese sentences in the mas-
terpieces. We treated every split unit as a word, where the
word embedding is randomly instantiated and learnt during
training of the neural model. For training the model we uni-
formly set the dimension for word embeddings as 100, the
dimension for position embeddings as 10, the dimension for
sentence embeddings as 100 for CNN and 150 for PCNN,
the window size in CNN/PCNN as 2, the initial learning rate
as 0.001 for Adam (Kingma and Ba 2014), the probability
for applying dropout (Srivastava et al. 2014) as 0.1, and the
learning epochs as 20. The execution time for learning a neu-
ral model ranges from 7 minutes (for JW) to 18 hours (for
OM). On the contrary, applying the learnt model to compute
ranks for all TEP-based abductive text evidences is done in
2 seconds for every dataset.

To compare the five methods for ranking each group of
TEP-based abductive text evidences that have the same TEP-
based explanation, we introduce two metrics from the field
of Information Retrieval. The first metric, written Rankmin,
is defined as the minimum rank of true TEP-based abductive
text evidences in the sorted list of a group of TEP-based ab-
ductive text evidences. The smaller Rankmin is, the earlier
people can see true explanations, thus the better the sorted
list is. The second metric, written NDCG (short for Normal-
ize Discounted Cumulative Gain), is defined as the ratio of
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Table 2: The performance measured by average Rankmin

Dataset CNNRP PCNNRP CNNP PCNNP Rand
DRC 12.714 6.524 25.095 20.095 34.331
JW 4.000 4.500 19.500 22.500 10.333
OM 3.825 4.875 6.173 6.753 6.361
RTK 4.786 6.071 8.286 6.571 9.333

Table 3: The performance measured by average NDCG
Dataset CNNRP PCNNRP CNNP PCNNP Rand
DRC 0.553 0.595 0.535 0.512 0.327
JW 0.543 0.541 0.472 0.480 0.504
OM 0.596 0.571 0.529 0.491 0.543
RTK 0.664 0.614 0.607 0.602 0.417

the discounted cumulative gain (DCG) of the current sorted
list to the DCG of the ideal sorted list where all true TEP-
based abductive text evidences are ranked at top places. The
value of NDCG is ranged from 0 to 1. The larger NDCG is,
the closer the sorted list is to the ideal one, thus the better
the sorted list is. Formally, NDCG is defined as

NDCG =
DCG

IDCG
=

∑n
i=1

reli
log2 i+1∑m

i=1
1

log2 i+1

, (10)

where n is the number of TEP-based abductive text evi-
dences, m is the number of true TEP-based abductive text
evidences, and reli = 1 if the ith TEP-based abductive text
evidence in the sorted list is true or reli = 0 otherwise.

Table 2 and Table 3 report the average Rankmin and the
average NDCG, respectively, for all groups of TEP-based
abductive text evidences, where the best value achieved by
all compared methods is displayed in bold and the value for
the random method (Rand) has been averaged by 10 ran-
dom runs. It can be seen that, ranking sentence windows by
their contributions to the proof of the corresponding relation
which are computed by an attention mechanism is much ef-
fective than random ranking or ranking by their probabili-
ties on inferencing the corresponding relation, in giving true
TEP-based abductive text evidences high-ranks. Ranking by
probabilities is sometimes worse than random ranking, be-
cause the computed probabilities have been normalized lo-
cally and the comparison result between two normalized
probabilities for a pair of sentence windows may not truly
reflect the comparison result between two support degrees
for the same pair of sentence windows.

Related Work
This work is most related to those studies addressing the au-
tomatic seeking of external evidences to validate triples in a
knowledge graph. The DeFacto (Deep Fact Validation) ap-
proach (Gerber et al. 2015) validates triples by finding trust-
worthy sources for them on the Web. It transforms triples into
natural language sentences and retrieves web pages mention-
ing these sentences by a web search engine. The TTA (Triples
Accuracy Assessment) approach (Liu, d’Aquin, and Motta
2017) validates triples by finding consensus of matched

triples from other knowledge graphs. Either of the above ap-
proaches exploits evidences of a single type and does not
consider logical information. As far as we know, our pro-
posed approach is the first one that combines logical infor-
mation and textual information to validate triples.

By treating a knowledge graph as an ABox and a logical
theory as a TBox, the problem of computing abductive ex-
planations for a triple can be viewed as a problem of ABox
abduction (Elsenbroich, Kutz, and Sattler 2006) in descrip-
tion logics (DLs) (Baader et al. 2003) which are fragments
of first-order logic. ABox abduction aims to compute expla-
nations for an observation, where the observation is usually
an ABox assertion which can be treated as a triple, and an
explanation is a set of ABox assertions whose addition to a
consistent DL knowledge base (KB) made up of a TBox and
an ABox enforces entailment of the observation while keep-
ing the KB consistent. Existing methods for ABox abduction
are restricted to specific DLs. An early study for ABox ab-
duction (Peraldi et al. 2007) proposes a backward inference
method. It restricts the TBox axioms to specific forms and
does not guarantee minimality for the output explanations.
To compute all minimal explanations in an ALC KB, the
study (Klarman, Endriss, and Schlobach 2011) proposes a
method based on resolution and tableau. A subsequent study
(Halland and Britz 2012) proposes a purely tableaux-based
method for ABox abduction in ALC. Another study (Ma et
al. 2012) extends the method proposed in (Klarman, Endriss,
and Schlobach 2011) to work for ALCI KBs. All the above
methods do not guarantee termination in computing all min-
imal explanations. In (Du et al. 2011) the termination prob-
lem is tackled by restricting explanations to be constructed
from a finite vocabulary. A sound and complete method
is accordingly proposed to compute all minimal explana-
tions in Horn-SHIQ KBs. It is later extended by (Wang
et al. 2015) to handle OWL 2 EL KBs. In (Du, Wang, and
Shen 2014) a tractable method for ABox abduction is pro-
posed. It only works for KBs that are first-order rewritable.
In (Del-Pinto and Schmidt 2017) a forgetting based method
for ABox abduction in ALC is proposed. In contrast to the
above methods, we propose a novel method for computing
certain minimal explanations, where SBE-patterns are intro-
duced to confine the structure of minimal explanations. It is
applicable to many fragments of first-order logic including
DLs as long as a reasoner for the fragment exists to perform
consistency checking or entailment checking.

This work addresses not only how to compute abduc-
tive explanations but also how to rank abductive text evi-
dences that are extended from abductive explanations. The
proposed ranking methods rely on an attention mechanism
for weighting different sentence windows that contribute to
explaining a given triple. Hence any attention-based method
for distantly supervised learning of relation extraction mod-
els, besides (Lin et al. 2016), can be employed in this work.
We refer the interested reader to (Kumar 2017) for more neu-
ral models for relation extraction.

Conclusions and Future Work
To validate new triples in a growing knowledge graph, we
have proposed a new kind of explanations namely abductive
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text evidence for new triples. Both logical information and
text information are combined in an abductive text evidence
to prove the existence of a new triple. From the angle of
practice, we proposed a special class of abductive text evi-
dences namely TEP-based abductive text evidence which is
easy to compute. Accordingly, we proposed a method for
computing the complete set of TEP-based abductive text ev-
idences. Moreover, we proposed a method for sorting TEP-
based abductive text evidences based on distantly supervised
learning. The efficiency and effectiveness of our proposed
methods have been demonstrated in our experiments.

As mentioned before, a TEP-based abductive text evi-
dence is hard to contain any entity-type triple of the form
〈e, type, t〉 although entity-type triples can be used as other
triples in our proposed computational framework. In our fu-
ture work we plan to define other classes of abductive text
evidences that can contain entity-type triples as required. In
addition, we plan to develop more elaborate ranking meth-
ods to give true abductive text evidences higher ranks.
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